

Inductors

For Power Line

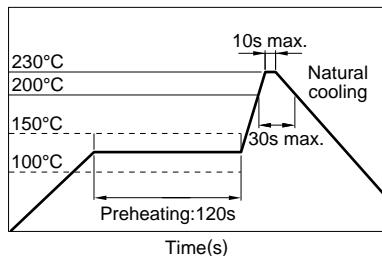
SMD

NLCV Series NLCV25 Type

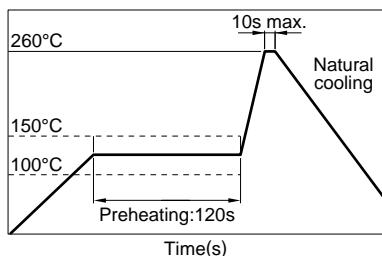
FEATURES

- Provides high Q while using 252018 size winding construction.
- Environmentally friendly due to use of recyclable plastic (thermoplastic).
- Logo omitted to simplify production.
- Maintains interchangeability with earlier NL product series.
- NLV series are E-6 products, while NLCV and NLFV series are E-3 products.

APPLICATIONS

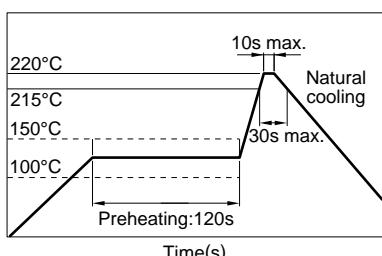

PCs, hard disk drives, and other types of electronics

SPECIFICATIONS


Type	Operating temperature range	Storage temperature range[Unit of products]
NLV25	-20 to +85°C	-40 to +85°C
NLCV25	-20 to +85°C	-40 to +85°C
NLFV25	-20 to +85°C	-40 to +85°C

RECOMMENDED SOLDERING CONDITIONS

REFLOW SOLDERING


FLOW SOLDERING

IRON SOLDERING

Perform soldering at 250°C on 30W max. within 5 seconds.

VAPOR-PHASING

PRODUCT IDENTIFICATION

NLV 25 T- 2R2 J
(1) (2) (3) (4) (5)

(1) Series name

(2) Dimensions LxWxT

252018 2.5x2.0x1.8mm

(3) Packaging style

T Taping (reel)

(4) Inductance value

1R0	1μH
220	22μH

(5) Inductance tolerance

J	±5%
K	±10%
M	±20%

PACKAGING STYLE AND QUANTITIES

Packaging style	Type	Quantity
Taping	NLV25T	2000 pieces/reel
	NLCV25T	2000 pieces/reel
	NLFV25T	2000 pieces/reel

PRECAUTIONS

- The exterior of this product can melt since due to thermoplastic construction. During mechanical contact while at the plastic softening temperature, deformation can occur at the contact location. Therefore caution is required when utilizing a soldering iron during the soldering operation.

FLUX AND CLEANING

Rosin-based flux is recommended.

Cleaning Conditions

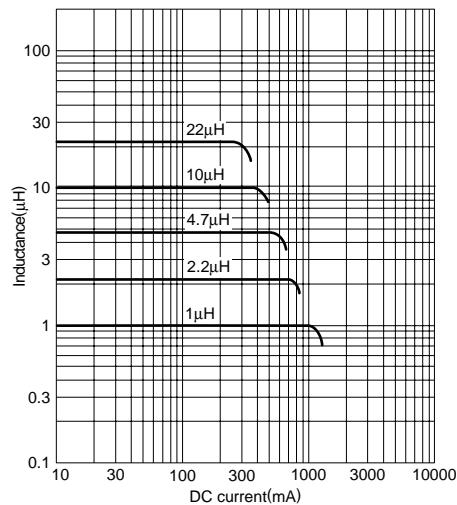
Solvent	Chlorine-based solvent (Do not use acid or alkali solvents.)
Time	2min max.

Inductors

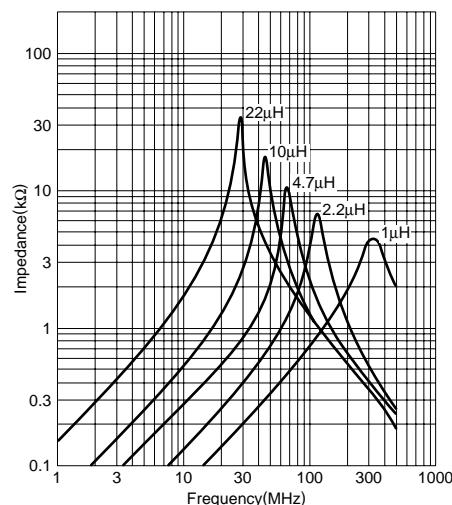
For Power Line
SMD

NLCV Series NLCV25 Type

SHAPES AND DIMENSIONS/RECOMMENDED PC BOARD PATTERN


ELECTRICAL CHARACTERISTICS

Inductance(μH)	Inductance tolerance	Q typ.	Test frequency L,Q (MHz)	Self-resonant frequency (MHz)min.	DC resistance (Ω)±30%	Rated current (mA)max.	Part No.
1	±20%	20	7.96	200	0.34	475	NLCV25T-1R0M
2.2	±20%	20	7.96	95	0.5	390	NLCV25T-2R2M
4.7	±20%	20	7.96	43	0.8	285	NLCV25T-4R7M
10	±10%	30	2.52	32	1.69	210	NLCV25T-100K
22	±10%	30	2.52	18	2.8	160	NLCV25T-220K


• Test equipment L, Q: HP4194A IMPEDANCE/GAIN PHASE ANALYZER+HP16085A+HP16093 B+TF-1
SRF: HP8753C NETWORK ANALYZER
Rdc: MATSUSHITA VP-2941A DIGITAL MILLIOHM METER

TYPICAL ELECTRICAL CHARACTERISTICS

INDUCTANCE CHANGE vs. DC SUPERPOSITION CHARACTERISTICS

IMPEDANCE vs. FREQUENCY CHARACTERISTICS

