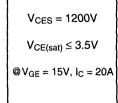
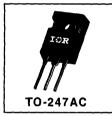

IRGPH50KD2


INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Short Circuit Rated
UltraFast CoPack IGBT

Features

- Short circuit rated -10 μ s @ 125°C, V_{GE} = 10V (5 μ s @ V_{GE} = 15V)
- · Switching-loss rating includes all "tail" losses
- HEXFRED™ soft ultrafast diodes
- Optimized for high operating frequency (over 5kHz)
 See Fig. 1 for Current vs. Frequency curve



Description

Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, applications.

These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	36	
Ic @ T _C = 100°C	Continuous Collector Current	20	
Ісм	Pulsed Collector Current ①	72	A
ILM	Clamped Inductive Load Current 2	72	
IF @ T _C = 100°C	Diode Continuous Foward Current	16	
I _{FM}	Diode Maximum Forward Current	72	_
t _{sc}	Short Circuit Withstand Time	10	μs
V _{GE}	Gate-to-Emitter Voltage	± 20	V
P _D @ T _C = 25°C	Maximum Power Dissipation	200	W
P _D @ T _C = 100°C	Maximum Power Dissipation	78	
Tj	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

*	Parameter	Min.	Тур.	Max.	Units
Resc	Junction-to-Case - IGBT	_		0.64	
Reuc	Junction-to-Case - Diode	_		0.83	°C/W
Recs	Case-to-Sink, flat, greased surface		0.24		7
Reja	Junction-to-Ambient, typical socket mount			40	7
Wt	Weight	_	6 (0.21)		0 (07)

Electrical Characteristics @ T_{.1} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage®	1200	_		V	V _{GE} = 0V, I _C = 250μA
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage	_	1.8	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	=	2.7	3.5		I _C = 20A V _{GE} = 15V
		_	3.4	_	v	I _C = 36A See Fig. 2, 5
		_	2.6	_	1 1	I _C = 20A, T _J = 150°C
V _{GE(th)}	Gate Threshold Voltage	3.0	_	6.0		V _{CE} = V _{GE} , I _C = 250μA
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-15	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
9fe	Forward Transconductance	4.2	12	<u> </u>	S	V _{CE} = 100V, I _C = 20A
ICES	Zero Gate Voltage Collector Current	_	_	250	μΑ	V _{GE} = 0V, V _{CE} = 1200V
		_	_	6500		V _{GE} = 0V, V _{CE} = 1200V, T _J = 150°C
V _{FM}	Diode Forward Voltage Drop	_	2.5	3.0	V	I _C = 16A See Fig. 13
1	_		2.1	2.5]	I _C = 16A, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	—	_	±100	nA	V _{GE} = ±20V

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_{g}	Total Gate Charge (turn-on)	—	94	140		I _C = 20A
Q _{ge}	Gate - Emitter Charge (turn-on)	_	23	35	nC	V _{CC} = 400V
Q _{gc}	Gate - Collector Charge (turn-on)	_	24	36		See Fig. 8
t _{d(on)}	Turn-On Delay Time	_	70	_		T _J = 25°C
t _r	Rise Time	_	68		ns	I _C = 20A, V _{CC} = 800V
t _{d(off)}	Turn-Off Delay Time	_	200	470		$V_{GE} = 15V, R_{G} = 5.0\Omega$
t _f	Fall Time	_	190	320		Energy losses include "tail" and
Eon	Turn-On Switching Loss	_	2.5	_		diode reverse recovery.
E _{off}	Turn-Off Switching Loss		2.4		mJ	See Fig. 9, 10, 11, 18
Ets	Total Switching Loss	_	4.9	8.7	1	
t _{sc}	Short Circuit Withstand Time	10			μs	V _{GE} = 10V V _{CC} =720V, T _J = 125°C
		5.0	_	_		$V_{GE} = 15V R_G = 5.0\Omega, V_{CPK} < 1000V$
t _{d(on)}	Turn-On Delay Time	_	68	_		T _J = 150°C, See Fig. 9, 10, 11, 18
t _r	Rise Time		63		ns	I _C = 20A, V _{CC} = 800V
t _{d(off)}	Turn-Off Delay Time	=	320	_		$V_{GE} = 15V, R_{G} = 5.0\Omega$
t _f	Fall Time	_	310	_	1	Energy losses include "tail" and
Ets	Total Switching Loss		7.5	_	mJ	diode reverse recovery.
LE	Internal Emitter Inductance	T-	13	T-	nH	Measured 5mm from package
Cies	Input Capacitance	—	2600	T —		V _{GE} = 0V
Coes	Output Capacitance	_	140	_	pF	V _{CC} = 30V See Fig. 7
Cres	Reverse Transfer Capacitance	T —	26	_	1	f = 1.0MHz
t _{rr}	Diode Reverse Recovery Time	_	90	135	ns	T _J = 25°C See Fig.
		_	164	245	1	T _J = 125°C 14 I _F = 16A
l _{rr}	Diode Peak Reverse Recovery Current		5.8	10	Α	T _J = 25°C See Fig.
			8.3	15	1	T _J = 125°C 15 V _R = 200V
Q _{rr}	Diode Reverse Recovery Charge	_	260	675	nC	T _J = 25°C See Fig.
		_	680	1838	1	$T_J = 125^{\circ}C$ 16 di/dt = 200A/µs
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	120	_	A/µs	T _J = 25°C See Fig.
(,	During t _b		76		'	T _J = 125°C 17

Notes:

① Repetitive rating; V_{GE}=20V, pulse width limited by max. junction temperature. (See fig. 20) ② V_{CC} =80%(V_{CES}), V_{GE} =20V, L=10μH, R_{G} = 5.0 Ω , (See fig. 19)

3 Pulse width \leq 80µs; duty factor \leq 0.1%.

 Pulse width 5.0µs, single shot.

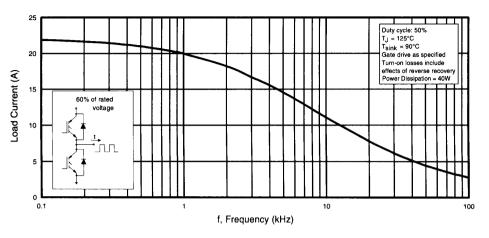


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

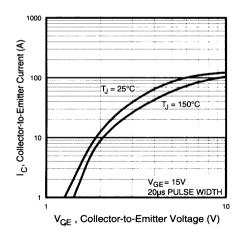


Fig. 2 - Typical Output Characteristics



Fig. 3 - Typical Transfer Characteristics

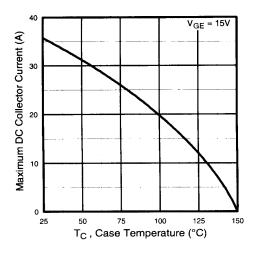
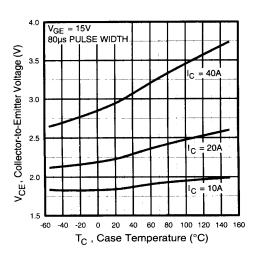



Fig. 4 - Maximum Collector Current vs.

Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature

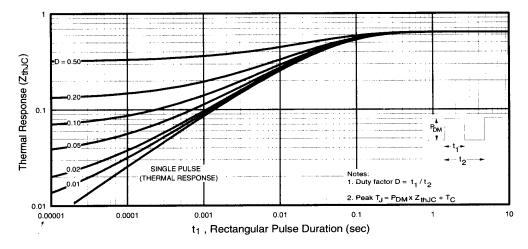


Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case

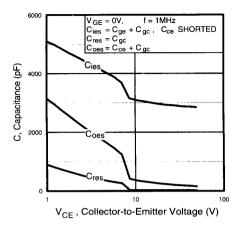


Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

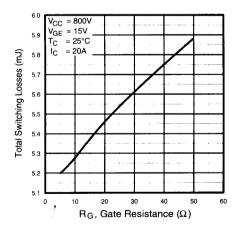


Fig. 9 - Typical Switching Losses vs. Gate Resistance

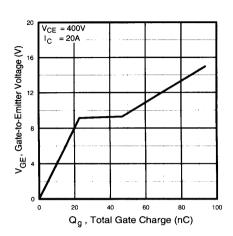


Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

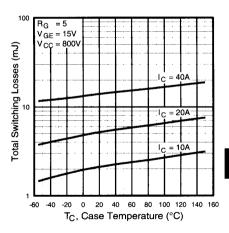


Fig. 10 - Typical Switching Losses vs. Case Temperature

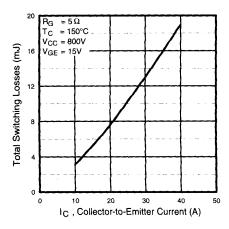


Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

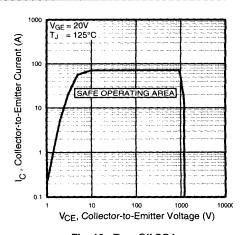


Fig. 12 - Turn-Off SOA

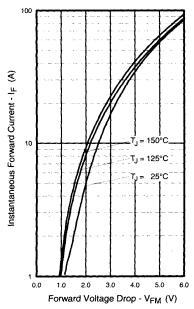


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

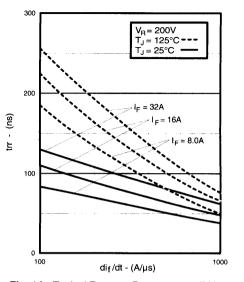


Fig. 14 - Typical Reverse Recovery vs. di_f/dt

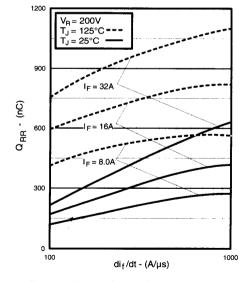


Fig. 16 - Typical Stored Charge vs. dif/dt

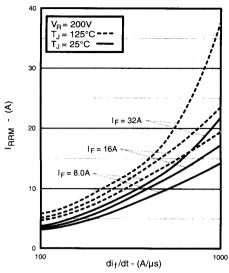


Fig. 15 - Typical Recovery Current vs. di_f/dt

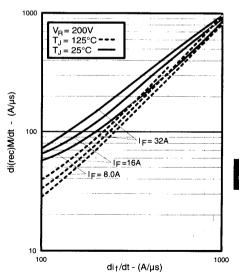
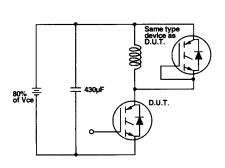



Fig. 17 - Typical di_{(rec)M}/dt vs. di_f/dt

 $\label{eq:Fig. 18a - Test Circuit for Measurement of I_LM, E_on, E_off(diode), t_rr, Q_rr, I_{rr}, t_d(on), t_r, t_d(off), t_f} \\ I_{LM}, E_{on}, E_{off(diode)}, t_{rr}, Q_{rr}, I_{rr}, t_d(on), t_r, t_d(off), t_f} \\ I_{LM}, E_{on}, E_{off(diode)}, t_{rr}, Q_{rr}, I_{rr}, t_d(on), t_r, t_d(off), t_f} \\ I_{LM}, E_{on}, E_{off(diode)}, t_{rr}, Q_{rr}, I_{rr}, t_d(on), t_r, t_d(off), t_f} \\ I_{LM}, E_{on}, E_{off(diode)}, t_{rr}, Q_{rr}, I_{rr}, t_d(on), t_r, t_d(off), t_f} \\ I_{LM}, E_{on}, E_{off(diode)}, t_{rr}, Q_{rr}, I_{rr}, t_d(on), t_r, t_d(off), t_f} \\ I_{LM}, E_{on}, E_{off(diode)}, t_{rr}, Q_{rr}, I_{rr}, t_d(on), t_r, t_d(off), t_d($

Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, t_{d(off)}, t_f

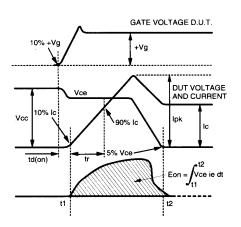


Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining E_{on} , $t_{d(on)}$, t_r

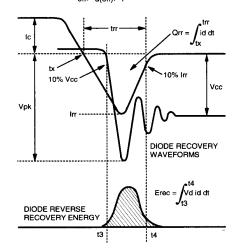


Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec}, t_{rr}, Q_{rr}, I_{rr}

Refer to Section D for the following: Appendix H: Section D - page D-9

Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a

Fig. 19 - Clamped Inductive Load Test Circuit

Fig. 20 - Pulsed Collector Current Test Circuit

Package Outline 3 - JEDEC Outline TO-247AC

Section D - page D-13