

Hawkeye Detectors

Features

- Compatible with the Global Premier, Acculase and Gated Cameo and our range of nonmodulated lasers
- High level of immunity to ambient light.
- High acceptance angle 160 deg.
- Good signal to noise> 70dB.
- Independent outputs for a.c. & d.c. components.
- Wide bandwidth.
- Excellent signal integrity.
- Calibrated d.c. output (average power meter).
- Low power 5V operation.
- 50Ω outputs to drive coaxial cables.
- Screwthread for easy mounting and additional optics.

Applications

- Condition monitoring including fog and smoke, particle detection, and densitometry.
- Event Monitoring beam break including edge sensing, counting, telemetry, safety barriers, interlocks.
- Detectors for Lock in Amplifiers.
- Telemetry

The new series of Hawkeye detectors is designed as a companion to the Global Laser Premier, Acculase, and Gated Cameo, as well as lasers from our non-modulated range.

The modular design of the Hawkeye Detector incorporates a novel amplification system, which excellent performance ensures particularly in high ambient light conditions. Therefore, the Hawkeye is ideal not only for conventional indoor applications, but in addition for a wide variety of outdoor applications.

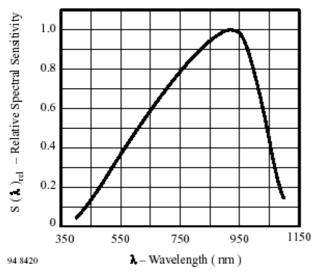
The integrated optics produce a wide acceptance angle which further increases this detector's extensive capabilities.

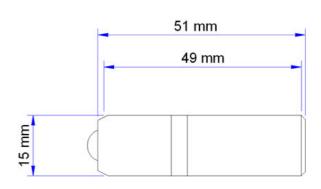
Hawkeye Detector Technical Characteristics

Electrical Characteristics

	Min	Тур	Max	Units	
Supply Voltage	4	5	6	V	Note 1
Supply Current	1	6		mA	Note 2

Note 1. a.c. output is d.c. coupled - sits at mid rail at o ambient light, ideal for DAC cards.


Note 2. Minimum supply current with no input signal - Typical with input signal.


Operating Characteristics

Output a.c. Signal (@ 650nm)
Output d.c. signal (@ 650nm)
a.c. Output Frequency Response
d.c. Output Frequency Response
Relative Ambient Light Rejection
Total Ambient Light Immunity
Linearity
S/N ratio
Input Acceptance Angle

1520-01	1520-02	1520-03	Units	
1	10	1	V/mW	Note 3
1	1	1	V/mW	Note 4
750	>100	750	kHz	Note 5
1	1	10	Hz	Note 5
20	10	20	dB	Note 6
	1000	W/m ²		
	5		%	
70	70	64	dB	
	160		0	

- Note 3. a.c. output is d.c. coupled, non-inverting and sits at mid rail.
- Note 4. d.c output is measured relative to 0V (ground).
- Note 5. f_{reject} is the frequency at which the d.c. and a.c. outputs are -3dB
- Note 6. Measured using two 650nm lasers not exceeding the total light immunity.

Front section can be removed to reveille M12 thread

Figure 7. Relative Spectral Sensitivity vs. Wavelength