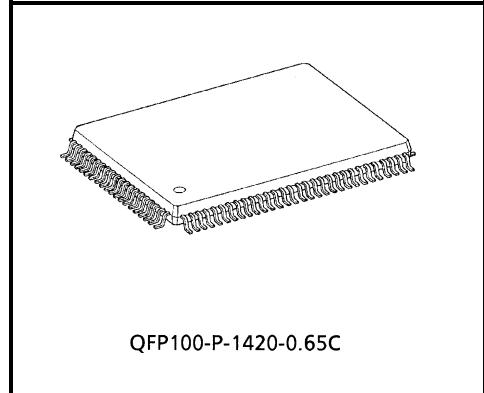
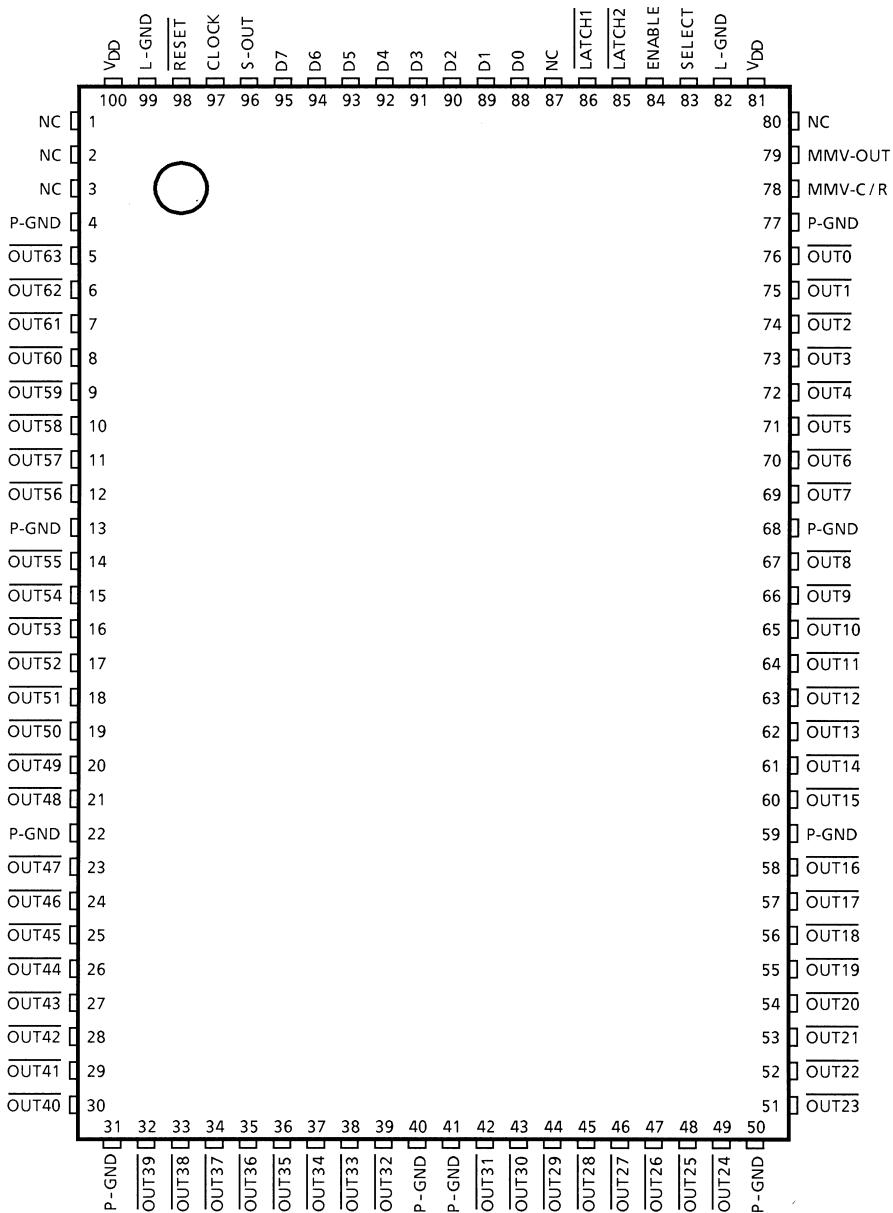


TOSHIBA Bi-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

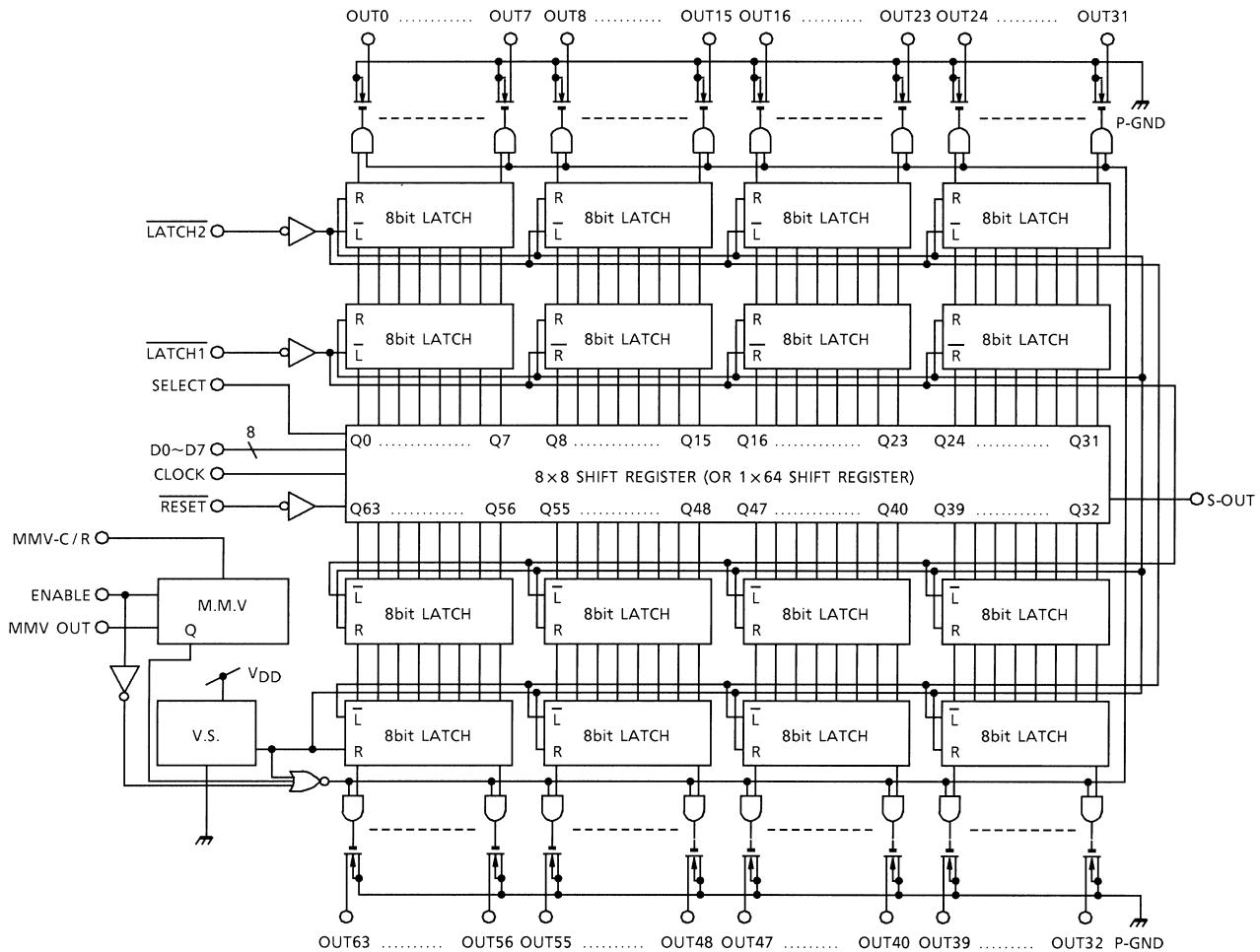

TB62600F

64BIT SHIFT REGISTER / LATCH DRIVER

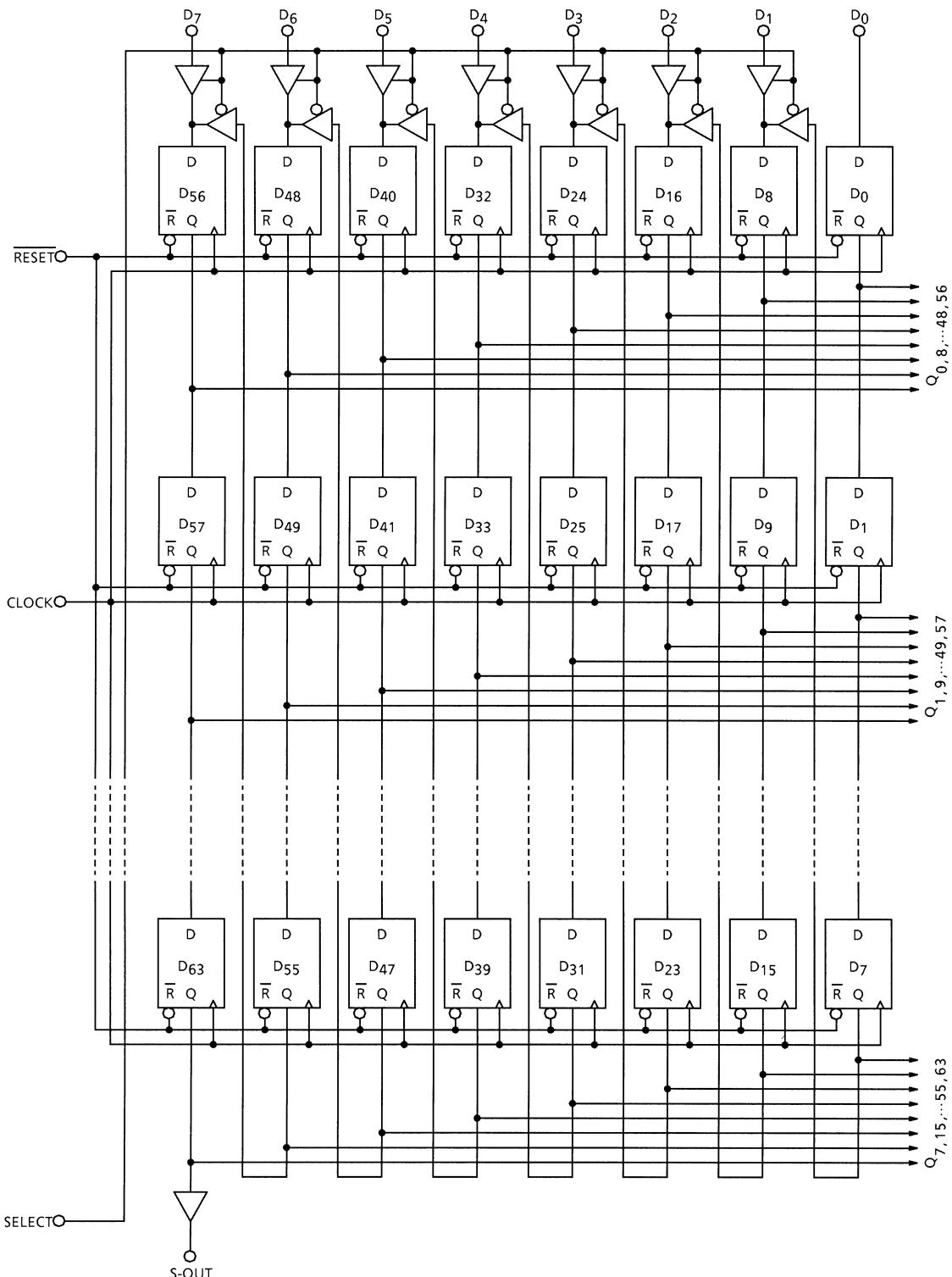
The TB62600F is specifically designed for 64bit Thermal Head drivers. And this IC is monolithic integrated circuits designed to be used together with Bi-CMOS (DMOS) integrated circuit. The devices consist of a 64bit shift register, dual 64bit latches, and 64 output DMOS structures.

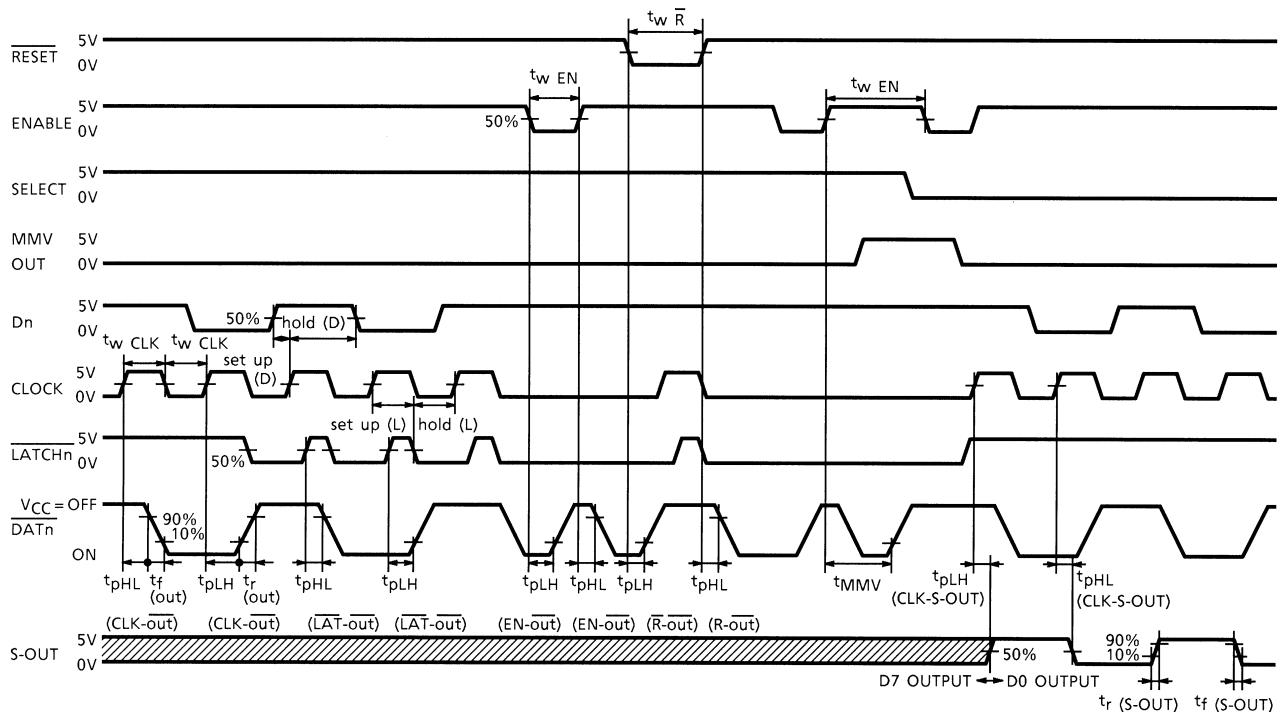

FEATURE

- Built-in selection circuit : parallel-in parallel-out (8×8) or serial-in parallel-out (1×64)
- CMOS compatible inputs
- Open-drain DMOS outputs
- Low steady-state power consumption
- Built-in mono stable multi-vibrator for head protection
- Package : QFP100-P-1420C



Weight: 1.6 g (Typ.)


PIN CONNECTION (TOP VIEW)

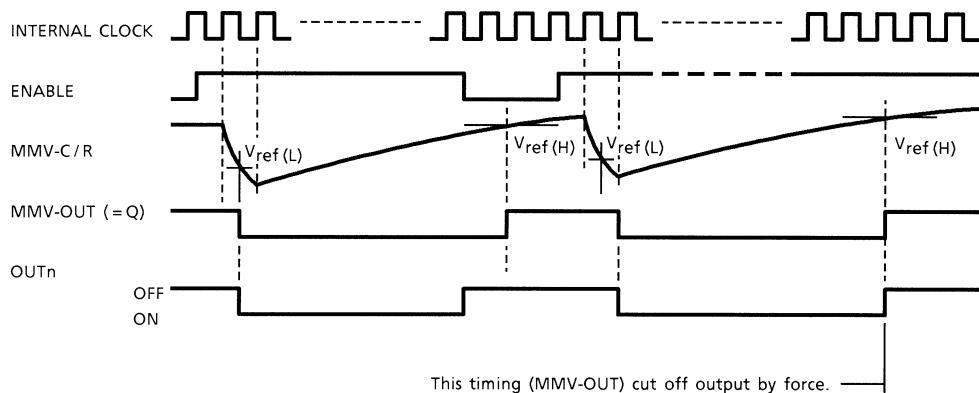

BLOCK DIAGRAM

BLOCK DIAGRAM (8 × 8, 1 × 64 shift register)

TIMING WAVEFORM

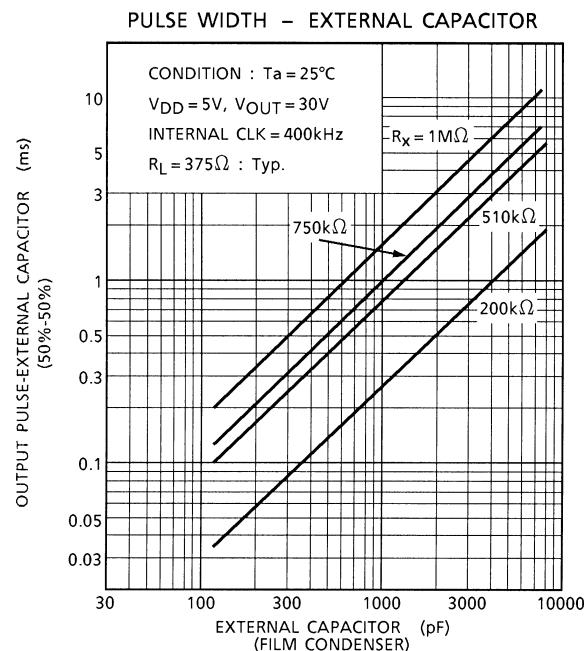
TERMINAL DESCRIPTION

PIN NAME	PIN No.	FUNCTION
CLOCK	97	Input Terminals for Shift register Clock.
ENABLE	84	"L" : All Outputs "On". Pull-Down Input Terminal.
<u>RESET</u>	98	"L" : Reset shift register and latch. Pull-Down Input Terminal.
D0~D7	88~95	Input Terminals for Output Data. "H" : Output On, "L" : Output Off.
MMV-C/R	78	CR Connection Terminal for CR Timer (MMV)
MMV-OUT	79	Output Terminal for CR Timer (MMV)
OUT0 ~ 63	—	Output Terminals. These are Open Drain Outputs.
SELECT	83	Input Terminal for Input Mode Data. "H" : 8bit Parallel Input Mode, "L" : 1bit Serial Input Mode.
S-OUT	96	Output Terminal for Serial Data "D63".
LATCH1 / <u>LATCH2</u>	86 / 85	Input Terminal for Latch. "H" : Data Through, "L" : Data Latch.
V _{DD}	81, 100	Supply Voltage Terminal for Control Logic.
L-GND	82, 99	Ground Terminal for Control Logic
P-GND	—	Ground Terminal for Drivers. 10 Terminals.


MMV OPERATION

MMV Output of Q becomes "L" when the MMV / E voltage becomes less than $V_{ref}(L)$ after the first rising edge of Internal Clock.

And becomes "H" when the MMV / E voltage above $V_{ref}(H)$ after re-changing of external capacitance connect to MMV / E. The external capacitance and resistor connect to MMV / E control MMV Output "ON" period.


So Output Load is protected from burn-out. It's required enough discharging time (decided by Time period of Internal Clock) of external capacitance.

(Refer to figure below)

● PULSE WIDTH OF MMV

See Below

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{DD}	-0.3~7.0	V
Output Drain-Source Voltage	V _{DS}	-0.4~30	V
Output Current	I _{DS}	130	mA / ch
Input Current	I _{IN}	±5	mA
Input Voltage	V _{IN}	-0.3~V _{DD} ± 0.3	V
Power Dissipation (Note 1)	P _D	1.0	W
PCB		1.3	
Operating Temperature	T _{opr}	-40~85	°C
Storage Temperature	T _{stg}	-55~150	°C

Note 1: 60 × 60 × 1.6 mm Cu 24% Glass Epoxy PCB

RECOMMENDED OPERATING CONDITIONS (Ta = -40~85°C, V_{SS} = 0 V)

CHARACTERISTIC	SYMBOL	CONDITION		MIN	TYP.	MAX	UNIT	
Supply Voltage	V _{DD}	—		4.5	5	5.5	V	
Input Voltage	"H" LEVEL	V _{IH}	—	0.7 V _{DD}	—	V _{DD}	V	
	"L" LEVEL	V _{IL}	—	0	—	0.3 V _{DD}		
Output Drain-Source Voltage	V _{OUT}	—		—	—	24	V	
Output Current	I _{OUT}	Duty = 100%	All Output "L" Level	—	—	44	mA / ch	
		Duty = 80%		—	—	49		
		Duty = 50%		—	—	62		
External Resistor	R _{EXT}	—		200	—	1000	kΩ	
External Capacitance	C _{EXT}	—		100	—	4000	pF	
Power Dissipation	P _D	—		—	—	0.67	mW	

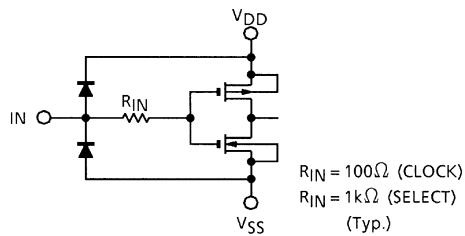
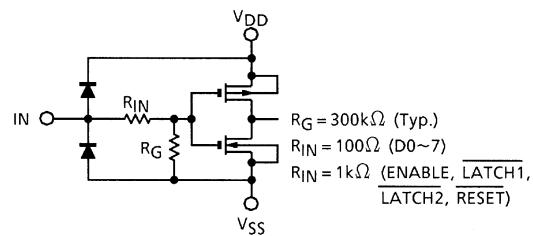
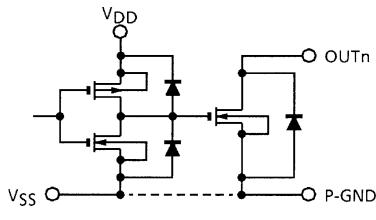
ELECTRICAL CHARACTERISTICS

(Ta = -10~80°C, V_{DD} = 4.5~5.5 V, V_{SS} = 0 V, "H" = V_{IH}, "L" = V_{IL})

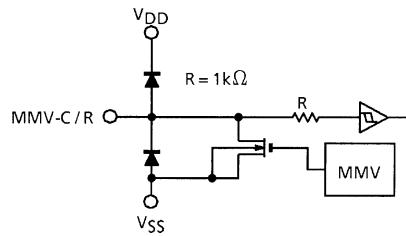
CHARACTERISTIC		SYMBOL	TEST CIR-CUIT	TEST CONDITION		MIN	TYP.	MAX	UNIT
Output Voltage	"L" Level	V _{DS1}	—	I _{OUT} = 40 mA, Ta = 25°C		—	0.16	0.32	V
		V _{DS1}	—	I _{OUT} = 40 mA		—	—	0.48	
		V _{DS2}	—	I _{OUT} = 100 mA, Ta = 25°C		—	0.40	0.80	
		V _{DS2}	—	I _{OUT} = 100 mA		—	—	1.20	
Output Current	"H" Level	I _{OH}	—	S-OUT MMV-OUT	V _{OH} = 4.6 V Ta = 25°C	—	0.2	0.5	mA
	"L" Level	I _{OL}	—		V _{OH} = 0.4 V Ta = 25°C	—	0.2	0.5	
Output Resistor		R _{ON}	—	Ta = 25°C		—	4.00	8.00	Ω
Output Leakage Current		I _{OZ1}	—	V _{OUT} = 30V, EN = "L", 1bit		—	—	10	μA
		I _{OZ2}	—	V _{OUT} = 30V, EN = "L", 64bit		—	—	100	
Input Current		I _{IN}	—	V _{IN} = V _{DD} or V _{SS}		—	—	±1	μA
Input Voltage	"H" Level	V _{IH}	—	—		0.7 V _{DD}	—	—	V
	"L" Level	V _{IL}	—	—		0	—	0.3 V _{DD}	
Voltage Supervisor Operating Voltage		V _{VS}	—	—		2.0	—	4.0	V
Supply Current		I _{DD}	—	—		—	—	300	μA
Operating Supply Current		I _{DD1}	—	f _{CLK} = 5MHz, Duty = 50% Data = 1 / 2 f _{CLK} , OUTPUT off LATCH = "L", LATCH -Data = "L"		—	—	5.0	mA
		I _{DD2}	—	f _{CLK} = 1MHz, Duty = 50% Data=1 / 64 f _{CLK} All OUTPUT open LATCH = "H", 1bit ON		—	—	6.0	
Input Pull-Up Resistor		R _{VDD}	—	V _{DD} = 5.0 V, Ta = 25°C		150	300	600	kΩ
Input Pull-Down Resistor		R _{VSS}	—	V _{DD} = 5.0 V, Ta = 25°C		150	300	600	
Internal Clock Frequency		f _{int}	—	V _{DD} = 5.0 V, Ta = 25°C		400	800	—	kHz

RECOMMENDED TIMING CONDITIONS ($T_a = -40\text{~}85^\circ\text{C}$, $V_{DD} = 4.5\text{~}5.5\text{ V}$, $V_{SS} = 0\text{ V}$)

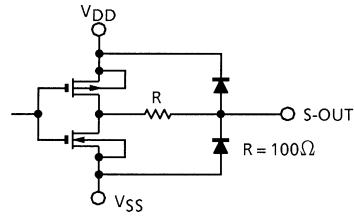
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Clock Pulse Width	t_w CLK	—	50	—	—	ns
Enable Pulse Width	t_w EN	—	0.5	—	—	μs
Latch Pulse Width	t_w LAT	—	50	—	—	ns
Clear Pulse Width	t_w CLR	—	80	—	—	ns
Data Set up Time	t_{setup}	—	37	50	—	ns
Data Hold Time	t_{hold}	—	50	—	—	ns




SWITCHING CHARACTERISTICS

(Ta = 25°C, V_{DD} = 5 V, V_{OUT} = 26 V, R₁ = 650 Ω, C_L = 15 pF)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Propagation Delay Time (Low-to-High)	CLK- Out _n	t_{pLH}	MMV-C / R = "L"	—	—	1000
	\bar{R} - Out _n		MMV-C / R = "L"	—	—	1000
	LAT1 - Out _n		MMV-C / R = "L"	—	—	1000
	LAT2 - Out _n		MMV-C / R = "L"	—	—	1000
	EN- Out _n		R = 750 kΩ, C = 2600 pF, Ta = 25°C	—	—	2500
Propagation Delay Time (High-to-Low)	CLK- Out _n	t_{pHL}	MMV-C / R = "L"	—	—	1000
	$\bar{LAT1}$ - Out _n		MMV-C / R = "L"	—	—	1000
	$\bar{LAT2}$ - Out _n		MMV-C / R = "L"	—	—	1000
	EN- Out _n		R = 750 kΩ, C = 2600 pF, Ta = 25°C	—	—	2500
	CLK- LAT _n		—	—	70	120
Set Up Time	CLK-S-IN	t_{setup} (D)	—	—	—	30
	CLK- LAT _n	t_{setup} (L)	—	—	—	70
Hold Time	CLK-S-IN	t_{hold} (D)	—	—	—	20
	CLK- LAT _n	t_{hold} (L)	—	—	—	0
Clock Pulse Width	t_w CLK	—	—	—	50	ns
Latch Pulse Width	t_w LAT _n	—	—	—	50	ns
Reset Pulse Width	t_w R	—	—	—	50	ns
Enable Pulse Width	t_w EN	—	—	—	400	ns
Output Rise Time	t_{or}	OUT _n	—	200	500	ns
Output Fall Time	t_{of}	OUT _n	—	200	500	ns
Maximum Clock Frequency	f_{MAX}	Duty = 50%	10	15	—	
Voltage Supervisor Operating Pulse Width	t_w VS	V_{DD} (H) = 5 V, V_{DD} (L) = 2 V	—	200	—	
MMV Reset Time	t_{MMV}	R = 750 kΩ, C = 2600 pF, Ta = 25°C	1	3	5	

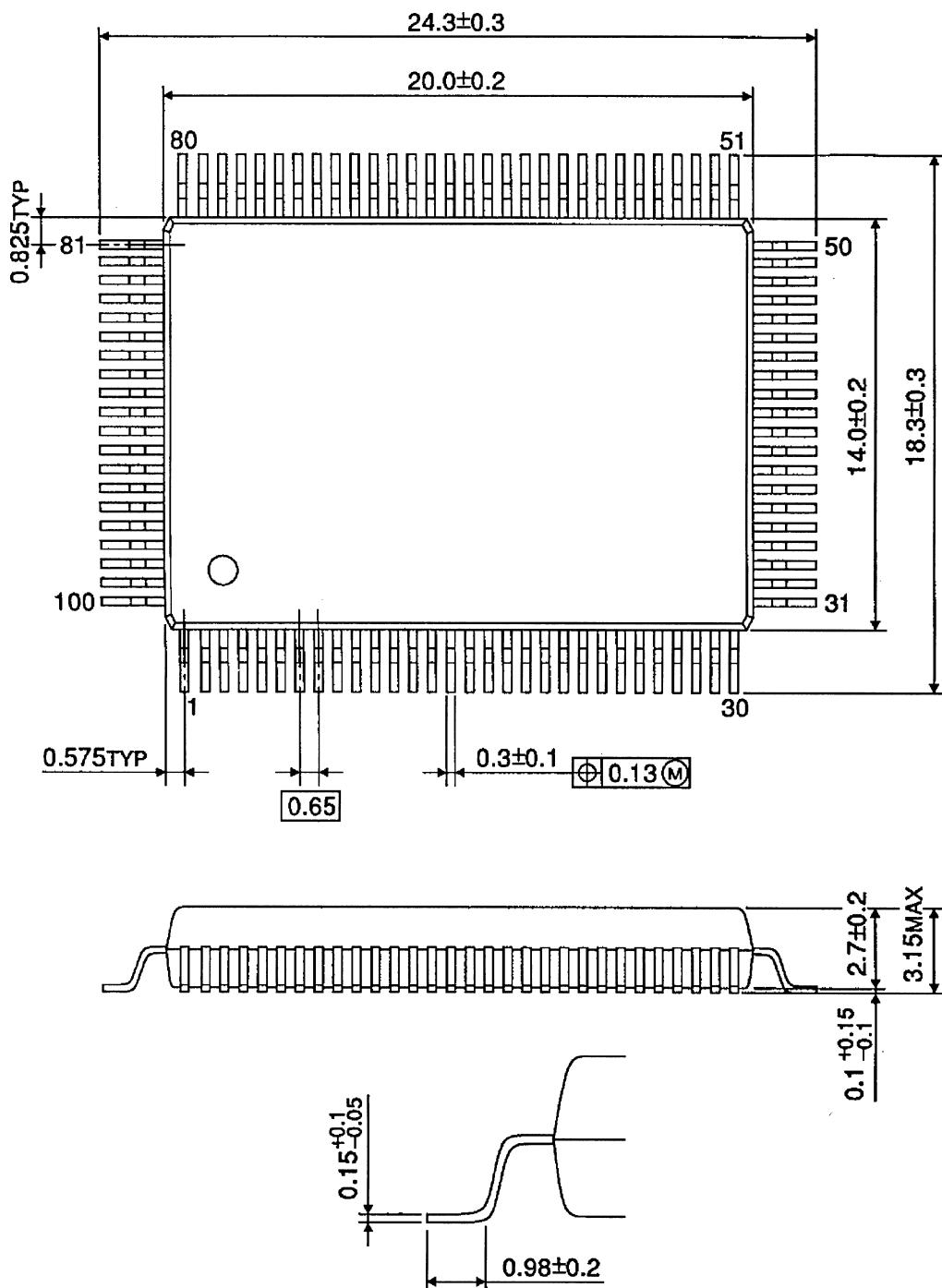
EQUIVALENT OF INPUTS AND OUTPUT CIRCUIT


1. CLOCK, SELECT

2. ENABLE, $\overline{LATCH1}$, $\overline{LATCH2}$, \overline{RESET} , D0~73. \overline{OUTn}

4. MMV-C / R

5. S-OUT, MMV-OUT


PRECAUTIONS for USING

This IC does not integrate protection circuits such as overcurrent and overvoltage protectors. Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC. Utmost care is necessary in the design of the output line, VCC (VDD) and GND (L-GND, P-GND) line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

QFP100-P-1420-0.65C

Unit: mm

Weight: 1.6 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.