

MT9D115

MT9D115 1/5-inch System-On-a-Chip (SOC) CMOS Digital Image Sensor

ON Semiconductor®

www.onsemi.com

Table 1. KEY PERFORMANCE PARAMETERS

Parameter	Typical Value
Pixel Size	1.75 μm \times 1.75 μm
Optical Format	1/5-inch
Array Format (Active)	1600 (H) \times 1200 (V) = 1.92 Mp
Imaging Area	2.8 mm \times 2.10 mm, 3.50 mm Diagonal (4:3 Aspect Ratio)
CRA	25°
Color Filter Array	RGB Bayer
Scan Mode	Progressive
Shutter	Electronic Rolling Shutter (ERS)
Input Clock Range	6–54 MHz
Output Pixel Clock Maximum	85 MHz
Output MIPI Data Rate Maximum	512 Mb/s
Max. Frame Rate	15 fps Full Res 30 fps 800 \times 600
Responsivity	0.65 V/Lux-sec (550 nm)
Signal-to-Noise Ratio	39 dB (MAX)
Dynamic Range	63.9 dB (Pixel)
Supply Voltage	
Digital	1.8 V (Nominal)
Analog	2.8 V (Nominal)
I/O	1.8 V or 2.8 V (Nominal)
MIPI	1.7–1.95 V
Power Consumption	196 mW (Note 1)
Operating Temperature Range	–30°C to 70°C (at Junction)
Package	Bare Die, CSP

1. Power consumption for typical voltages at 800 \times 600 video mode.

Features

- 2 Mp Resolution (1600 (H) \times 1200 (V))
- 1/5-inch Optical Format
- Same or Better Image Quality Compared to MT9D112
- Individual Module ID Support Through One-time Programmable (OTP) Memory
- Surface Fit Lens Correction (LC) to Compensate for Lens/Small Pixel Vignetting and Corner Color Variations

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

- Automatic Functions: Exposure, White Balance, Black Level Offset Correction, Flicker Detection and Avoidance, Color Saturation Control, Defect Identification and Correction, Aperture Correction, and GPIO
- Programmable Controls: Exposure, White Balance, Horizontal and Vertical Blanking, Color, Sharpness, Gamma, Lens Shading Correction, Horizontal and Vertical Image Flip, Zoom, Windowing, Sampling Rates, and GPIO
- 15 Frames per Second (fps) at 1600(H) \times 1200 (V) with Moderate Pixel Clock Frequency (\leq 64 MHz) to Minimize Baseband Reception Interference and 30 fps at 800 (H) \times 600 (V)
- 2 \times 2 Pixel Binning to Improve Low-light Image Quality
- Support for External LED or Xenon Flash
- On-chip Phase-locked Loop (PLL) to Minimize the Number of System Clocks
- Low Power Modes to Prolong Battery Life of Portable Devices
- Fail-safe I/Os with Programmable Output Slew Rate
- Industry Standard Two-wire Serial Interface for Controls
- 10-bit Parallel or MIPI Serial Interfaces for Image Data

Applications

- Cellular Phones
- PC Cameras
- PDAs

ORDERING INFORMATION

Table 2. AVAILABLE PART NUMBERS

Part Number	Product Description	Orderable Product Attribute Description
MT9D115D00STCK25AC1-200	2 MP 1/5" SOC	Die Sales, 200 μ m Thickness
MT9D115EB3STC-CR	2 MP 1/5" CIS SOC	Chip Tray without Protective Film
MT9D115W00STCK25AC1-750	2 MP 1/5" SOC	Wafer Sales, 750 μ m Thickness

FUNCTIONAL DESCRIPTION

The ON Semiconductor MT9D115 is a 1/5-inch 2 Mp CMOS digital image sensor with an integrated advanced camera system. This camera system features a microcontroller (MCU), a sophisticated image flow processor (IFP), MIPI and parallel output ports (only one output port can be used at a time). The microcontroller manages all functions of the camera system and sets key operation parameters for the sensor core to optimize the quality of raw image data entering the IFP. The IFP will be responsible for processing and enhancing the image.

The entire system-on-a-chip (SOC) has superior low-light performance that is particularly suitable for PC camera

applications. The MT9D115 features ON Semiconductor's breakthrough low-noise CMOS imaging technology that achieves near-CCD image quality (based on signal-to-noise ratio and low-light sensitivity) while maintaining the inherent size, cost, and integration advantages of CMOS.

The ON Semiconductor MT9D115 can be operated in its default mode or programmed for frame size, exposure, gain, and other parameters. The default mode output is a 800×600 image size at 30 frames per second (fps), assuming a 24 MHz input clock. It outputs 8-bit data, using the parallel output port.

ARCHITECTURE OVERVIEW

The MT9D115 combines a 2 Mp sensor core with an IFP to form a stand-alone solution for both image acquisition and processing. Both the sensor core and the IFP have internal registers that can be controlled by the user. In normal operation, an integrated microcontroller

autonomously controls most aspects of operation. The processed image data is transmitted to the host system either through the parallel or MIPI interface.

Figure 1 shows the major functional blocks of the MT9D115.

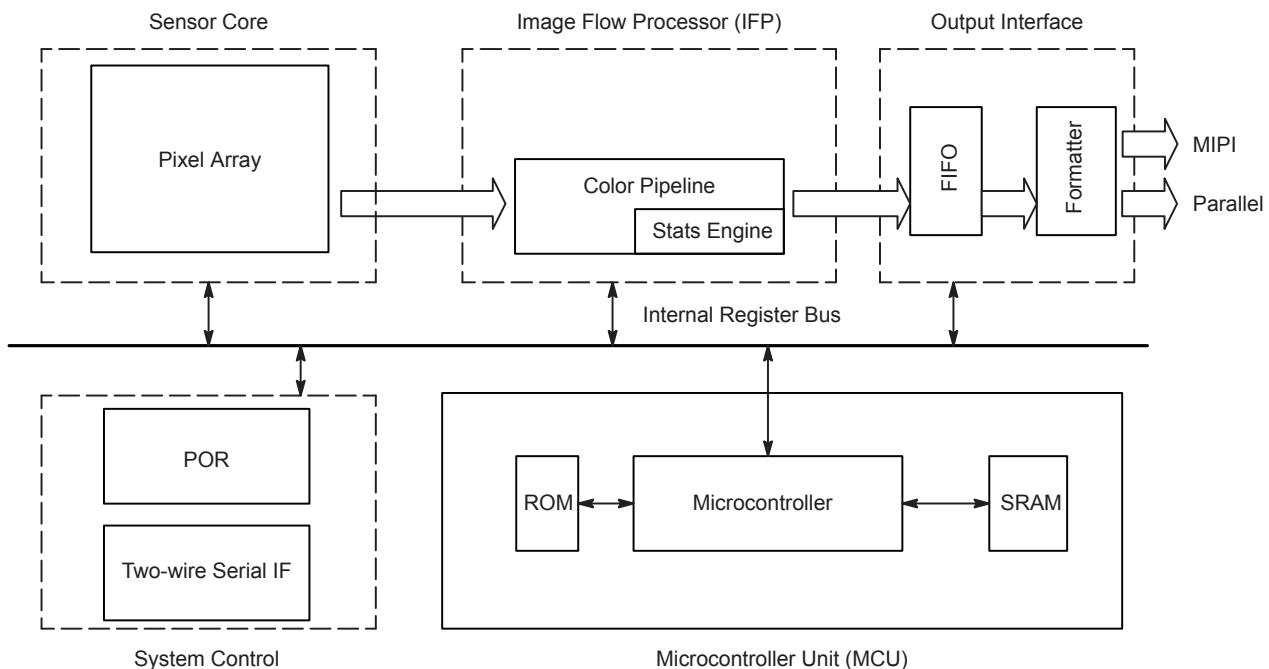
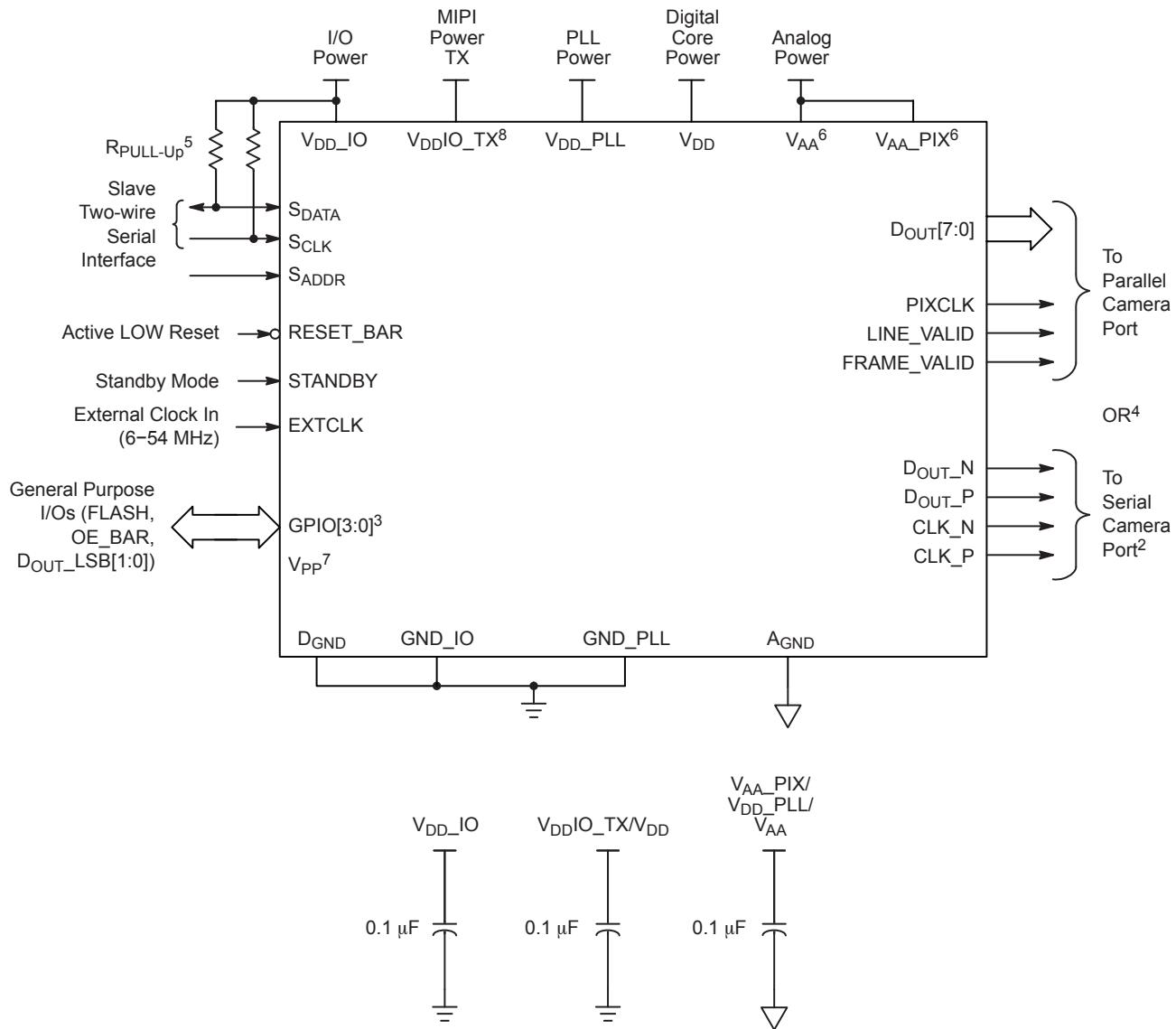



Figure 1. MT9D115 Block Diagram

TYPICAL CONNECTION

Notes:

1. This typical configuration shows only one scenario out of multiple possible variations for this sensor.
2. If a MIPI Interface is not required, the following pads must be left floating: D_OUT_P, D_OUT_N, CLK_P, and CLK_N.
3. The general purpose input/output (GPIO) pads can serve multiple features that can be reconfigured. The function and direction will vary by applications.
4. Only one of the output modes (serial or parallel) can be used at any time.
5. ON Semiconductor recommends a resistor value of 1.5 kΩ to V_DD_IO for the two-wire serial interface R_PULL-UP; however, greater values may be used for slower transmission speed.
6. V_AA and V_AA_PIX may be tied together. Although separate decoupling capacitors are recommended for V_AA and V_AA_PIX, decoupling capacitors can be shared if one would like to reduce module size.
7. V_PP is the one-time programmable memory (OTPM) programming voltage and should be left floating during normal operation.
8. 1.8 V supply shared by MIPI interface and V_DD to reduce number of decoupling caps, hence, module size. V_DDIO_TX must be connected to a 1.8 V power supply source even though MIPI interface is not used.
9. ON Semiconductor recommends that 0.1 μF and 1 μF decoupling capacitors for each power supply are mounted as close as possible to the pad and that a 10 μF capacitor be placed nearby off-module. Actual values and results may vary depending on layout and design considerations. Please follow ON Semiconductor's recommended capacitor Recommendations.
10. V_DD_PLL and V_AA can share the same power source in which case GND_PLL must be connected to GND.
11. Internal pull-up in RESET_BAR pin and can be left floating when not connected.

Figure 2. Typical Configuration (Connection)

DECOUPLING CAPACITOR RECOMMENDATIONS

It is important to provide clean, well-regulated power to each power supply. The customer is ultimately responsible for ensuring that clean power is provided for their own designs because hardware design is influenced by many factors, including layout, operating conditions, and component selection.

The recommendations for capacitor placement and values listed below are based on the ON Semiconductor internal demo camera design and verified in hardware.

ON Semiconductor recommends the following, in order of preference:

1. Mount 0.1 μ F and 1 μ F decoupling capacitors for each power supply as close as possible to the pad and place a 10 μ F capacitor nearby off-module.
2. If module limitations allow for only six decoupling capacitors for a three-regulator design ($V_{DD1}V_2$ tied to external regulator), use a 0.1 μ F and 1 μ F

capacitor for each of the three regulated supplies. ON Semiconductor also recommends placing a 10 μ F capacitor for each supply off-module, but close to each supply.

3. If module limitations allow for only three decoupling capacitors, use a 1 μ F capacitor (preferred) or a 0.1 μ F capacitor for each of the three regulated supplies. ON Semiconductor also recommends placing a 10 μ F capacitor for each supply off-module but close to each supply.
4. Give priority to the V_{AA} supply for additional decoupling capacitors.

ON Semiconductor does not recommend inductive filtering components.

Follow best practices when performing physical layout. Refer to the AND9503/D.

SIGNAL DESCRIPTIONS

Table 3. SIGNAL DESCRIPTION AND DIRECTION

Name	Type	Description
STANDBY	Input	Hardware standby
EXTCLK	Input	External clock input
S _{ADDR}	Input	Two-wire interface device select address
S _{CLK}	Input	Two-wire interface serial clock
RESET_BAR (Note 4)	Input	Hardware reset
CLK_N (Note 5)	Output	MIPI differential clock N
CLK_P (Note 5)	Output	MIPI differential clock P
D _{OUT} _N (Note 5)	Output	MIPI differential data N
D _{OUT} _P (Note 5)	Output	MIPI differential data P
D _{OUT} [7:0] (Note 1)	Output	Parallel image data
FRAME_VALID (Note 1)	Output	Parallel pixel bus frame valid
LINE_VALID (Note 1)	Output	Parallel pixel bus line valid
PIXCLK (Note 1)	Output	Parallel pixel bus pixel clock
S _{DATA}	Bidirectional	Two-wire interface serial data
GPIO_0/D _{OUT} _LSB[0] (Note 2)	Bidirectional/Output	General-purpose I/O or LSB for Raw 10 data output during SOC Bypass
GPIO_1/D _{OUT} _LSB[1] (Note 2)	Bidirectional/Output	General-purpose I/O or LSB for Raw 10 data output during SOC Bypass
GPIO_3/OE_BAR (Note 2)	Bidirectional/Output	General-purpose I/O or output enable
GPIO_2/FLASH (Note 2)	Bidirectional/Output	General-purpose I/O or flash control
V _{AA}	Supply	Analog core power source 2.8 V nominal
V _{AA} _PIX	Supply	Analog core power source 2.8 V nominal
V _{DD}	Supply	Digital core power source 1.8 V nominal
V _{DD} _IO	Supply	Digital IO power source 1.8 V or 2.8 V nominal
V _{DD} _PLL	Supply	Digital PLL power source 2.8 V nominal
V _{DDIO} _TX	Supply	Digital MIPI IO power source 1.8 V nominal.

1. In serial only mode, D_{OUT}[7:0], PIXCLK, and GPIO[3:0] can be left floating by setting R0x0026[1] =1. If GPIO signals are required, D_{OUT}[7:0] and PIXCLK must be tied to D_{GND} and OE_BAR must be tied to V_{DD}_IO. GPIO_3 should be configured as an input for OE_BAR function and set R0x001A[8] = 1.
2. GPIO can be left floating if not used and must be programmed as outputs.
3. Must be connected to V_{DD}_IO, internal 100 k Ω typical at 2.8 V V_{DDIO} used.
4. Can be left floating if not used.
5. Must be connected to V_{DD}, even in designs where the MIPI interface is not used.

ARCHITECTURE

The MT9D115 from ON Semiconductor is the third-generation, two-megapixel camera SOC. It is a microprocessor-based camera system that combines a sensor core with an image flow processor (IFP) to form a standalone solution that includes image acquisition and processing. Both the sensor core and IFP have internal

registers that can be accessed by an external host. In normal operation, the integrated system microprocessor autonomously controls most aspects of operation. The image data is transmitted to the external host system either through a parallel bus or a serial MIPI interface (see Figure 3).

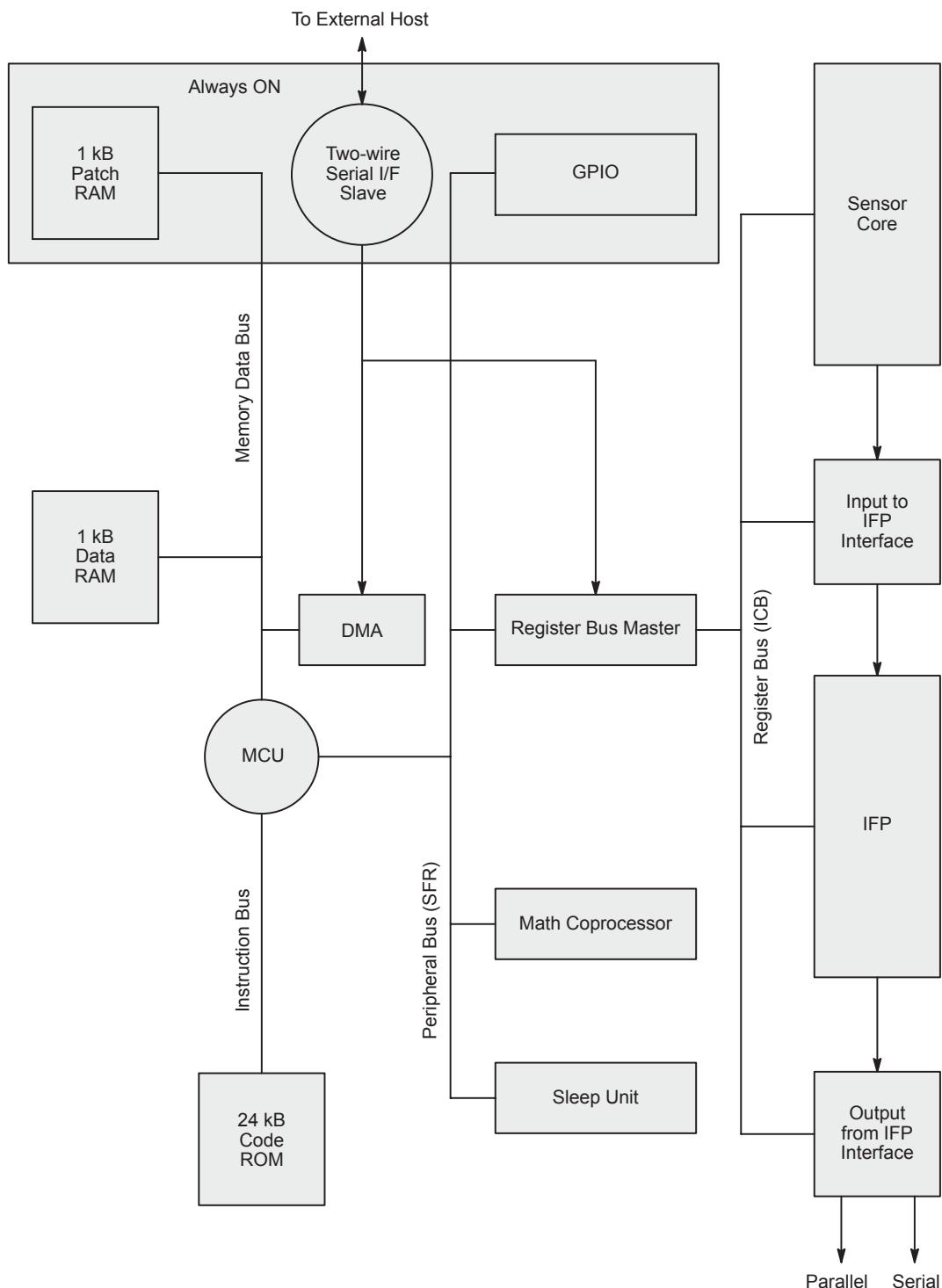
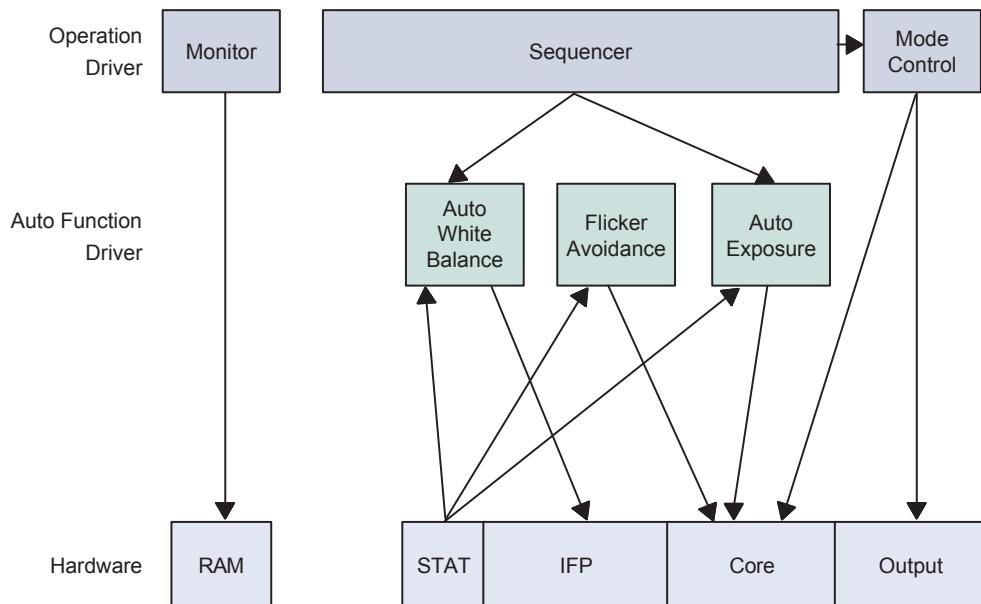


Figure 3. SOC Block Diagram

The external host and the integrated microprocessor (MCU) can both access all the internal resources (RAM and registers). The external host always has higher priority. The following sections briefly describe the functionality of each key component of the system.


Firmware

The firmware implements all automatic camera functions, such as auto exposure (AE), auto white balance (AWB), and

flicker detection/avoidance (FD), as well as control functions such as sequencer, mode/context, and histogram (see Table 4). The firmware consists of drivers, generally one driver for each major automatic or control function (see Figure 4).

Table 4. LIST OF DRIVERS

Name	Type	Description
ID = 1	Sequencer	Controls of camera main function
ID = 2	AE	Auto exposure
ID = 3	AWB	Auto white balance
ID = 4	Flicker Detection	Flicker detection and avoidance
ID = 7	Mode/Context	Context variables
ID = 11	Histogram	Reduce image flare and analyze image histogram

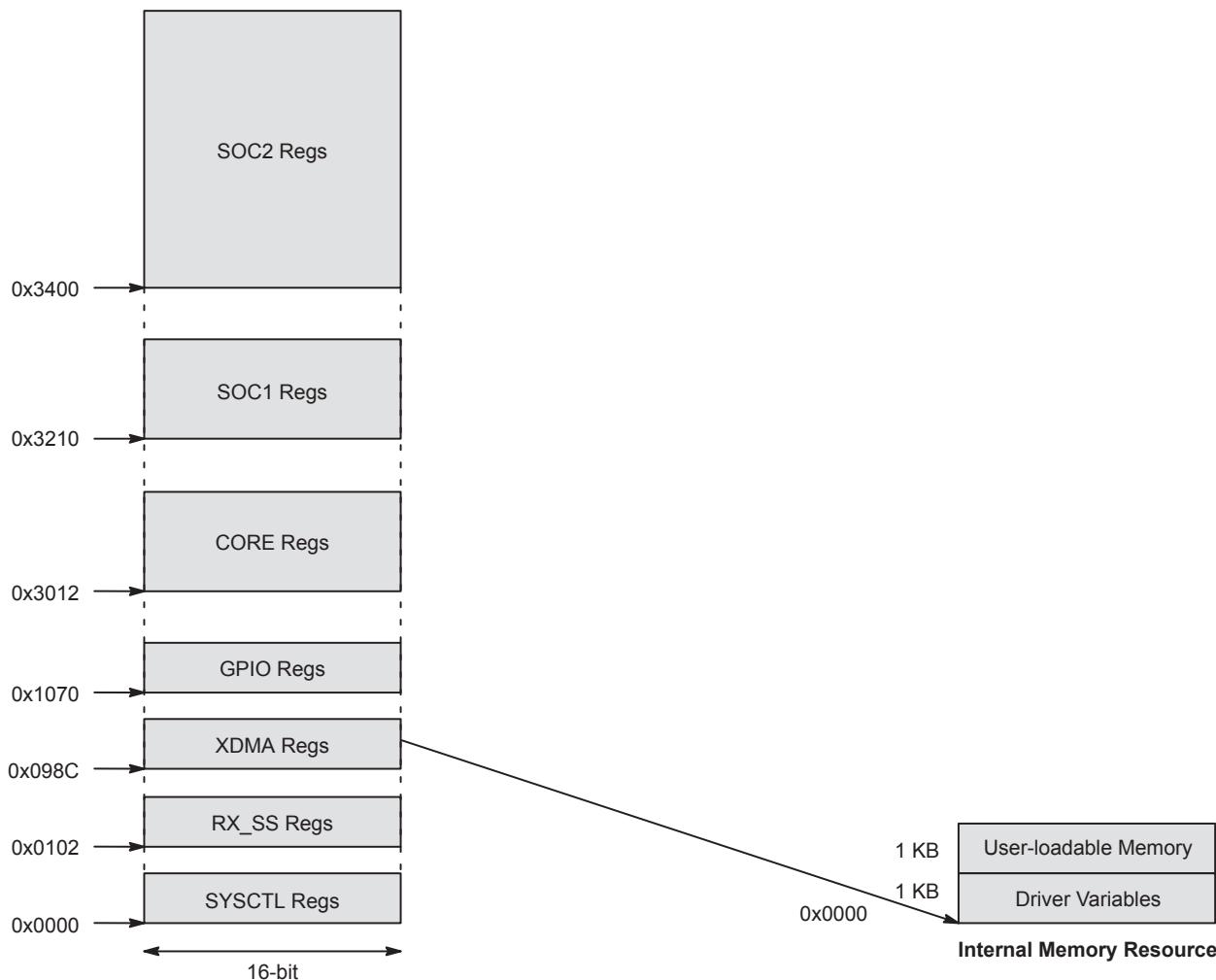


Figure 4. Firmware Architecture

External Host Interface (Two-wire Slave-only Interface)

The MT9D115 will appear as a two-wire serial interface slave to the external host. Its base address is selectable by the external SADDR pin input (when SADDR = 0 then base address = 0x78; when SADDR = 1 then base address = 0x7A).

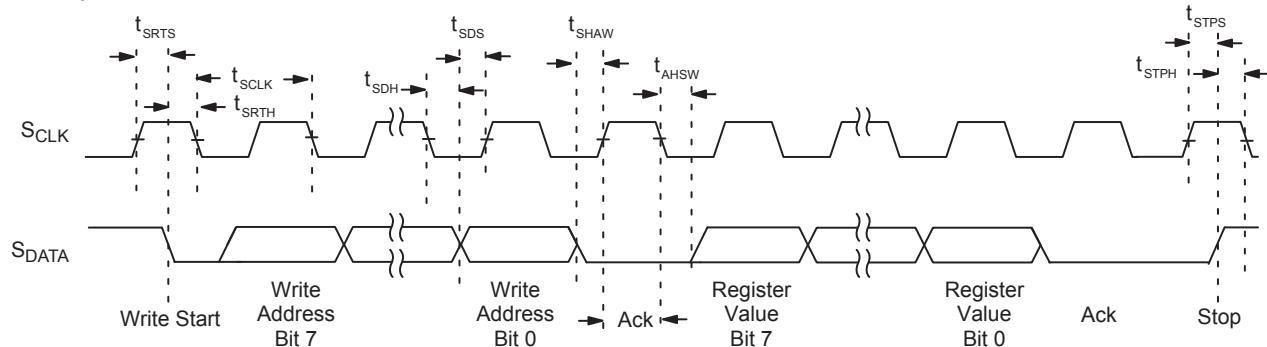
There are 32K addressable 16-bit registers (that is, the starting address of each register always falls into even addresses) within the MT9D115 but not all of them are being used (see Figure 5).

Figure 5. External Host Register Map

The MT9D115 register reference provides detailed register explanations. Although most registers are self-explanatory, the next paragraphs contain enhanced information about XDMA registers are worth explaining here.

The XDMA registers allow the external host to indirectly access the internal memory resources of the MT9D115, which include the firmware driver variables. To access the variables, use logical accesses provided by the XDMA registers.

The external host interface is implemented through a two-wire interface that enables direct read/write access to hardware registers and indirect access to firmware variables within the MT9D115. The interface is designed to be compatible with the MIPI alliance standard for Camera


Serial Interface 2 (CSI-2) 1.0, which uses the electrical characteristics and transfer protocols of the two-wire serial interface specifications.

The interface protocol uses a master/slave model in which a master controls one or more slave devices. The sensor acts as a slave device to the external host which acts as a master device. The master generates a clock (SCLK) that is an input to the sensor and used to synchronize the transactions at the interface.

Data is transferred between the master and the slave on a bidirectional serial data bus (SDATA). Both SCLK and SDATA are pulled up to V_{DD}_IO off-chip by a 1.5 kΩ resistor. Either the slave or master device can drive SDATA to LOW – the interface determines which device is allowed to drive SDATA at any given time.

MT9D115

Write Sequence

Read Sequence

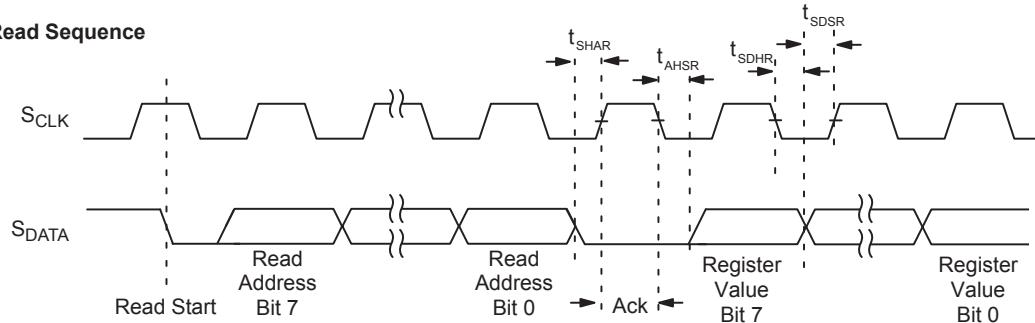


Figure 6. Two-wire Serial Control Bus Timing

Table 5. TWO-WIRE SERIAL INTERFACE TIMING DATA

($f_{EXTCLK} = 14$ MHz; $V_{DD} = 1.8$ V; $V_{DD_IO} = 1.8$ V; $V_{AA} = 2.8$ V; $V_{AA_PIX} = 2.8$ V; $V_{DD_PLL} = 2.8$ V; $V_{DD_PHY} = \text{NA}$; $T_J = 70^\circ\text{C}$; $C_{LOAD} = 68.5$ pF)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
f_{SCLK}	Serial Interface Input Clock Frequency		100	—	400	kHz
t_{SCLK}	Serial Interface Input Clock Period		2.5	—	10	μs
	SCLK Duty Cycle		33	50	50	%
t_r	SCLK/SDATA Rise Time		—	—	300	ns
t_{SRTS}	Start Setup Time	Master Write to Slave	600	—	—	ns
t_{SRTH}	Start Hold Time	Master Write to Slave	300	—	—	ns
t_{SDH}	SDATA Hold	Master Write to Slave	5	—	900	ns
t_{SDS}	SDATA Setup	Master Write to Slave	100	—	—	ns
t_{SHAW}	SDATA Hold to Ack	Master Write to Slave	150	—	—	ns
t_{AHSW}	Ack Hold to SDATA	Master Write to Slave	150	—	—	ns
t_{STPS}	Stop Setup Time	Master Write to Slave	300	—	—	ns
t_{STPH}	Stop Hold Time	Master Write to Slave	600	—	—	ns
t_{SHAR}	SDATA Hold to Ack	Master Read from Slave	300	—	—	ns
t_{AHSR}	Ack Hold to SDATA	Master Read from Slave	300	—	—	ns
t_{SDHR}	SDATA Hold	Master Read from Slave	300	—	650	ns
t_{SDSR}	SDATA Setup	Master Read from Slave	300	—	—	ns

NOTE: t_R and t_F are dependent on system-level parameters such as the value of pull-up resistor used, how the two-wire serial bus is routed, whether there are other devices on the serial bus, and the strength of the supply used to pull-up the serial bus.

Always-On Power Domain

The always-on power domain (AOPD) provides an area of functionality that will always be active while power is applied to the MT9D115. The external host interface is located in the AOPD. The domain also includes miscellaneous clock and reset controls as well as configuration registers for the sensor core, processor core, clock configuration, and clock reset control. The user-loadable patch memory is also included in this domain. This memory will remain powered when the main core power is shut down using the standby command.

Sensor Core

The sensor core of the MT9D115 is a progressive-scan sensor that generates a stream of pixel data at a constant frame rate, qualified by LINE_VALID (LV) and FRAME_VALID (FV). The maximum pixel rate is 30 Mp/s, corresponding to a pixel clock rate of 63.25 MHz. See Figure 7 for a block diagram of the sensor core. It includes a 2.0 Mp active-pixel array. The timing and control circuitry sequences through the rows of the array, resetting and then reading each row in turn. In the time interval between resetting a row and reading that row, the pixels in the row integrate incident light. The exposure is controlled by

varying the time interval between reset and readout. After a row is read, data from the columns are sequenced through an analog signal chain that provides offset correction and gain, and then through an ADC. The output from the ADC is a 10-bit value for each pixel in the array.

The pixel array contains optically active and light-shielded (dark) pixels. The dark pixels provide data for the offset-correction algorithms (black level control).

The sensor core contains a set of control and status registers that can be used to control many aspects of the sensor behavior including the frame size, exposure, and gain settings. These registers are controlled by the firmware and can be accessed through a two-wire serial interface. Register values written to the sensor core can be overwritten by firmware.

The output from the core is a Bayer pattern, where alternate rows are a sequence of either green and red pixels or blue and green pixels. The offset and gain stages of the analog signal chain provide per-color control of the pixel data.

A flash strobe output signal is provided to allow an external xenon or LED light source to synchronize with the sensor exposure time.

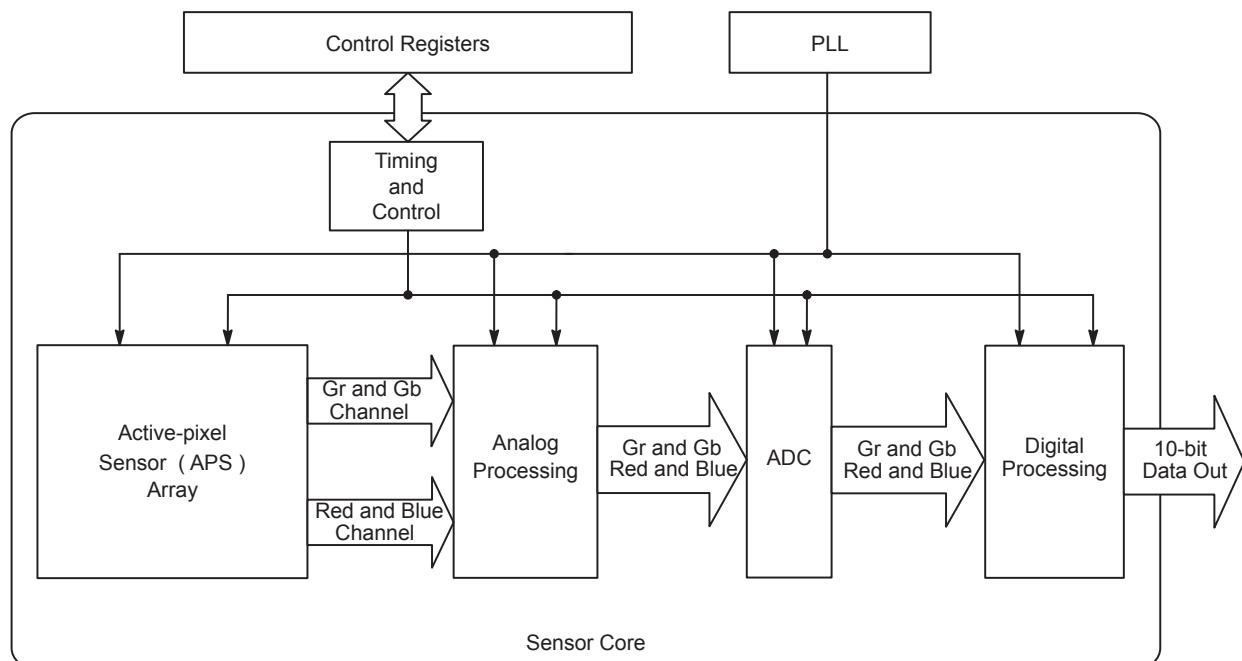
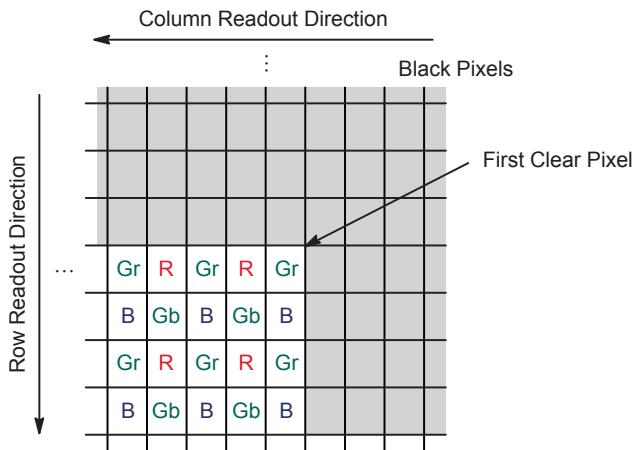



Figure 7. Sensor Core Block Diagram

Pixel Array

The sensor core uses a Bayer color pattern (see Figure 8). The even-numbered rows contain green and red pixels. The odd-numbered rows contain blue and green pixels. Even-numbered columns contain green and blue pixels. Odd-numbered columns contain red and green pixels.

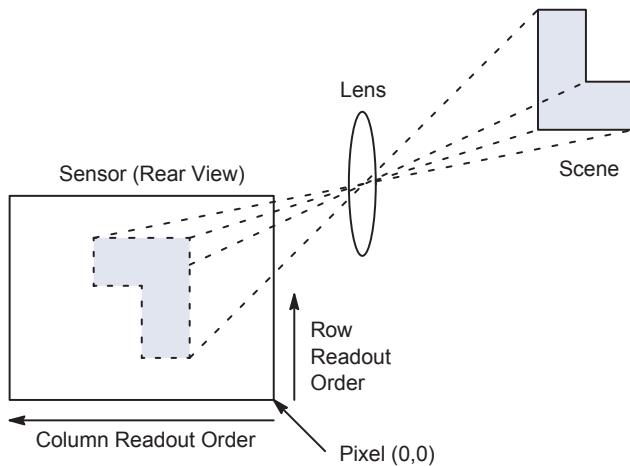


Figure 8. Pixel Color Pattern Detail (Top Right Corner)

Default Readout Order

By convention, the sensor core pixel array is shown with pixel (0,0) in the top right corner. This reflects the actual layout of the array on the die. When the sensor is operating in a system, the active surface of the sensor faces the scene (see Figure 9).

When the image is read out of the sensor, it is read one row at a time, with the rows and columns sequenced. By convention, data from the sensor is shown with the first pixel read out in the case of the sensor core in the top left corner.

Figure 9. Imaging a Scene

Analog Processing

Analog Readout Channel

The sensor core features an analog readout channel, (see Figure 7). The readout channel consists of a gain stage, a sample-and-hold stage with black level calibration capability, and a 10-bit ADC.

Gain Options

The MT9D115 provides per-color gain control as well as the option of global gain control. The per-color and global gain control can be used interchangeably. A WRITE to

a global gain register is aliased as a WRITE of the same data to the four associated color-dependent gain registers.

Integer digital gains in the range 0–7 can be programmed. A digital gain of 0 sets all pixel values to 0 (the pixel data will simply represent the value applied by the pedestal block). Gain settings are updated in every frame by the MCU auto functions such as AWB, AE, and FD. To make manual adjustments to gain settings, the MCU automatic exposure and automatic white balance adjustment features must be disabled.

Integration Time

The integration time (exposure) of the MT9D115 is controlled by variables. While coarse integration time controls the integration duration in terms of row times, fine integration time allows for sub-row times accuracy in terms of pixel clocks. Integration time is updated in every frame by the MCU auto feature. Disable the MCU auto features to make manual adjustments to integration time.

Because of the basic operation of the Electronic Roller Shutter (ERS), it is not advisable to set an integration time that is greater than the frame time.

It is not necessary to reprogram the frame time on the MT9D115 to make longer integration times available because the frame time adjusts automatically. However, long integration times increase the likelihood of image degradation because of increased accumulation of dark current.

If the integration time is changed while FV is asserted for frame n , the first frame output using the new integration time is frame $(n + 2)$. The sequence is as follows:

1. During frame n , the new integration time is held in the pending register.
2. At the start of frame $(n + 1)$, the new integration time is transferred to the live register. Integration for each row of frame $(n + 1)$ has been completed using the old integration time.
3. The earliest time that a row can start integrating using the new integration time is immediately after that row has been read for frame $(n + 1)$.
4. When frame $(n + 2)$ is read out, it will have been integrated using the new integration time.

If the integration time is changed on successive frames, each value written will be applied for a single frame; the latency between writing a value and it affecting the frame readout remains at two frames.

When the integration time and the gain are changed at the same time, the gain update is held off by one frame so that the first frame output with the new integration time also has the new gain applied.

External Generated Master Clock

If application does not use PLL, then the clock bypass bit in R0x0014 must be set before exiting soft standby state as follows:

1. Write 0x25F9 to R0x0014 to set clock bypass bit.
2. Delay min. of 100 ms.
3. Write 0x4028 to R0x0018 to exit from soft standby state.
4. After successful exit from soft standby state, disable the clock bypass bit by writing 0x21F9 to R0x0014.

PLL-Generated Master Clock

The PLL can generate a master clock signal whose frequency is up to 85 MHz (input clock from 6 MHz through 54 MHz).

PLL Setup

Because the input clock frequency is unknown, the sensor starts up with the PLL disabled. The PLL takes time to power up. During this time, the behavior of its output clock signal is not guaranteed. The PLL output frequency is determined by two constants, M and N, and the input clock frequency.

$$VCO = \frac{F_{in} \times 2 \times M}{N + 1} \quad (eq. 1)$$

$$\text{PLL Output Frequency} = \frac{VCO}{P1 + 1} \quad (eq. 2)$$

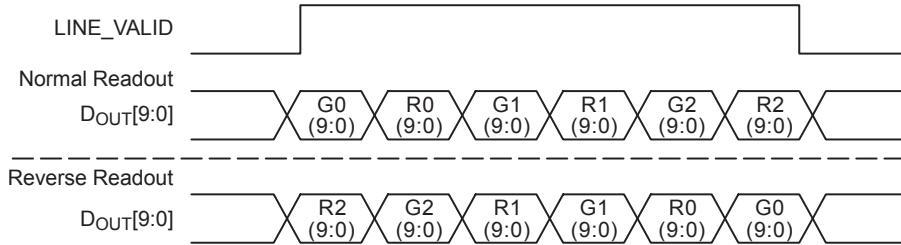
Digital Processing

Readout Options

The sensor core supports different readout options to modify the image before it is sent to the IFP. The readout can be limited to a specific window of the original pixel array.

For preview modes, the sensor core supports both skipping and pixel averaging in x and y directions.

By changing the readout direction the image can be flipped in the vertical direction and/or mirrored in the horizontal direction.


Window Size

The image output size is set with registers x_addr_start, x_addr_end, y_addr_start, and y_addr_end. The edge pixels in the 1600 × 1200 array are present to avoid edge defects and should not be included in the visible window. Binning will change the image output size.

Readout Modes

Horizontal Mirror

When the sensor is configured to mirror the image horizontally, the order of pixel readout within a row is reversed, so that readout starts from x_addr_end and ends at x_addr_start. Figure 10 shows a sequence of 6 pixels being read out with normal readout and reverse readout. The SOC corrects for this change in sensor core output.

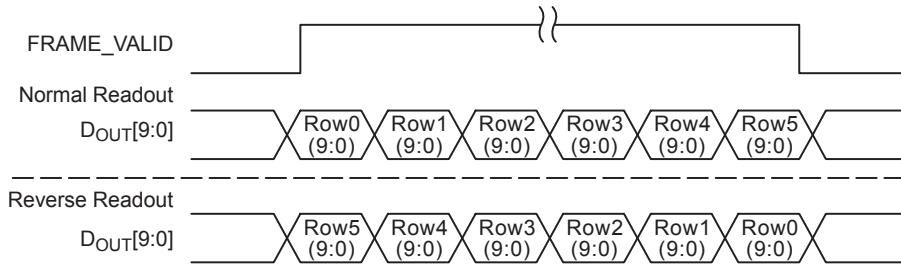


Figure 10. Six Pixels in Normal and Column Mirror Readout Modes

Vertical Flip

When the sensor is configured to flip the image vertically, the order in which pixel rows are read out is reversed, so that row readout starts from `y_addr_end` and ends at

`y_addr_start`. Figure 11 shows a sequence of six rows being read out with normal readout and reverse readout. The SOC corrects for this change in sensor core output.

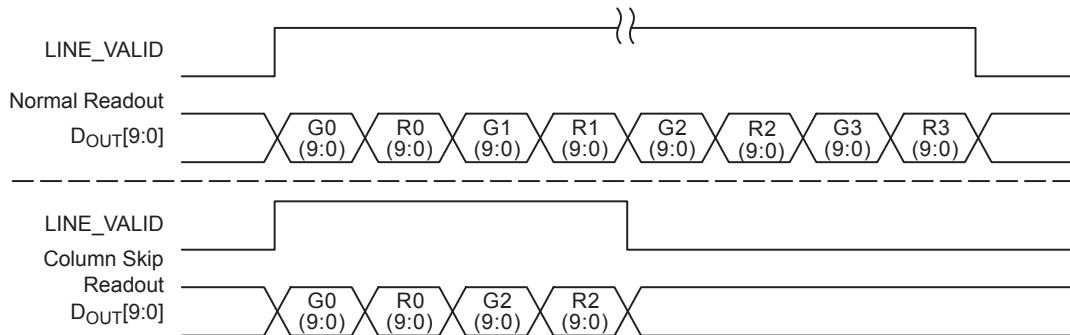


Figure 11. Six Rows in Normal and Row Mirror Readout Modes

Column and Row Skip

The sensor core supports subsampling. Subsampling reduces the amount of data processed by the analog signal chain in the sensor and thereby allows the frame rate to be increased. This reduces the amount of row and column data

processed and is equivalent to the skip2 readout mode provided by earlier ON Semiconductor image sensors. Set the proper image output and crop sizes before enabling subsampling.

Figure 12. Eight Pixels in Normal and Column Skip 2X Readout Modes

Pixel Readouts

Figure 13 through Figure 16 show a sequence of data being read out with no skipping, with $x_odd_inc = 3$ and $y_odd_inc = 1$, with $x_odd_inc = 1$ and $y_odd_inc = 3$, and with $x_odd_inc = 3$ and $y_odd_inc = 3$.

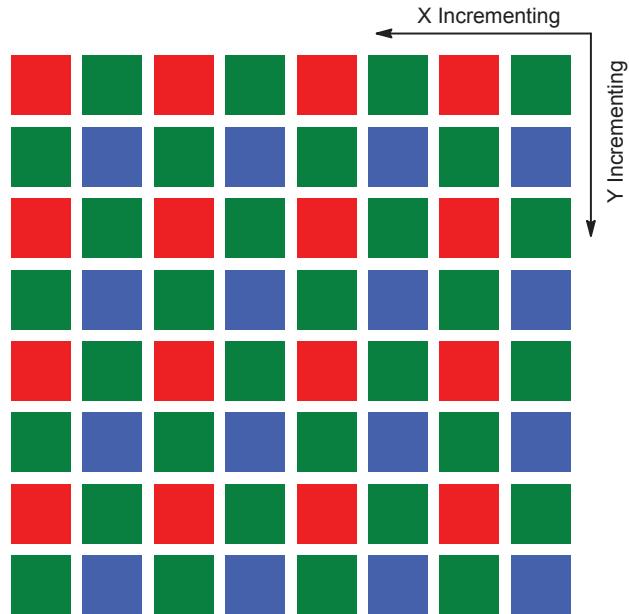


Figure 13. Pixel Readout (No Skipping)

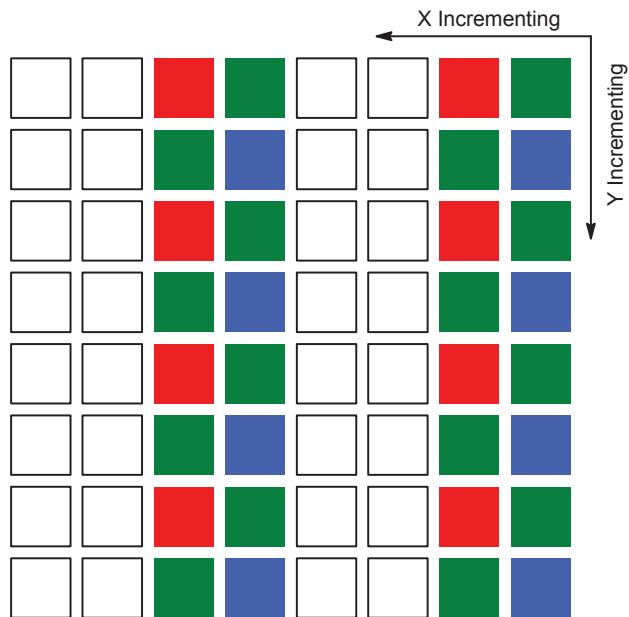


Figure 14. Pixel Readout ($x_odd_inc = 3$, $y_odd_inc = 1$)

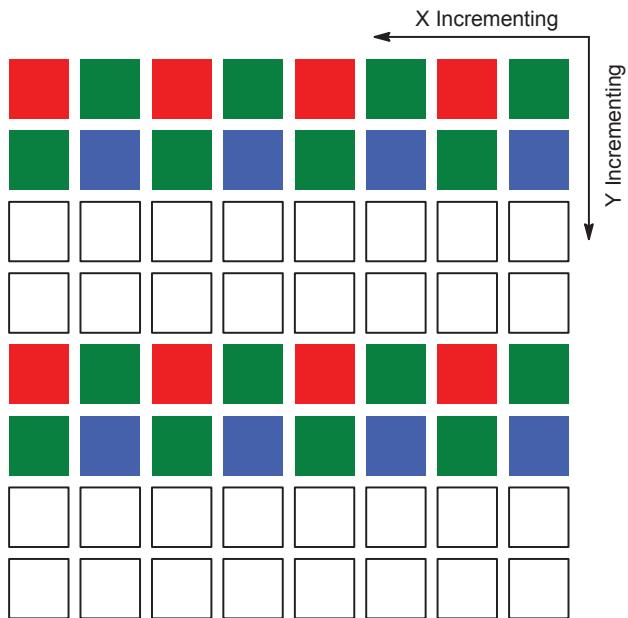


Figure 15. Pixel Readout ($x_odd_inc = 1, y_odd_inc = 3$)

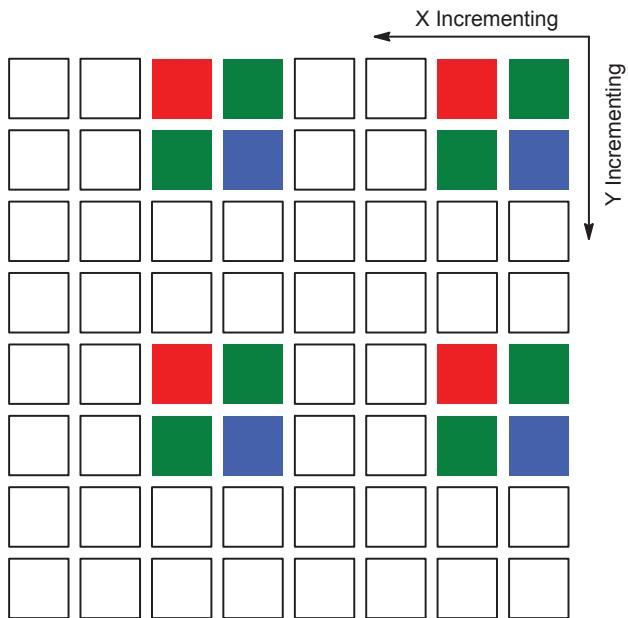


Figure 16. Pixel Readout ($x_odd_inc = 3, y_odd_inc = 3$)

Programming Restrictions when Skipping

When skipping is enabled as a viewfinder mode, and the sensor is switched back and forth between full resolution and skipping, keep *line_length_pck* constant. This allows the same integration times to be used in each mode.

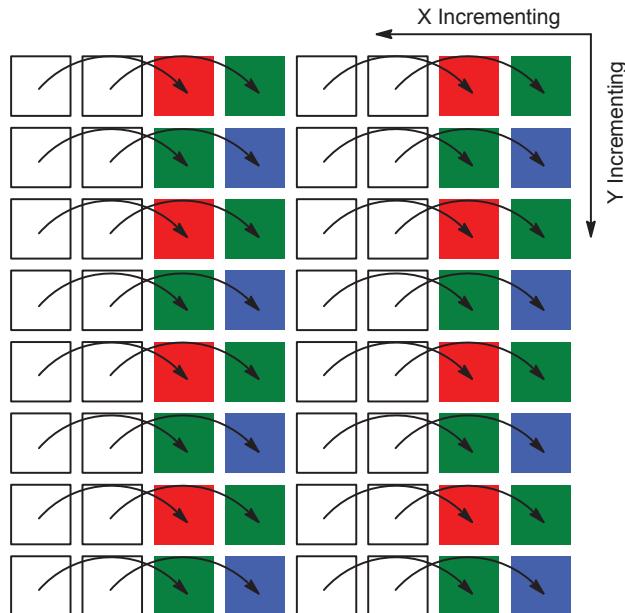
When subsampling is enabled, it might be necessary to adjust the *x_addr_end* and *y_addr_end* settings. The values for these registers must correspond with rows/ columns that form part of the subsampling sequence. Use the following rules to make the adjustment.

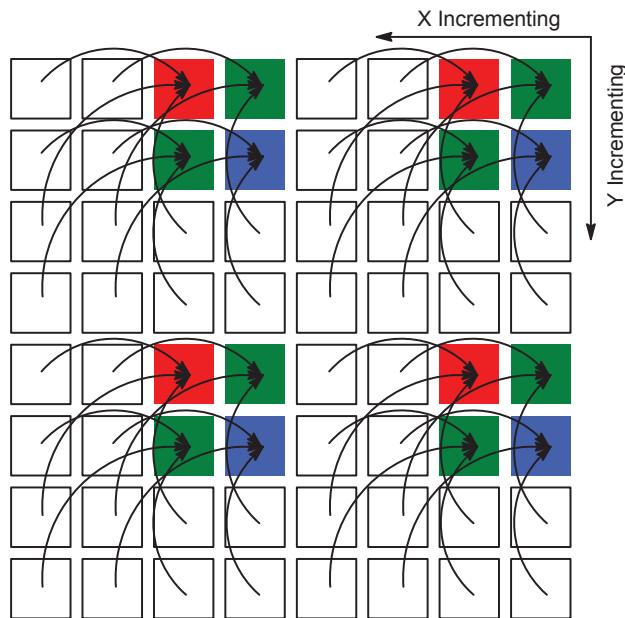
$$\text{remainder} = (\text{addr_end} - \text{addr_start} + 1) \text{ AND } 4 \quad (\text{eq. 3})$$

$$\text{if } (\text{remainder} == 0) \text{ } \text{addr_end} = \text{addr_end} - 2 \quad (\text{eq. 4})$$

Table 6 shows the row address sequencing for normal and subsampled (with $y_odd_inc = 3$) readout. The same sequencing applies to column addresses for subsampled readout. Because the subsampling sequence only reads half of the rows and columns, there are two possible subsampling sequences, depending upon the alignment of the start address.

Table 6. ROW ADDRESS SEQUENCING (SAMPLING)


Normal	Subsampled Sequence 1	Subsampled Sequence 2
0	0	No Data
1	1	No Data
2	No Data	2
3	No Data	3
4	4	No Data
5	5	No Data
6	No Data	6
7	No Data	7


Binning

The MT9D115 sensor core supports 2×1 and 2×2 analog binning (column binning, also called x-binning and row/column binning, also called xy-binning). Binning has many of the same characteristics as subsampling. However, because binning gathers image data from all pixels in the active window, rather than from a subset of pixels, it achieves superior image quality and avoids the aliasing artifacts that can be a characteristic side effect of subsampling.

Enable binning by selecting the appropriate subsampling settings ($x_odd_inc = 3$ and $y_odd_inc = 1$ for x-binning, $x_odd_inc = 3$ and $y_odd_inc = 3$ for xy-binning) and setting the appropriate binning bit in read_mode register. As for subsampling, x_addr_end and y_addr_end might require adjustment when binning is enabled.

The effect of the different subsampling settings is shown in Figure 17 and in Figure 18.

Figure 17. Pixel Readout ($x_odd_inc = 3$, $y_odd_inc = 1$, $x_bin = 1$)

Figure 18. Pixel Readout ($x_odd_inc = 3$, $y_odd_inc = 3$, $xy_bin = 1$)

Binning Limitations

Binning requires a different sequencing of the pixel array and imposes different timing limits on the operation of the sensor. In particular, xy-binning requires two READ operations from the pixel array for each line of output data, which has the effect of increasing the minimum line blanking time.

As a result, when xy-binning is enabled, some of the programming limits declared in the parameter limit registers

are no longer valid. In addition, the default values for some of the manufacturer-specific registers need to be reprogrammed. None of these adjustments are required for x-binning. The sensor must be taken out of streaming mode before switching between binned and non-binned operation. The row addresses for various binning modes are shown in Table 7.

Table 7. ROW ADDRESS SEQUENCING (BINNING)

Normal	Binning Sequence 1	Binning Sequence 2
0	0, 2	No Data
1	1, 3	No Data
2	No Data	2, 4
3	No Data	3, 5
4	4, 6	No Data
5	5, 7	No Data
6	No Data	6, 8
7	No Data	7, 9

Raw Data Format

The sensor core image data is read out in a progressive scan. Valid image data is surrounded by horizontal blanking

and vertical blanking, (see Figure 19). The amount of horizontal blanking and vertical blanking is programmable. LV is HIGH during the shaded region of the figure.

$P_{0,0} \ P_{0,1} \ P_{0,2} \ \dots$	$P_{0,0} \ P_{0,n}$	00 00 00 ... 00 00 00
$P_{0,1} \ P_{1,1} \ P_{2,1} \ \dots$	$P_{1,n-1} \ P_{1,n}$	00 00 00 ... 00 00 00
\vdots		
Valid Image		
$P_{m-1,0} \ P_{m-1,1} \ P_{m-1,2} \ \dots$	$P_{m-1,n-1} \ P_{m-1,n}$	00 00 00 ... 00 00 00
$P_{m,0} \ P_{m,1} \ P_{m,2} \ \dots$	$P_{m,n-1} \ P_{m,n}$	00 00 00 ... 00 00 00
00 00 00 ...	00 00 00	00 00 00 ... 00 00 00
00 00 00 ...	00 00 00	00 00 00 ... 00 00 00
\vdots	Vertical Blanking	
00 00 00 ...	00 00 00	00 00 00 ... 00 00 00
00 00 00 ...	00 00 00	00 00 00 ... 00 00 00
Horizontal Blanking		
00 00 00 ...	00 00 00	00 00 00 ... 00 00 00
00 00 00 ...	00 00 00	00 00 00 ... 00 00 00

Figure 19. Valid Image Data

Raw Data Timing

The sensor core output data is synchronized with the PIXCLK output. When LV is HIGH, one pixel's data is output on the 10-bit D_{OUT} output bus every PIXCLK period. By default, the PIXCLK signal runs at the same frequency

as the master clock, and its falling edges occur one-half of a master clock period after transitions on LV, FV, and DOUT[9:0] (see Figure 20). This allows PIXCLK to be used as a clock to sample the data. PIXCLK is continuously enabled, even during the blanking period.

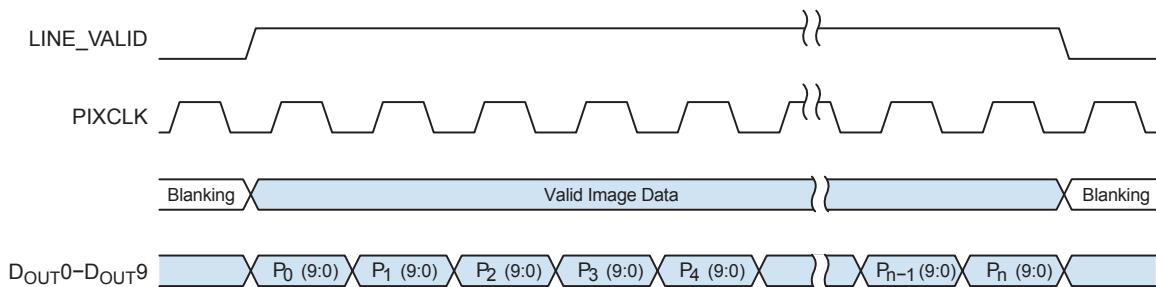


Figure 20. Pixel Data Timing Example

Input Interface to Image Flow Processor

The input interface to the IFP is the front end of the IFP, in which it will choose between the sensor core output or a test pattern generator output. During normal operation, a stream of raw Bayer image data from the sensor is continuously fed into the IFP. For testing purposes, the test generator output is selected. The generator provides

a selection of test patterns sufficient for basic testing of the IFP. Program variable (ID = 7, Offset = 0x66) followed by REFRESH command to the sequencer in order to access different test patterns (see Table 8).

Depending on which test pattern has been selected, the user might need to program additional registers in order to see the intended effects.

Table 8. AVAILABLE TEST PATTERNS

Test Pattern	Registers/Variables	Example
Flat Field	mode_common_settings_test_mode (ID = 7, Offset = 0x66) = 1 test_pxl_red (R0x0102) = 0x1ff test_pxl_g1 (R0x0104) = 0x1ff test_pxl_g2 (R0x0106) = 0x1ff test_pxl_blue (R0x0108) = 0x1ff	
Vertical Ramp	mode_common_mode_settings test_mode (ID = 7, Offset = 0x66) = 2	
Color Bar	mode_common_mode_settings test_mode (ID = 7, Offset = 0x66) = 3	
Vertical Stripes	mode_common_settings_test_mode (ID = 7, Offset = 0x66) = 4 test_pxl_red (R0x0102) = 0x1ff test_pxl_g1 (R0x0104) = 0x17d test_pxl_g2 (R0x0106) = 0x000 test_pxl_blue (R0x0108) = 0x000	
Pseudo-Random	mode_common_mode_settings_test_mode (ID = 7, Offset = 0x66) = 5	
Horizontal Stripes	mode_common_settings_test_mode (ID = 7, Offset = 0x66) = 6 test_pxl_red (R0x0102) = 0x1ff test_pxl_g1 (R0x0104) = 0x17d test_pxl_g2 (R0x0106) = 0x000 test_pxl_blue (R0x0108) = 0x000	

Image Flow Processor

Most IFP functions can be controlled directly by the MCU. The external host will control it indirectly through the driver variables. IFP processing can be broken into three

different phases: pixel reconstruction, color rendering/statistics collection, and digital scaling/output format. Figure 21 shows a simplified IFP block diagram and the operating color space at each processing phase.

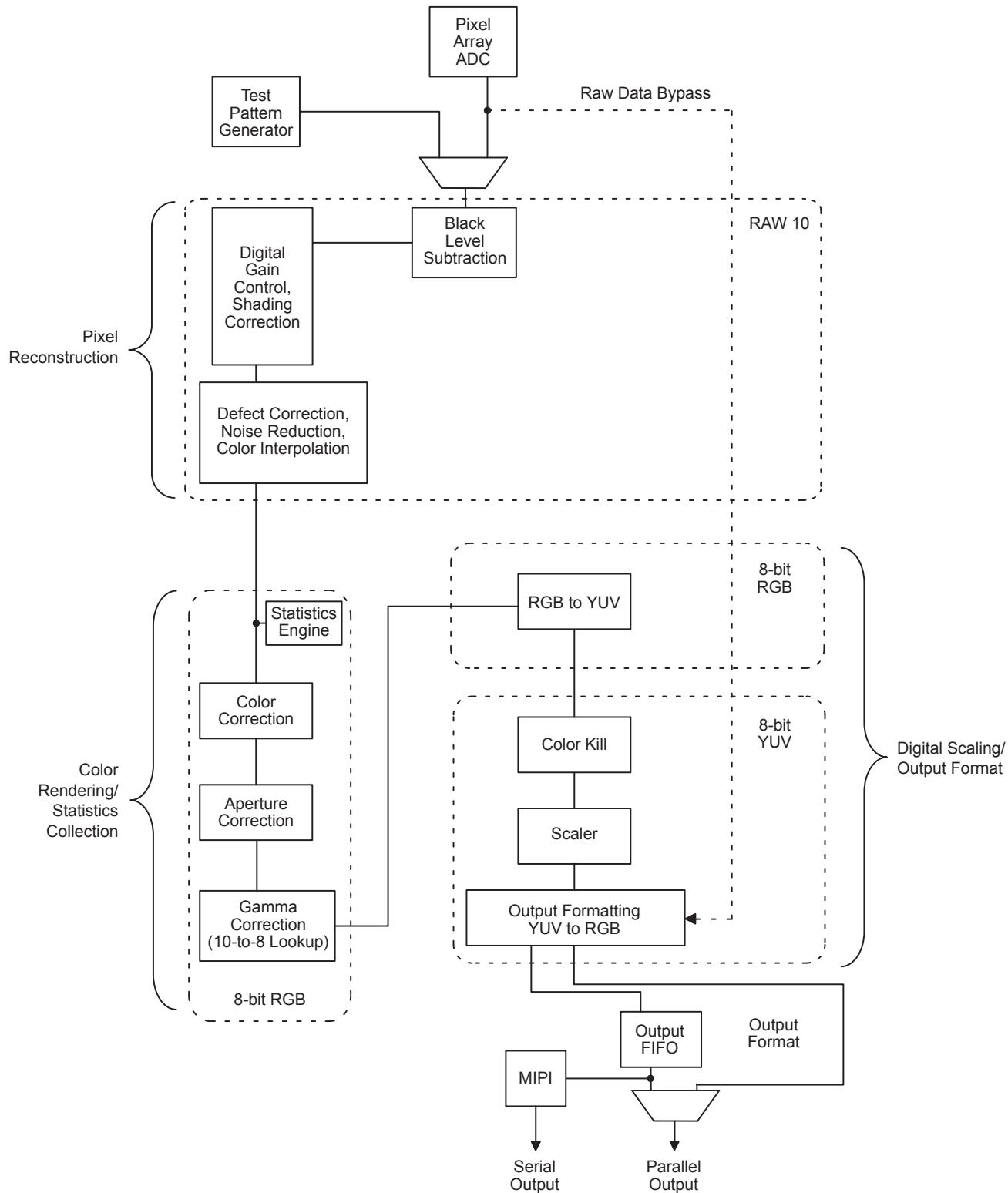


Figure 21. IFP Block Diagram

Pixel Reconstruction (Lens Shading Correction)

First Black Level Subtraction and Digital Gain

Image stream processing starts with black level subtraction and multiplication of all pixel values by a programmable digital gain. Both operations can be independently set to separate values for each color channel (R, Gr, Gb, B). Independent color channel digital gain can be adjusted with registers. Independent color channel black level adjustments can also be made. If the black level subtraction produces a negative result for a particular pixel, the value of this pixel is set to “0”.

Shading Correction (SC)

Lenses tend to produce images whose brightness is significantly attenuated near the edges. Other factors also cause fixed pattern signal gradients in images captured by image sensors. The cumulative result of all factors is known as image shading. The MT9D115 has an embedded shading correction module that can be programmed to counter the shading effects on each individual R, Gb, Gr, and B color signal.

The Correction Function

Color-dependent solutions are calibrated using the sensor, lens system, and an image of an evenly illuminated, featureless grey calibration field. The color correction functions can be derived from the resulting image.

The correction functions can then be applied to each pixel value to equalize the response across the image as follows:

$$P_{\text{corrected}}(\text{row}, \text{col}) = P_{\text{sensor}}(\text{row}, \text{col}) \times f(\text{row}, \text{col}) \quad (\text{eq. 5})$$

where P are the pixel values and f is the color dependent correction functions for each color channel.

Defect Correction

The IFP performs continuous defect correction that can mask pixel array defects such as high dark-current (hot) pixels and pixels that are darker or brighter than their neighbors due to photo-response non-uniformity. The module is edge-aware with exposure that is based on configurable thresholds. The thresholds are changed continuously based on the brightness of the current scene.

Noise Reduction

Noise reduction can be enabled or disabled. Thresholds can be set through register settings.

Color Interpolation and Edge Detection

In the raw data stream fed by the sensor core to the IFP, each pixel is represented by a 10-bit integer number, which can be considered proportional to the pixel’s response to a one-color light stimulus, red, green, or blue, depending on the pixel’s position under the color filter array. Initial data processing steps – up to and including the defect correction – preserve the one-color-per-pixel nature of the data stream. After the defect correction, the data stream must be converted to a three-colors-per-pixel stream appropriate for standard color processing. The conversion is done by an edge-sensitive color interpolation module. The module pads

the incomplete color information available for each pixel with information extracted from an appropriate set of neighboring pixels. The algorithm used to select this set and extract the information seeks the best compromise between preserving edges and filtering out high frequency noise in flat field areas. The edge threshold can be set through register settings.

Aperture Correction

To increase image sharpness, a programmable 2D aperture correction (sharpening filter) is applied to color-corrected image data. The gain and threshold for 2D correction can be defined through variable settings.

Color Rendering/Statistics Collection (Color Correction)

Color Correction

To achieve good color fidelity of the IFP output, interpolated RGB values of all pixels are subjected to color correction. The IFP multiplies each vector of three pixel colors by a 3×3 color correction matrix. The three components of the resulting color vector are all sums of three 10-bit numbers. Because such sums can have up to 12 significant bits, the bit width of the image data stream is widened to 12 bits per color (36 bits per pixel). The color correction matrix can be programmed by the user or automatically selected by the AWB algorithm implemented in the IFP. Ideally, color correction should produce output colors that are independent of the spectral sensitivity and color crosstalk characteristics of the image sensor. The optimal values of the color correction matrix elements depend on those sensor characteristics and on the spectrum of light incident on the sensor. The color correction variables can be adjusted through register settings.

Image Cropping

By configuring the cropped and output windows to various sizes, different zooming levels (for example 4X, 2X, and 1X) can be achieved. The location of the cropped window is also configurable so that panning is also supported. A separate cropped window is defined for context A and context B. In both contexts, the height and width definitions for the output window must be equal to or smaller than the cropped image.

Gamma Correction

The gamma correction curve (see Figure 22) is implemented as a piecewise linear function with 19 knee points, taking 12-bit arguments and mapping them to 8-bit output. The abscissas of the knee points are fixed at 0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4096. The 8-bit ordinates are programmable through IFP registers.

The MT9D115 IFP includes a block for gamma correction that can adjust its shape based on brightness to enhance the performance under certain lighting conditions. Two custom gamma correction tables can be uploaded, one corresponding to a brighter lighting condition, the other corresponding to a darker lighting condition. At power-up,

the IFP loads the two tables with default values. The final gamma correction table used depends on the brightness of the scene and can take the form of either uploaded tables or

an interpolated version of the two tables. A single (non-adjusting) table for all conditions can also be used.

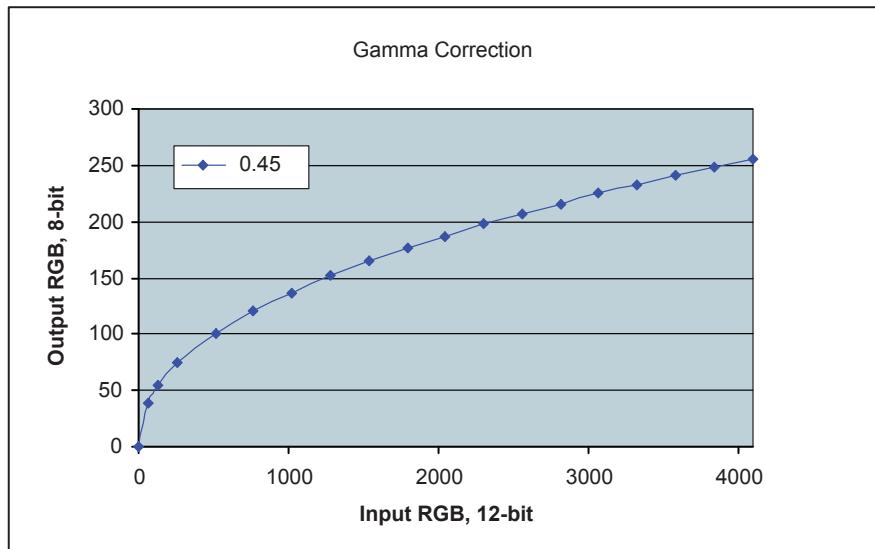


Figure 22. Gamma Correction Curve

Color Kill

A color kill circuit is included to remove high or low light color artifacts. It affects only pixels whose luminance exceeds a certain preprogrammed threshold. The U and V values of those pixels are attenuated proportionally to the difference between their luminance and the threshold.

Digital Scaling/Output Format

Special Effects

Special effects like negative image, sepia, or black and white can be applied to the data stream at this point. These effects can be enabled and selected by registers.

RGB to YUV Conversion

For further processing, the data is converted from RGB color space to YUV color space.

YUV Color Filter

As an optional processing step, noise suppression by one-dimensional low-pass filtering of Y and/or UV signals is possible. A 3- or 5-tap filter can be selected for each signal.

Image Scaling

The IFP includes a scaler module to ensure that the size of images output by the MT9D115 can be tailored to the needs of all users. When enabled, this module performs rescaling of incoming images – shrinks them to arbitrarily selected width and height without reducing the field of view and without discarding any pixel values.

The scaler performs pixel binning – divides each input image into rectangular bins corresponding to individual pixels of the desired output image, averages pixel values in these bins, and assembles the output image from the bin averages. Pixels lying on bin boundaries contribute to more than one bin average; their values are added to bin-wide sums of pixel values with fractional weights. The entire procedure preserves all image information that can be included in the downsized output image and filters out high frequency features that could cause aliasing.

Use the image cropping and scaler module together to implement a digital zoom and pan. If the scaler is programmed to output images smaller than images coming from the sensor core, zoom effect can be produced by cropping the latter from their maximum size down to the size of the output images. The ratio of these two sizes determines the maximum attainable zoom factor. For example, a 1600×1200 image rendered on a 250×150 display can be zoomed up to eight times, because $1280/160 = 1024/128 = 8$. A panning effect can be achieved by fixing the size of the cropping window and moving it around the pixel array.

YUV-to-RGB/YUV Conversion and Output Formatting

The YUV data stream emerging from the scaling module can either exit the color pipeline as-is or be converted before exit to an alternative YUV or RGB data format.

Color Conversion Formulas

• Y'U'V':

This conversion is ITU-R BT.601 scaled to make YUV range from 0 through 255. This setting is recommended for JPEG encoding and is the most popular.

$$Y' = 0.299 \times R' + 0.587 \times G' + 0.114 \times B' \quad (\text{eq. 6})$$

$$U' = 0.564 \times (B' - Y') + 128 \quad (\text{eq. 7})$$

$$V' = 0.713 \times (R' - Y') + 128 \quad (\text{eq. 8})$$

There is an option where 128 is not added to U'V'.

• Y'Cb'Cr' Using sRGB Formulas:

The MT9D115 implements the sRGB standard. This option provides YCbCr coefficients for a correct 4:2:2 transmission.

NOTE: $16 < Y' < 235$; $16 < Cb < 240$; $16 < Cr < 240$; and $0 \geq \text{RGB} \geq 255$

$$Y' = (0.2126 \times R' + 0.7152 \times G' + 0.0722 \times B') \times (219/256) + 16 \quad (\text{eq. 9})$$

$$Cb' = 0.5389 \times (B' - Y') \times (224/256) + 128 \quad (\text{eq. 10})$$

$$Cr' = 0.635 \times (R' - Y') \times (224/256) + 128 \quad (\text{eq. 11})$$

• Y'U'V' Using sRGB Formulas:

Similar to the previous set of formulas, but has YUV spanning a range of 0 through 255.

$$Y' = 0.2126 \times R' + 0.7152 \times G' + 0.0722 \times B' \quad (\text{eq. 12})$$

$$U' = 0.5389 \times (B' - Y') + 128 = -0.1146 \times R' - 0.3854 \times G' + 0.5 \times B' + 128 \quad (\text{eq. 13})$$

$$V' = 0.635 \times (R' - Y') + 128 = 0.5 \times R' - 0.4542 \times G' - 0.0458 \times B' + 128 \quad (\text{eq. 14})$$

There is an option to disable adding 128 to U'V'. The reverse transform is as follows:

$$R' = Y + 1.5748 \times (V - 128) \quad (\text{eq. 15})$$

$$G' = Y - 0.1873 \times (U - 128) - 0.4681 \times (V - 128) \quad (\text{eq. 16})$$

$$B' = Y + 1.8556 \times (U - 128) \quad (\text{eq. 17})$$

Output Interface from IFP

The output interface contains parallel image bus, MIPI serial bus interfaces, and walking 1s connectivity test generator.

Parallel and MIPI Output

The user can select to use either the serial MIPI output or the 10-bit parallel output to transmit the data. Only one of the output modes can be used at any time.

The parallel output can be used with an output FIFO whose memory is shared with the MIPI output FIFO to retain a constant pixel output clock independent from the scaling factor.

When scaling the image or skipping lines, the data would be generated in bursts and the pixel clock would turn on and off in intervals, which might lead to EMI problems. The output FIFO will group all active pixel data together so the pixel clock can be run at a constant speed.

The MIPI output transmitter implements a serial differential sub-LVDS transmitter capable of up to 512 Mb/s. It supports multiple formats, error checking, and custom short packets. The MIPI clock is defined as half the data rate frequency.

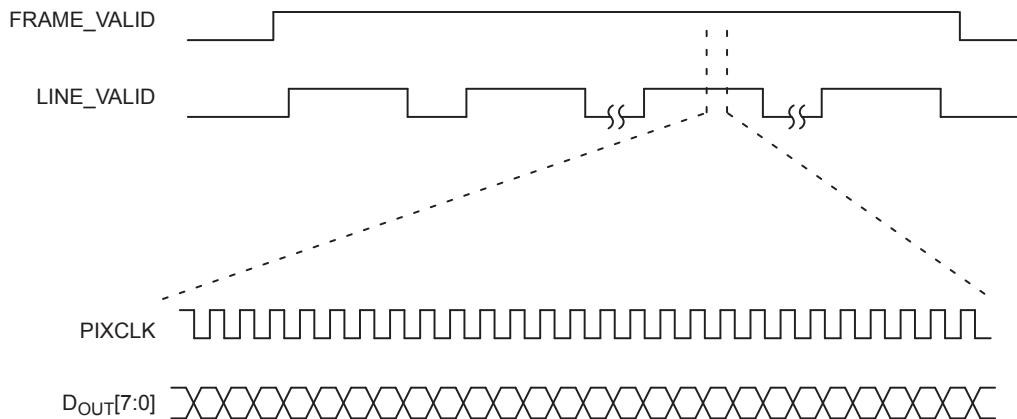
The virtual channel could be used by host MIPI RX circuits to differentiate between preview and capture image data if the FW changes the channel number when switching between contexts. The host cannot adequately time this switching of contexts and so cannot use channel number in this way without FW support.

The hardware supports a configurable MIPI virtual channel in the MIPI Control register (R0x3400). Firmware provides two variables that allow the MIPI virtual channel to be changed according to context (preview/A, capture/B). The host can specify what channel is used for which context through these variables.

Table 9. DATA FORMATS SUPPORTED BY MIPI INTERFACE

Data Format	Data Type
YUV 422 8-bit	0x1E
565RGB	0x22
555RGB	0x21
444RGB	0x20
RAW8	0x2A
RAW10	0x2B

NOTE: Data will be packed as RAW8 if the data type specified does not match any of the above data types.


Output Format and Timing

YUV/RGB Output

YUV or RGB data can be output either directly from the output formatting block or through a FIFO buffer with a capacity of 1024 bytes. This size is large enough to hold one-fourth of a scan line at full resolution. Buffering of data is a way to equalize the data output rate when image scaling is used. Scaling produces an intermittent data stream consisting of short high-rate bursts separated by idle periods.

High pixel clock frequency during bursts may be undesirable due to EMI concerns.

Figure 23 shows the output timing of a YUV/RGB scan line when a scaled data stream is equalized by buffering or when no scaling takes place. The pixel clock frequency remains constant during each LV high period. Scaled data is output at a lower frequency than full size frames, which helps to reduce EMI.

Figure 23. Timing of Full Frame Data or Scaled Data Passing through the FIFO

YUV/RGB Data Ordering

The MT9D115 supports swapping YCbCr mode (see Table 10).

Table 10. YCbCr OUTPUT DATA ORDERING

Mode	Data Sequence			
Default (No Swap)	C _b _i	Y _i	C _r _i	Y _{i+1}
Swapped CrCb	C _r _i	Y _i	C _b _i	Y _{i+1}
Swapped YC	Y _i	C _b _i	Y _{i+1}	C _r _i
Swapped CrCb, YC	Y _i	C _r _i	Y _{i+1}	C _b _i

The RGB output data ordering in default mode is shown in Table 11. The odd and even bytes are swapped when

luma/chroma swap is enabled. R and B channels are bit-wise swapped when chroma swap is enabled.

Table 11. RGB ORDERING IN DEFAULT MODE

Mode (Swap Disabled)	Byte	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀
565RGB	Odd	R ₇ R ₆ R ₅ R ₄ R ₃ G ₇ G ₆ G ₅
	Even	G ₄ G ₃ G ₂ B ₇ B ₆ B ₅ B ₄ B ₃
555RGB	Odd	0 R ₇ R ₆ R ₅ R ₄ R ₃ G ₇ G ₆
	Even	G ₄ G ₃ G ₂ B ₇ B ₆ B ₅ B ₄ B ₃
444xRGB	Odd	R ₇ R ₆ R ₅ R ₄ G ₇ G ₆ G ₅ G ₄
	Even	B ₇ B ₆ B ₅ B ₄ 0 0 0 0
x444RGB	Odd	0 0 0 0 R ₇ R ₆ R ₅ R ₄
	Even	G ₇ G ₆ G ₅ G ₄ B ₇ B ₆ B ₅ B ₄

10-Bit Bypass Output

Raw 10-bit Bayer data from the sensor core can be output in bypass mode in two ways:

1. Using eight data output signals ($D_{OUT}[7:0]$) and $GPIO[1:0]$. The GPIO signals are the lowest two bits of data.
2. Using only eight signals ($D_{OUT}[7:0]$) and a special 8 + 2 data format, shown in Table 12.

Table 12. 2-BYTE RGB FORMAT

Byte	Bits Used	Bit Sequence
Odd Bytes	8 Data Bits	$D_9 D_8 D_7 D_6 D_5 D_4 D_3 D_2$
Even Bytes	2 Data Bits + 6 Unused Bits	$0\ 0\ 0\ 0\ 0\ 0\ D_1 D_0$

FIFO

During normal pipeline operation, the output data rate is determined by a number of factors: input image size, degree of scaling, and sensor operation mode. As these parameters change during normal sensor operation, output frequency changes. This output frequency may generate RF noise, interfering with the mobile device. By using an output FIFO

to maintain a constant output clock frequency, noise is easily filtered out.

The FIFO accumulates data and after a certain number of bytes are stored, it will output them in a single burst, making sure that the data rate within the burst remains constant. This approach utilizes a free-running clock, thus making possible minimal RF interference.

CONTROL FUNCTIONS

Sequencer: Camera Operating System

The sequencer is a finite state machine that controls the general operations of the camera and switching between operating modes. Camera operation is organized in states such as enter preview, preview, leave preview, enter capture, and capture. The sequencer carries out a number of commands such as run, go preview, go capture, refresh, and refresh mode. The current state of the sequencer is indicated in a variable *seqr.state*. To execute a command, the user must set a particular command number in the variable *seqr.cmd*. ON Semiconductor recommends that the external host monitor *seqr.state* to know when to change resolution or capture frames.

Each state has its configuration; therefore, the user should set up the state configuration to customize the camera configuration before executing the corresponding program such as GO TO CAPTURE. A typical camera operating scenario is:

1. Configure mode variables after hardware reset.
2. Configure preview mode.
3. Execute sensor REFRESH program.
4. Run in preview until shutter button is pressed.
5. Capture a frame.

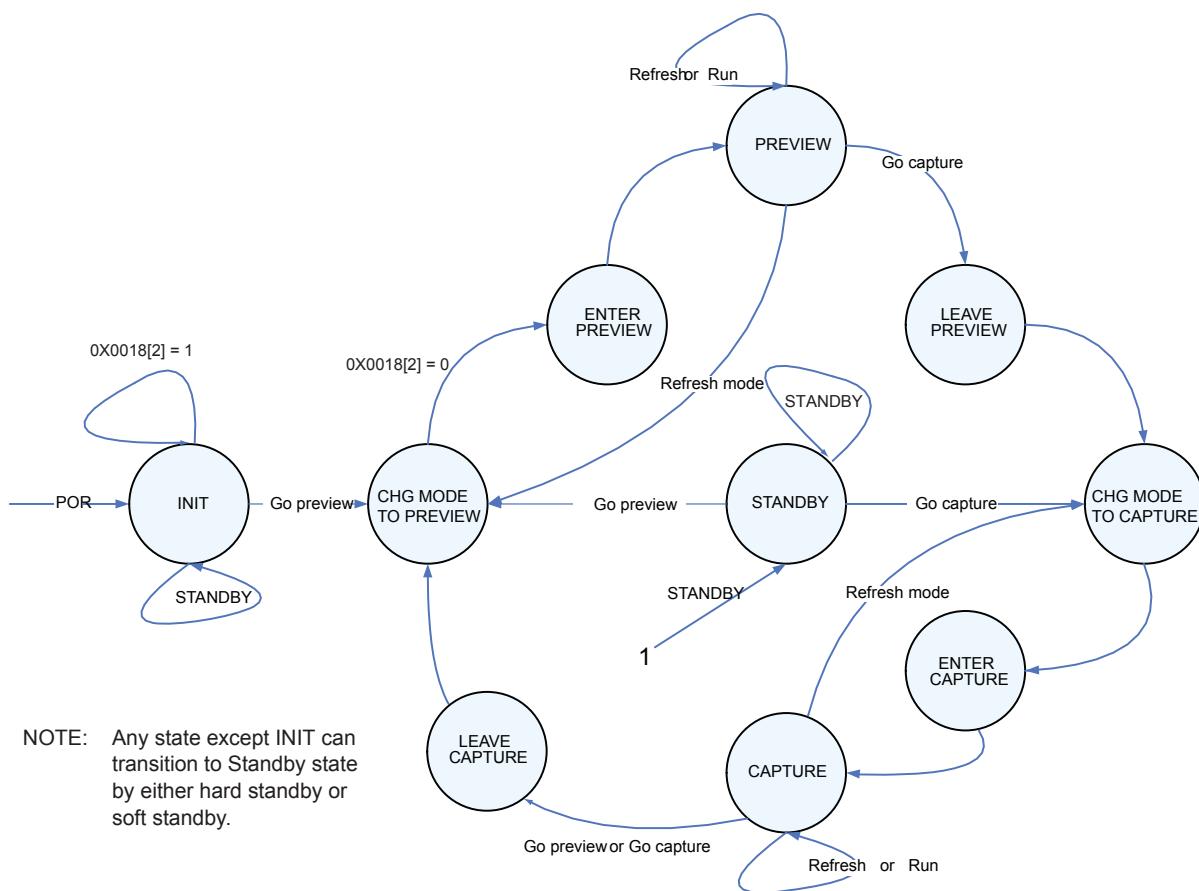


Figure 24. Sequencer Finite State Machine

Mode: Context Information

The mode driver reduces integration efforts by managing most aspects of switching the two contexts. It remembers vital register values for each image acquisition context and loads these values to the appropriate registers in the IFP upon context switching.

For the mode driver variables to take effect, the user changes the variable values in the mode driver (ID = 7). Upon the next mode change or sequencer's REFRESH command, these driver variable values will be loaded to the appropriate physical sensor core and IFP registers. The

image processing will take the new values at the beginning of the next frame acquired.

To control the output image size, the user can modify the mode driver variables such as *output_width_A*, *output_height_A*, *output_width_B*, and *output_height_B*. The mode driver will automatically apply any appropriate downscaling filter to achieve this output image size as well as update the watermark of the output FIFO. It is important to set up the sensor core to output an image equal to or larger than the crop window size, which in turn is equal to or larger than the desired output image size.

CAMERA FUNCTIONS

Simple Rule-based Auto Exposure

The AE algorithm performs automatic adjustments of the image brightness by controlling exposure time and analog gains of the sensor core as well as digital gains applied to the image.

Auto exposure is implemented by a firmware (FW) driver that analyzes image statistics collected by the exposure measurement engine, makes a decision, and programs the sensor core and color pipeline to achieve the desired exposure. The measurement engine subdivides the image into 16 windows organized as a 4×4 grid.

An AE algorithm mode is available: average brightness tracking (ABT).

The ABT AE uses a constant average tracking algorithm where a target brightness value is compared to a current brightness value, and the gain and integration time are adjusted accordingly to meet the target requirement.

AE Driver

DRT exposure mode is activated during preview. This mode can also be enabled during video capture mode. The DRT exposure mode relies on the statistics engine to track speed and amplitude of the change of the overall luminance in the selected windows of the image.

Backlight compensation is achieved by weighting the luminance in the center of the image higher than the luminance on the periphery. Other algorithm features include the rejection of fast fluctuations in illumination (time averaging), control of speed of response, and control of the sensitivity to the small changes. While the default settings are adequate in most situations, the user can program target brightness, measurement window, and other parameters.

The driver calculates image brightness based on average luma values received from 16 programmable equal-size rectangular windows forming a 4×4 grid. In preview mode, 16 windows are combined in two segments: central and peripheral. The central segment includes four central windows. All remaining windows belong to the peripheral segment. Scene brightness is calculated as average luma in each segment taken with certain weights.

The driver changes AE parameters (integration time, gains, and so on) to drive brightness to the programmable target. The value of the single step approach to the target value can be controlled.

To avoid unwanted reaction of AE on small fluctuations of scene brightness or momentary scene changes, the AE driver uses a temporal filter for luma and a threshold around the AE luma target. The driver changes AE parameters only if the filtered luma is larger than the AE target step and pushes the luma beyond the threshold.

Evaluative Algorithm

A scene-evaluative AE algorithm is available for use in snapshot mode. The algorithm performs scene analysis and

classification with respect to its brightness, contrast, and composition and then decides to increase, decrease, or keep the original exposure target. It makes the most difference for backlight and bright outdoor conditions.

Accelerated Settling During Overexposure

The AE speed is direction-dependent. Transitioning from overexposure to target can take more time than transitioning from underexposure. The AE driver has a mode that speeds up AE for overexposed scenes.

The AE driver counts the number of AE windows whose average brightness is equal to or greater than some value, 250 by default. For a scene that has saturated regions, the average luma is underestimated because of signal clipping. The driver compensates underestimation by a factor that can be defined.

Exposure Control

To achieve the required amount of exposure, the AE driver adjusts the sensor integration time, gains, ADC reference, and IFP digital gains. In addition, `ae_base_target` (ID = 2, offset = 0x4F) is available for the user to adjust the overall brightness of the scene.

Flicker Detection and Avoidance

Flicker occurs when the integration time is not an integer multiple of the period of the light intensity. The automatic flicker detection block does not compensate for the flicker, but rather avoids it by detecting the flicker frequency and adjusting the integration time.

To reject flicker, integration time is typically adjusted in increments of steps. The incremental step specifies the duration in row times equal to one flicker period. Thus, flicker is rejected if integration time is kept to an integral factor of the flicker period.

Flicker cannot be avoided for integration times below the light intensity period (10 ms for 50 Hz environment).

Flicker shows up in the image as horizontal bars that roll up or down. The MCU looks for these rolling bars using a thin horizontal window, which outputs luma average and is applied to 48 points in the upper half of the image. The MCU repeats the same sampling on the next frame; 48 samples from the previous frame are subtracted from corresponding samples from the current frame. Skipping more frames between subtraction can be set by a variable. The MCU then smooths the 48 sampling points, applies an amplitude threshold to avoid false detection, and looks at the resulting waveform. If flicker is present, the waveform should have a frequency within the search range. Assuming the flicker power is a sine wave, subtracting two frames results in:

$$\sin(wt) - \sin(wt + a) = 2 \times \sin\left(\frac{a}{2}\right) \cdot \cos\left(wt + \left(\frac{a}{2}\right)\right) \quad (\text{eq. 18})$$

which is a cosine wave of the original frequency.

Auto White Balance

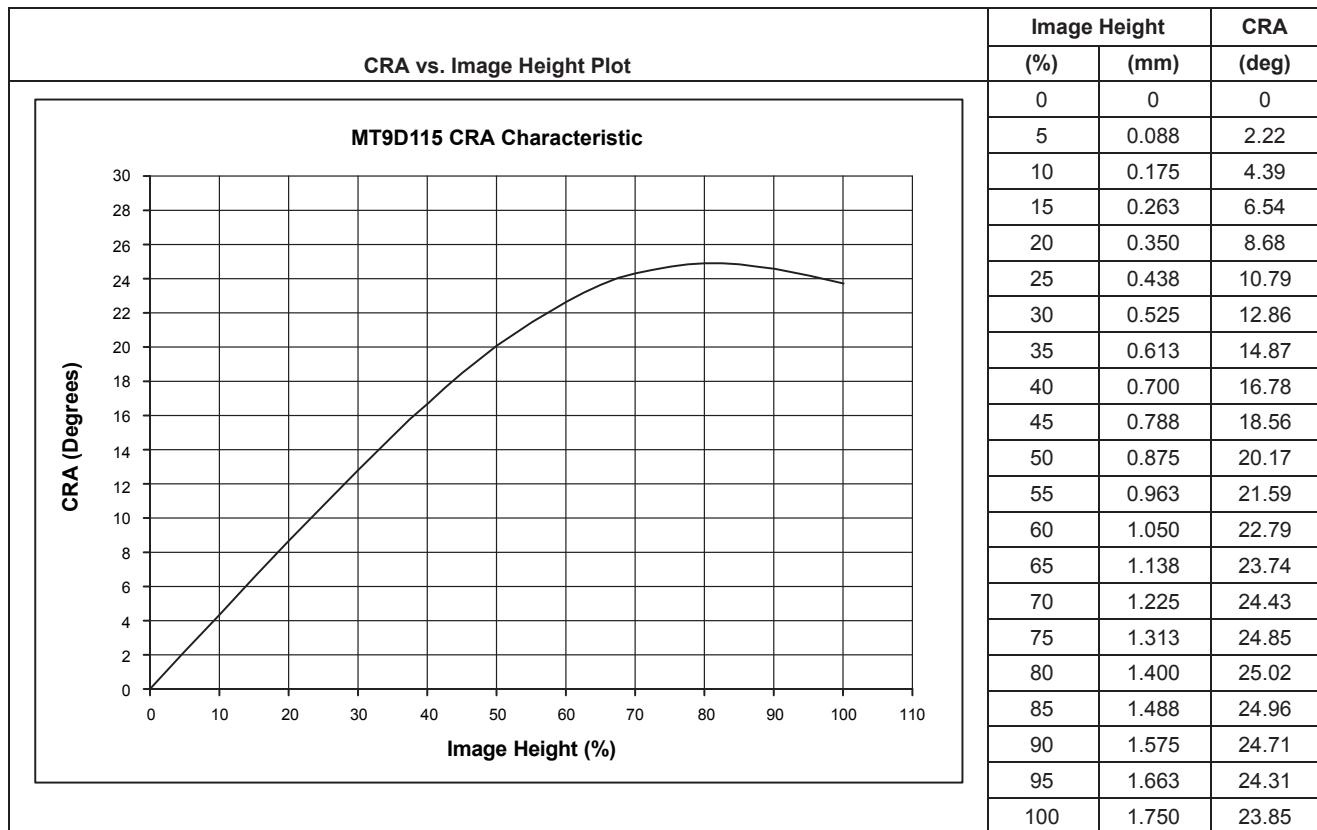
The MT9D115 has a built-in AWB algorithm designed to compensate for the effects of changing spectra of the scene illumination on the quality of the color rendition. The algorithm consists of two major parts: a measurement engine performing statistical analysis of the image and a driver performing the selection of the optimal color correction matrix, digital gains, and sensor core analog gains. While default settings of these algorithms are adequate in most situations, the user can reprogram the base color correction matrices, place limits on color channel gains, and control the speed of both matrix and gain adjustments.

Flash

To take a snapshot, the user must send a command that changes the context from preview to snapshot. The typical sequence of events after this command is:

1. The camera might turn on its LED flash, if it has one and is required to use it. With the flash on, the camera exposure and white balance are automatically adjusted to the changed illumination of the scene.
2. The camera captures one or more frames of desired size. A camera equipped with a xenon flash strobes while capturing images. When the images are captured, the camera automatically returns to context A and resumes running in preview mode.

NOTE: This sequence of events can take up to 10 frames.


Histogram: Dark Level Adjustments, Low Light and Tonal Controls

The histogram driver continually works to reduce image flare and continually analyzes input image histogram and dynamically adjusts the black level. When flare is present (hence, the histogram does not contain dark tones), it causes the driver to subtract a higher black level, thus regaining the lost contrast. In certain situations, the scene may contain no dark tones without flare. The histogram driver cannot distinguish this situation and alters the black level just the same, causing the image to have more contrast, which looks acceptable in many situations.

Besides black level adjustments and low light scene parameters, this driver also contains variables for the preloaded and custom gamma tables.

OPTICS

Figure 25 shows the CRA versus image height.

NOTE: ON Semiconductor recommends a 670 nm IR cut filter to achieve the best image quality; however, a 650 nm IR cut filter is acceptable.

Figure 25. CRA vs. Image Height

POWER MODES

Power Application Sequence

ON Semiconductor recommends the following sequence to maintain low power consumption during this process:

CAUTION: Applying power to analog supplies prior to applying digital and IO supplies or any other failure to follow the correct power up sequence may result in high current consumption and die heating. This can potentially result in performance and reliability issues.

1. Ensure that STANDBY is de-asserted and RESET_BAR is asserted.
2. Apply IO supply (V_{DD_IO}) to the image sensor and wait for the IO supply to be stable.
3. Minimum of 1 ms after IO supply is stable, apply digital supply to the image sensor and wait.
4. Enable EXTCLK and wait for the EXTCLK signal to stabilize.

5. De-assert RESET_BAR for a minimum of 10 EXTCLK cycles.
6. After asserting the RESET_BAR, apply analog supplies (V_{AA} , V_{AA_PIX} , and V_{DD_PLL}) to the image sensor.
7. After 6000 EXTCLK cycles from the end of step 6, the image sensor will be in soft standby state.
8. Communication with the sensor thorough two-wire serial interface can start 1 EXTCLK after step 7.

In cases where the recommended procedure cannot be followed, the following condition would affect the sensor's power consumption during the power application sequence:

- When analog supplies are applied prior to the digital and IO supplies, high current consumption on the analog supplies may be present.

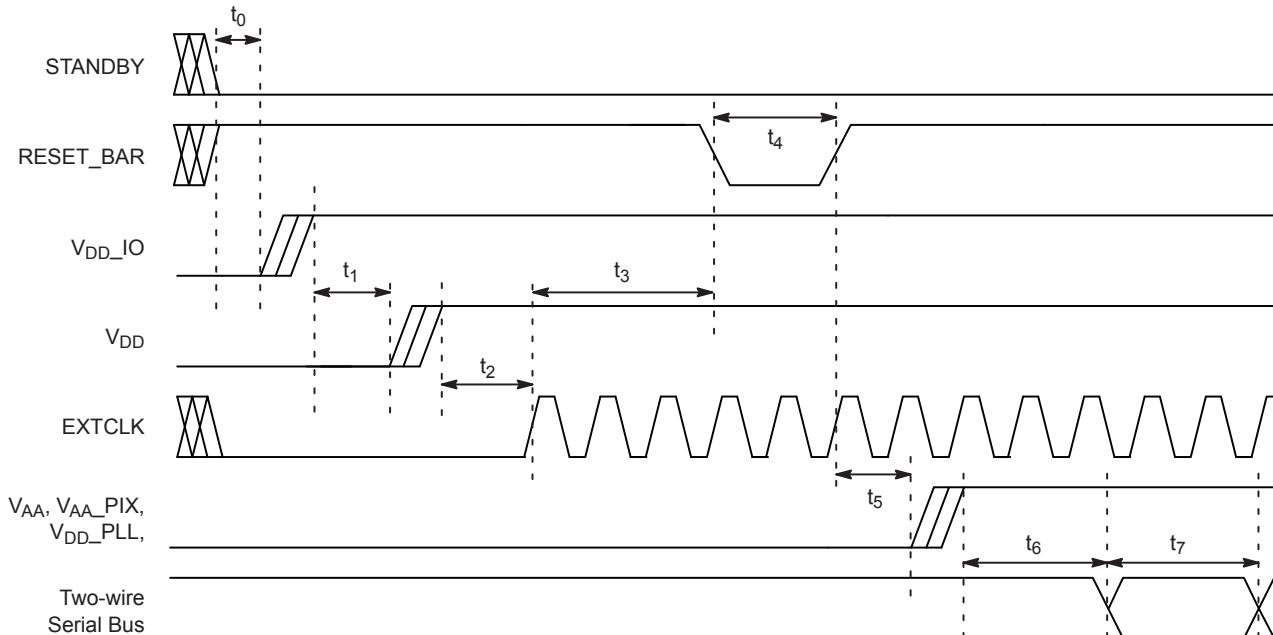


Figure 26. Power Application Sequence Timing

Table 13. POWER APPLICATION SEQUENCE TIMING

Symbol	Parameter	Min	Typ	Max	Unit
t_0	Delay from Stable RESET_BAR, STANDBY Signals to V_{DD_IO} Power Start	0	–	–	ns
t_1	Delay from Stable V_{DD_IO} to V_{DD} Start	1	–	–	ms
t_2	Delay from Stable V_{DD} Power to EXTCLK Start	0	–	–	ns
t_3	Delay from EXTCLK Start to Stable EXTCLK	1	–	–	EXTCLK
t_4	RESET_BAR Pulse Width	10	–	–	EXTCLK
t_5	Delay from RESET_BAR De-asserting to Analog Power Supplies Start	1	–	–	EXTCLK
t_6	Delay from Analog Power Stable to Soft Standby Mode	6000	–	–	EXTCLK
t_7	Delay from Soft Standby Mode to First Two-wire Bus Transaction	1	–	–	EXTCLK

Power-On Reset

The sensor includes a power-on reset feature that initiates a reset upon power-up. Even though this feature is included on the device, it is advised that the user still manually assert a hard reset upon power-up.

The MT9D115's POR circuit generates internal reset only and it will not generate the external reset signal through RESET_BAR.

The POR circuit requires V_{DD} ramp time to be less than 10 μ s. If the ramp time is longer than 10 μ s, the POR operation is not guaranteed and external reset must be used.

The POR circuit will generate an internal reset when V_{DD} falls below 1.25 V (typical) for 1 μ s (typical) period, as shown in Figure 27 and described in Table 14.

The POR circuit reset and external RESET_BAR signals are gated together to generate an internal reset for MT9D115.

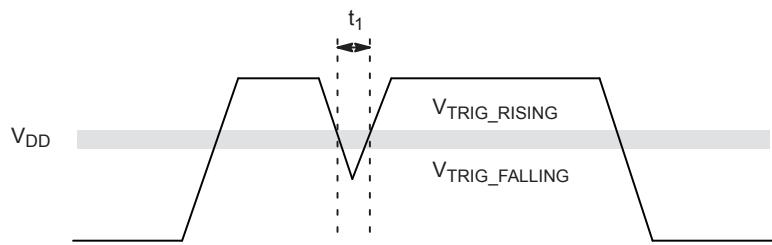


Figure 27. Internal Power-On Reset

Table 14. POR PARAMETERS

Symbol	Definition	Min	Typ	Max	Unit
t_1	Minimum V_{DD} Spike Width below $V_{TRIG_FALLING}$ Considered to be a Reset	–	1	–	μ s
V_{TRIG_RISING}	V_{DD} Rising Trigger Voltage	1.15	1.4	1.55	V
$V_{TRIG_FALLING}$	V_{DD} Falling Trigger Voltage	1	1.25	1.45	V

Hard Reset

The MT9D115 enters the reset state when the external RESET_BAR signal is asserted LOW as shown in Figure 28

and described in Table 15. All of the output signals will be in High-Z state except the MIPI outputs, which will be driven LOW.

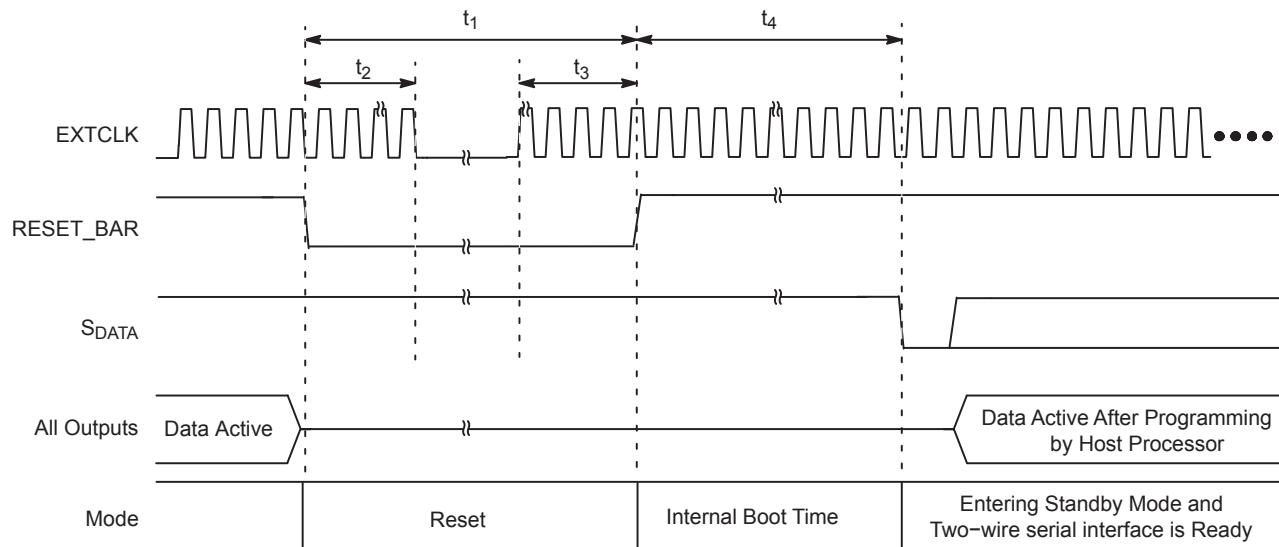


Figure 28. Hard Reset Operation

Table 15. HARD RESET SIGNAL TIMING

Symbol	Definition	Min	Typ	Max	Unit
t_1	RESET_BAR Pulse Width	100	—	—	EXTCLK Cycles
t_2	Active EXTCLK Required after RESET_BAR Asserted	10	—	—	EXTCLK Cycles
t_3	Active EXTCLK Required before RESET_BAR De-asserted	10	—	—	EXTCLK Cycles
t_4	Maximum Internal Boot Time	—	—	6000	EXTCLK Cycles

Soft Reset

The host processor can reset the MT9D115 using the two-wire serial interface by writing to SYSCTL 0x001A. Two types of soft reset are available. SYSCTL 0x001A[0] is used to reset the MT9D115, which is similar to external RESET_BAR signal.

1. Set SYSCTL 0x001A1:0] to 0x3 to initiate internal reset cycle.
2. Wait 6000 EXTCLK cycles.
3. Reset SYSCTL 0x001A[0] to 0x0 for normal operation.

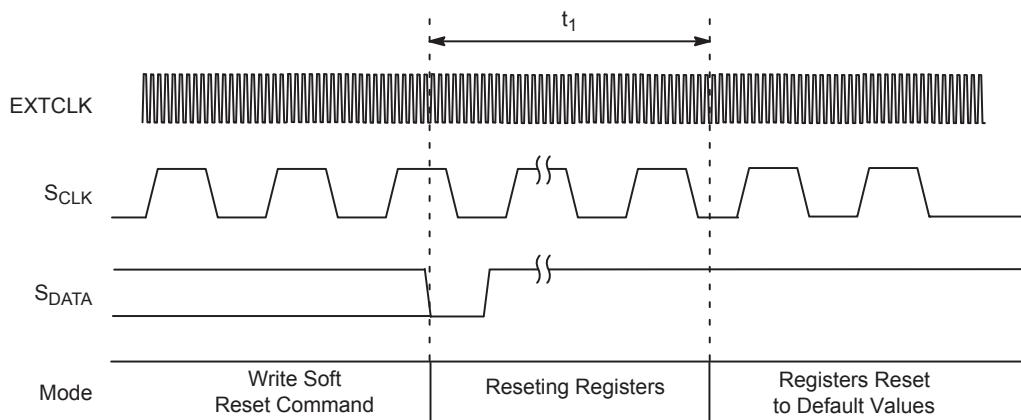


Figure 29. Soft Reset Operation

Table 16. SOFT RESET SIGNAL TIMING

Symbol	Definition	Min	Typ	Max	Unit
t_1	Maximum Soft Reset Time	—	—	6000	EXTCLKs

Power Removal Sequence

ON Semiconductor recommends using the following method to remove the power supplies from the image sensor.

1. Put the image sensor into either hard standby or soft standby mode as described in “Standby Modes”.
2. Remove all digital and analog supplies.

During step 2, the digital and analog supplies can be removed safely either one by one or at the same time, provided that step 1 is executed previously. To achieve a known power down state in the sensor, execute step 1 before removing any power supplies during the power removal process.

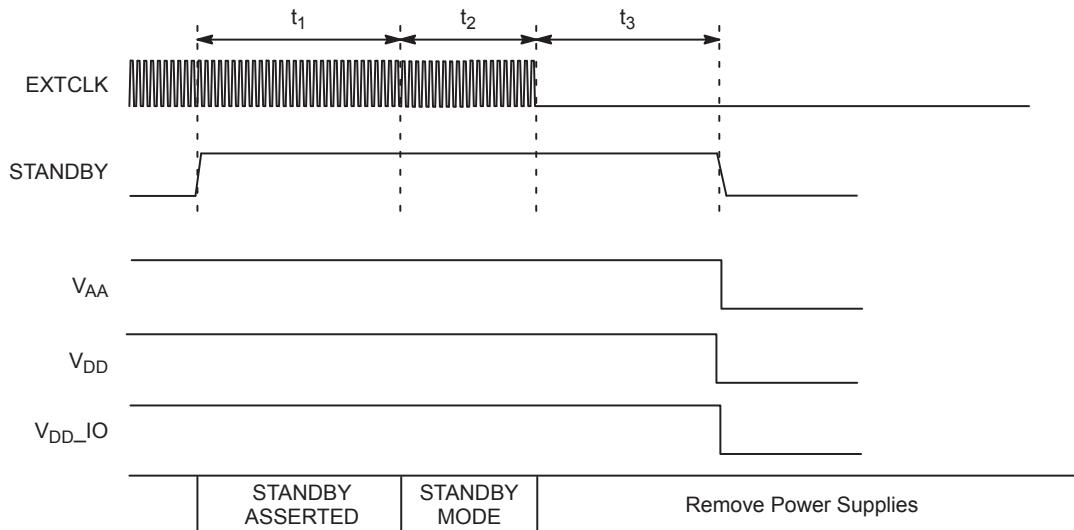


Figure 30. Recommended Power Down Sequence

Table 17. POWER DOWN SIGNAL TIMING

Symbol	Parameter	Min	Typ	Max	Unit
t ₁	Standby Entry Complete	1 Frame + 40	–	–	EXTCLKs
t ₂	Active EXTCLK Required after STANDBY Asserted	10	–	–	EXTCLKs
t ₃	Power Supply Removal can be in any Order and Anytime after Completion of t ₂	0	–	–	EXTCLKs

Standby Modes

The MT9D115 supports three standby modes:

- Soft standby
- Low leakage hard standby
- High leakage hard standby

For each mode, entry can be overridden by programming the *standby_control* register. Patch codes, PLL configurations, parallel and MIPI IO selections are retained in all standby modes.

Soft Standby

Soft standby can be enabled by register access; it disables the sensor core and most of the digital logic. The two-wire serial interface is still active and the MT9D115 can be programmed through register commands. All register settings and RAM content will be preserved. Soft standby can be performed in any sequencer state.

Low Leakage Hard Standby

Hard standby mode uses the STANDBY signal to shut down digital power (V_{DD}) and ensure the lowest power

consumption. All the two-wire serial interface settings and firmware variables except patch codes, PLL configuration, parallel/MIPI IO and context selections will be lost in this mode. Starting up from this mode is equivalent to power up and current context selections. The two-wire serial interface will be inactive and the sensor must be started up by de-asserting the STANDBY signal.

High Leakage Hard Standby(Without Loss of Variable Data)

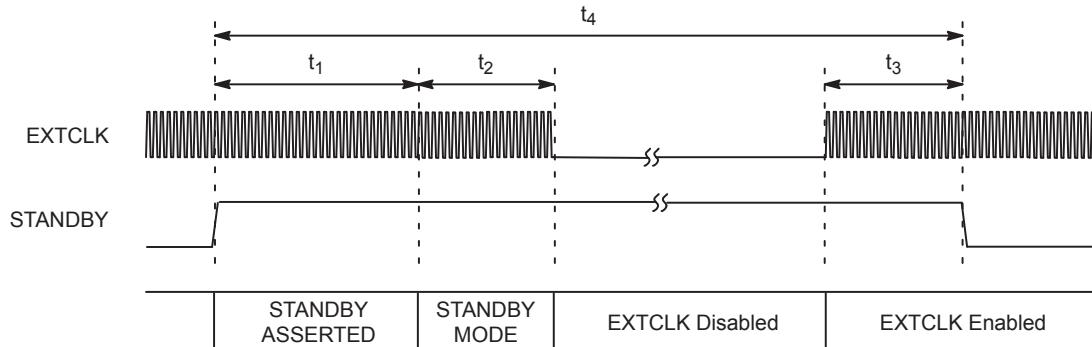
High leakage hard standby mode (without the loss of variable data) can also be achieved. This mode stores the variables and state of the sensor before entering standby (similar to soft standby). The power consumption is lower than that of soft standby, with EXTCLK enabled, as internal clocks are turned off, and the two-wire serial interface will be inactive.

Because the high leakage hard standby mode (without the loss of variable data) is also activated by STANDBY, the *en_vdd_dis_soft* register needs to be programmed to indicate the selection of this mode before STANDBY is asserted. De-asserting STANDBY will cause the sensor to

come out of the standby mode. This also causes the sensor to resume operation from the state before the STANDBY signal was asserted. By default, asserting the STANDBY signal causes the hard standby mode described above.

Hard Standby Mode

The MT9D115 can enter hard standby mode by using external STANDBY signal, as shown in Figure 31. EXTCLK can be stopped to reduce the power consumption


during hard standby mode. Two-wire serial interface and IFP block shut down even when EXTCLK is running during hard standby mode.

Entering Standby Mode

1. Assert STANDBY signal (HIGH).

Exiting Standby Mode

1. De-assert STANDBY signal (LOW).
2. Follow “Hard Reset”.

NOTE: In hard standby mode, EXTCLK is automatically gated off, and the two-wire serial interface is not active.

Figure 31. Hard Standby Mode Operation

Table 18. HARD STANDBY SIGNAL TIMING

Symbol	Parameter	Min	Typ	Max	Unit
t_1	Standby Entry Complete	1 Frame + 40	—	—	EXTCLKs
t_2	Active EXTCLK Required after STANDBY Asserted	10	—	—	EXTCLKs
t_3	Active EXTCLK Required before STANDBY De-asserted	10	—	—	EXTCLKs
t_4	STANDBY Time	1 Frame + 120	—	—	EXTCLKs

Soft Standby Mode

The MT9D115 can enter soft standby mode by writing to a SYSCTL register through the two-wire serial interface, as shown in Figure 32. EXTCLK can be stopped to reduce the power consumption during soft standby mode. However, since two-wire serial interface requires EXTCLK to operate, ON Semiconductor recommends that EXTCLK run continuously. If EXTCLK needs to be stopped, ON Semiconductor recommends using hardware standby mode.

Entering Standby Mode

1. SYSCTL 0x0018[3] must be set to “1” to activate standby mode. This will generate an interrupt to the MCU when SYSCTL 0x0018[0] is set to “1”.

2. Set SYSCTL 0x0018[0] to “1” to initiate standby mode.
3. Check until SYSCTL 0x0018[14] changes to “1” to indicate MT9D115 is in standby mode.

Exiting Standby Mode

1. Reset SYSCTL 0x0018[0] to “0”.
2. Check until SYSCTL 0x0018[14] changes to “0” to indicate the MT9D115 is out of standby mode.

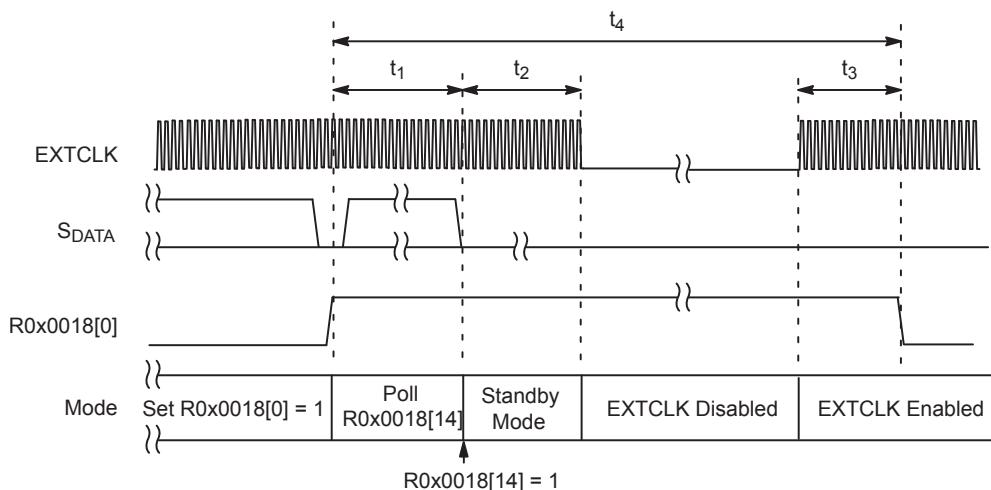


Figure 32. Soft Standby Mode Operation

Table 19. SOFT STANDBY SIGNAL TIMING

Symbol	Parameter	Min	Typ	Max	Unit
t_1	Standby Entry Complete ($R0x18[14] = 1$)	1 Frame + 40	—	—	EXTCLKs
t_2	Active EXTCLK Required after Soft Standby Activates	10	—	—	EXTCLKs
t_3	Active EXTCLK Required before Soft Standby De-activates	10	—	—	EXTCLKs
t_4	Minimum Standby Time	1 Frame + 120	—	—	EXTCLKs

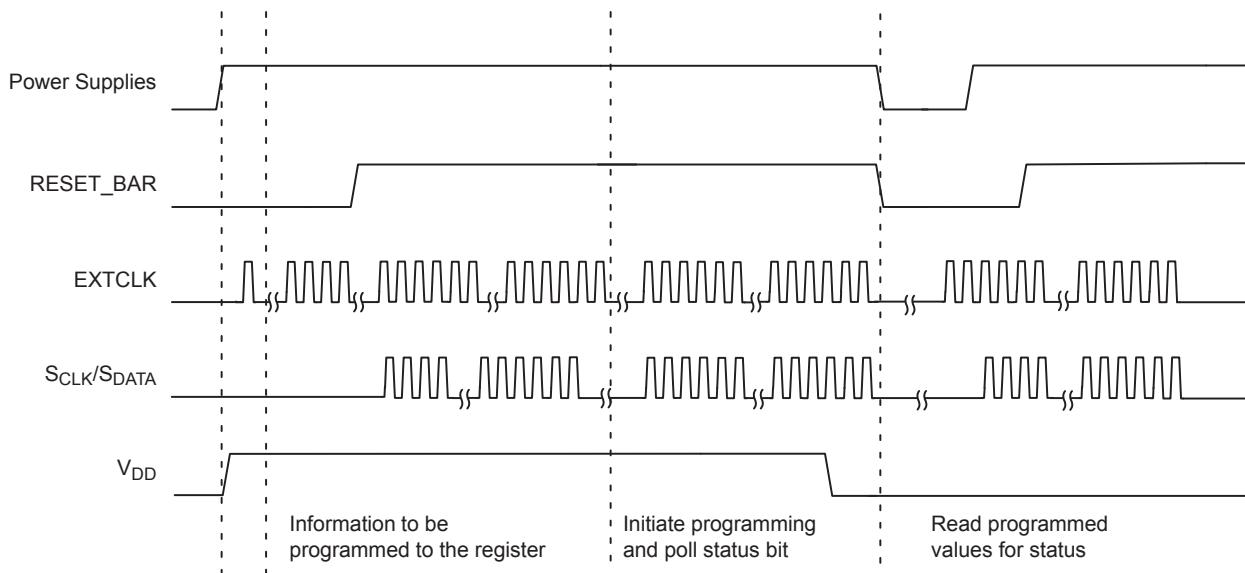
Table 20. STATUS OF SIGNALS DURING DIFFERENT STATES

Signal	Reset	Post-Reset	Software Standby	Low Power Hard Standby	Power Down
$D_{OUT}[7:0]$	High-Z	High-Z	High-Z by Default (configurable through OE_BAR or two-wire serial interface register)	High-Z by Default	X
$PIXCLK$	High-Z	High-Z	High-Z by Default (configurable)	High-Z by Default	X
LV	High-Z	High-Z	High-Z by Default (configurable)	High-Z by Default	X
FV	High-Z	High-Z	High-Z by Default (configurable)	High-Z by Default	X
$DOUT_N$	0	0	0	0	X
$DOUT_P$	0	0	0	0	X
CLK_N	0	0	0	0	X
CLK_P	0	0	0	0	X
$GPIO[3:0]$	High-Z	High-Z	Depending on how the system uses them as $D_{OUT_LSB1}/D_{OUT_LSB0}/FLASH/OE_BAR$	Depending on how the system uses them as $D_{OUT_LSBs}/FLASH/OE_BAR$	X
S_{ADDR}	Input	Input	Input	Input	
S_{DATA}	Input	I/O	Input	Input	
$SCLK$	Input	Input	Input	Input	

NOTE: X = "Don't Care"

OTHER FEATURES

One-time Programmable Memory (OTPM)


The MT9D115 contains two bytes of OTPM, suitable for storing module identification that can be programmed during the module manufacturing process. Programming the OTP memory requires the use of a high voltage at the V_{PP} pin. During normal operation, the V_{PP} pin should be left floating. The OTPM can be accessed through the two-wire serial interface.

Programming the OTPM

Refer to AND9507/D: Programming OTP Memory to program the OTP Memory.

Reading the OTPM

Reading the OTPM data requires the sensor to be fully powered and operational with its clock input applied. The data can be read through a register from the two-wire serial interface.

Figure 33. Sequence of Signals for OTPM Operation

GPIO and Output Enable Controls

General Purpose I/Os

The four GPIOs of the MT9D115 can be configured in multiple ways. Each of the I/Os can be used as a simple input/output that can be programmed from the host. The status of the GPIO is read at power up and can be used as a module ID to identify different module suppliers. In addition, module ID can be stored in the OTP memory of the sensor. Information on the OTP memory can be found in “One-time Programmable Memory (OTPM)”.

If 10-bit RAW output is required, GPIO[1:0] can be configured as bit 1 and bit 0 (the LSBs) of a 10-bit data bus.

GPIO[2] can be configured to output a flash pulse to trigger an external xenon or LED flash or a shutter pulse to control an external shutter.

GPIO[3] can also be configured as an input to be used as an OE_BAR signal for the data bus.

The general purpose inputs are enabled or disabled through register settings. Once enabled, all four inputs must be driven to valid logic levels by external signals. The state of the general purpose inputs can be read from a register.

Output Enable Control

When the parallel pixel data interface is enabled, its signals can be switched asynchronously between being driven and High-Z under signal or register control.

GPIO CONTROL

The MT9D115 has four general purpose I/O (GPIO) signals and that can be individually programmed to perform various functions. Table 21 describes the GPIO registers and variables.

Overview of GPIO Signals

- Extension of two lower data bits during 10-bit output mode
- External flash control output
- External OE_BAR control input for parallel port signals

Table 21. GPIO RELATED REGISTERS AND VARIABLES

Map	Address	Bits	Description
SYSCTL	0x001A	[8]	GPIO[3] Enable. GPIO[3] can be configured as an Output Enable pad. 0: GPIO[3] does not function as OE. 1: GPIO[3] functions as OE.
SYSCTL	0x001E	[6:4]	Controls the output slew rate of GPIO signals. “111” programs the fastest slew rate. Refer to AC/DC specification in the data sheet for the numbers. Default value is “000” for slowest slew rate.
SYSCTL	0x0024	[3:0]	The state of GPIO signals during power on. Read-only.
GPIO	0x1070	[12:9]	GPIO data port. State of current GPIO signals can be read through this register.
GPIO	0x1074	[12:9]	GPIO Set command. When GPIO is configured as output, setting this register to “1” will write “1” to GPIO port. Use GPIO Clear command to clear.
GPIO	0x1076	[12:9]	GPIO Clear command. When GPIO is configured as output, setting this register to “1” will write “0” to GPIO port. Use GPIO Set command to set.
GPIO	0x1078	[12:9]	GPIO direction control for each GPIO signals. 0 = Output 1 = Input After power-on, GPIO ports are in input mode.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Rating

CAUTION: Table 22 shows stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the product specification is not implied. Stresses above those listed may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 22. MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit
V_{DD}	Digital Core Supply Voltage	1.7	1.95	V
$V_{DD_IO_MAX}$	I/O Digital Voltage	-0.3	4.0	V
V_{AA_MAX}	Analog Voltage	-0.3	4.0	V
$V_{AA_PIX_MAX}$	Pixel Supply Voltage	-0.3	4.0	V
$V_{DD_PLL_MAX}$	PLL Supply Voltage	-0.3	4.0	V
V_{IH_MAX}	Input HIGH Voltage	-0.3	$V_{DD_IO} + 0.3$	V
V_{IL_MAX}	Input LOW Voltage	-0.3	-	V
T_{OP}	Operating Temperature (measured at junction)	-30	75	°C
T_{ST}	Storage Temperature	-40	85	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

I/O Parameters

Table 23. I/O PARAMETERS

($f_{EXTCLK} = 6\text{--}54$ MHz, $V_{DD} = V_{DD_IO_TX} = V_{DD_IO} = 1.8$ V; $V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8$ V; $T_j = 25^\circ\text{C}$)

Symbol	Parameter	Min	Typ	Max	Unit	Note
V_{IH}	Input Logic HIGH Threshold	$V_{DD_IO} - 0.3$	-	$V_{DD_IO} + 0.3$	V	
V_{IL}	Input logic LOW threshold	-0.1	-	0.6	V	$V_{DD_IO} = 2.8$ V
		-0.1	-	0.3	V	$V_{DD_IO} = 1.8$ V
V_{OH}	Output Logic HIGH Threshold	$V_{DD_IO} - 0.3$	-	-	V	At Specified at I_{OH}
V_{OL}	Output Logic LOW Threshold	-	-	0.3	V	
C_{IN}	Input Pins – (S_{CLK} , S_{DATA}) Capacitance	-	3.5	3.9	pF	
C_{LOAD}	Output Pins – (S_{DATA}) Load Capacitance	-	-	30	pF	
$P_{UP_S_{DATA}}$	S_{DATA} Pull-up Resistor	-	1.5	-	kΩ	

NOTE: V_{IH} and V_{IL} specifications apply to the over- and undershoot (ringing) present in the MCLK.

MIPI Interface AC and DC Electrical Specifications

Introduction

The MIPI interface for the MT9D115 image sensor was designed to meet the MIPI Alliance Specification for D-PHY Version 1.0. Please refer to this document for details on the MIPI specification and usage.

Electrical Specifications

Table 24. MIPI HIGH-SPEED TRANSMITTER DC CHARACTERISTICS

($f_{EXTCLK} = 48$ MHz; $V_{DD} = V_{DD_TX} = V_{DD_IO} = 1.8$ V; $V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8$ V; Ambient Temperature)

Parameter	Description	Min	Nom	Max	Unit
V_{CMTX}	HS Transmit Static Common Mode Voltage	150	200	250	mV
$ \Delta V_{CMTX}(1,0) $	V_{CMTX} Mismatch when Output is Differential-1 or Differential-0	—	—	16	mV
$ V_{ODL} $	HS Transmit Differential Voltage	140	200	270	mV
$ \Delta V_{ODL} $	V_{OD} Mismatch when Output is Differential-1 or Differential-0	—	14	—	mV
V_{OHHS}	HS Output High Voltage	—	—	360	mV
Z_{OS}	Single-ended Output Impedance	39	50	64	Ω
ΔZ_{OS}	Single-ended Output Impedance Mismatch	—	—	10	%

Table 25. MIPI HIGH-SPEED TRANSMITTER AC CHARACTERISTICS

($f_{EXTCLK} = 48$ MHz; $V_{DD} = V_{DD_TX} = V_{DD_IO} = 1.8$ V; $V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8$ V; Ambient Temperature)

Parameter	Description	Min	Nom	Max	Unit
t_R and t_F	20%–80% Rise Time and Fall Time	150	—	—	ps

Table 26. MIPI LOW-POWER TRANSMITTER DC CHARACTERISTICS

($f_{EXTCLK} = 48$ MHz; $V_{DD} = V_{DD_TX} = V_{DD_IO} = 1.8$ V; $V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8$ V; Ambient Temperature)

Parameter	Description	Min	Nom	Max	Unit
V_{OH}	Thevenin Output High Level	1.1	1.2	1.4	V
V_{OL}	Thevenin Output Low Level	—50	—	50	mV
Z_{OLP}	Output Impedance of LP Transmitter	110	—	—	Ω

Table 27. MIPI LOW-POWER TRANSMITTER ADC CHARACTERISTICS

($f_{EXTCLK} = 48$ MHz; $V_{DD} = V_{DD_TX} = V_{DD_IO} = 1.8$ V; $V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8$ V; Ambient Temperature)

Parameter	Description	Min	Nom	Max	Unit
$TRLP/TFLP$	15%–85% Rise Time and Fall Time	—	—	25	ns
$TREOT$	30%–85% Rise Time and Fall Time	—	—	35	ns
$\Delta V/\Delta t_{SR}$	Slew Rate @ $C_{LOAD} = 70$ pF	83	—	122	mV/ns
C_{LOAD}	Load Capacitance	0	—	70	pF

AC Electricals

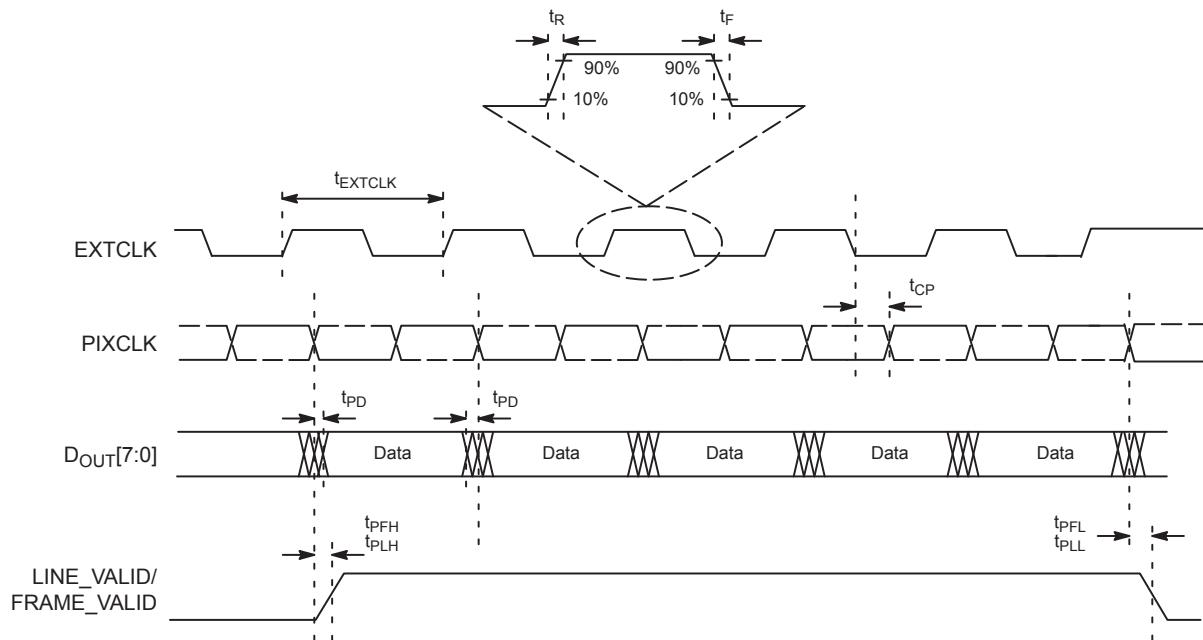


Figure 34. Output Interface Timing Waveforms

Table 28. AC ELECTRICALS

(f_{EXTCLK} = 6–54 MHz, V_{DD} = V_{DDIO_TX} = V_{DD_IO} = 1.8 V; V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8 V; T_j = 25°C)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
f _{EXTCLK} (Note 2)	External Input Clock Frequency		6	–	54	MHz
t _R (Note 1)	External Input Clock Rise Time	From 10% to 90% of V _{p-p}	–	2	5	ns
t _F (Note 1)	External Input Clock Fall Time	From 10% to 90% of V _{p-p}	–	2	5	ns
DCEXTCLK	External Input Clock Duty Cycle		40	50	60	%
t _{JITTER}	External Input Clock Jitter	Peak-to-Peak	–	–	500	ps
t _{CP} (Note 3)	EXTCLK to PIXCLK Propagation Delay		5	–	45	ns
f _{PIXCLK}	Pixel Clock Frequency		6	–	85	MHz
t _{RPIXCLK}	Pixel Clock Rise Time	C _{LOAD} = 15 pF	–	2	5	ns
t _{FPIXCLK}	Pixel Clock Fall Time	C _{LOAD} = 15 pF	–	2	5	ns
t _{PD} (Note 4)	Pixel Clock to Data Valid		–	–	0.6 * PIXCLK	ns
t _{PFH} (Note 4)	Pixel Clock to Frame Valid High		–	–	0.6 * PIXCLK	ns
t _{PLH} (Note 4)	Pixel Clock to Frame Valid Low		–	–	0.6 * PIXCLK	ns
t _{PFL} (Note 4)	Pixel Clock to Line Valid High		–	–	0.6 * PIXCLK	ns
t _{PLL} (Note 4)	Pixel Clock to Line Valid Low		–	–	0.6 * PIXCLK	ns
PIXCLK Pin Slew Rate (Note 5)	Programmable Slew = 7	V _{DD_IO} = 2.8 V, C _{LOAD} = 45 pF	–	1.2	–	V/ns
		V _{DD_IO} = 1.8 V, C _{LOAD} = 45 pF	–	0.6	–	V/ns
	Programmable Slew = 4	V _{DD_IO} = 2.8 V, C _{LOAD} = 45 pF	–	1	–	V/ns
		V _{DD_IO} = 1.8 V, C _{LOAD} = 45 pF	–	0.5	–	V/ns
	Programmable Slew = 0	V _{DD_IO} = 2.8 V, C _{LOAD} = 45 pF	–	0.3	–	V/ns
		V _{DD_IO} = 1.8 V, C _{LOAD} = 45 pF	–	0.15	–	V/ns

Table 28. AC ELECTRICALS (continued)(f_{EXTCLK} = 6–54 MHz, V_{DD} = V_{DDIO_TX} = V_{DD_IO} = 1.8 V; V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8 V; T_j = 25°C)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
Output Pin Slew Rate (Note 5)	Programmable Slew = 7	V _{DD_IO} = 2.8 V, C _{LOAD} = 45 pF	–	1.6	–	V/ns
		V _{DD_IO} = 1.8 V, C _{LOAD} = 45 pF	–	0.8	–	V/ns
	Programmable Slew = 4	V _{DD_IO} = 2.8 V, C _{LOAD} = 45 pF	–	1.25	–	V/ns
		V _{DD_IO} = 1.8 V, C _{LOAD} = 45 pF	–	0.55	–	V/ns
	Programmable Slew = 0	V _{DD_IO} = 2.8 V, C _{LOAD} = 45 pF	–	0.3	–	V/ns
		V _{DD_IO} = 1.8 V, C _{LOAD} = 45 pF	–	0.15	–	V/ns

1. Measured when the PLL is off. Specification not applicable when PLL is on, but input HIGH/LOW voltage should be within specification.
2. V_{IH} and V_{IL} specifications apply to the over- and undershoot (ringing) present in the MCLK.
3. Measurement done with PLL off.
4. Valid for C_{LOAD} < 20 pF on PIXCLK, D_{OUT}[9:0], LINE_VALID, and FRAME_VALID pads. Loads must be matched as closely as possible.
5. PLL is off and EXTCLK is 24 MHz.

Table 29. DC ELECTRICALS(f_{EXTCLK} = 6–54 MHz, V_{DD} = V_{DDIO_TX} = V_{DD_IO} = 1.8 V; V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8 V; T_j = 25°C, unless stated otherwise)

Symbol	Parameter	Condition		Min	Typ	Max	Unit
V _{DD}	Digital Core Supply Voltage			1.7	1.8	1.95	V
V _{DD_PLL}	PLL Supply Voltage			2.5	2.8	3.1	V
V _{AA}	Analog Supply Voltage			2.5	2.8	3.1	V
V _{AA_PIX}	Pixel Supply Voltage			2.5	2.8	3.1	V
V _{DD_IO}	Digital IO Supply Voltage	For V _{DD_IO} = 1.8 V		1.7	1.8	1.95	V
		For V _{DD_IO} = 2.8 V		2.5	2.8	3.1	V
V _{DDIO_TX}	MIPI Supply Voltage			1.7	1.8	1.95	V
V _{PP}	OTPM Supply Voltage			–	8	–	V
I _{DD_IO} (Note 1)	Digital IO Supply Current	Context A	V _{DD_IO} = 1.8 V	–	10	–	mA
			V _{DD_IO} = 2.8 V	–	15	–	mA
		Context B	V _{DD_IO} = 1.8 V	–	12	–	mA
			V _{DD_IO} = 2.8 V	–	20	–	mA
I _{DD_PLL}	PLL Supply Current	PLL is OFF		–	N/A	–	mA
		PLL is ON (Note 2)		–	13	18	mA
I _{DD}	Digital Core Supply Current	Operating in Parallel Mode	Context A	–	15	30	mA
				–	40	50	mA
				–	1.5	3	mA
				–	N/A	–	mA
I _{AA}	Analog Supply Current		Context B	–	25	52	mA
				–	40	52	mA
				–	0.8	3	mA
				–	N/A	–	mA
I _{AA_PIX}	Pixel Supply Current			–	25	52	mA
				–	40	52	mA
				–	0.8	3	mA
				–	N/A	–	mA
I _{DDIO_TX}	MIPI Supply Current (Note 3)			–	25	52	mA
				–	40	52	mA
				–	0.8	3	mA
				–	N/A	–	mA

Table 29. DC ELECTRICALS (continued)(f_{EXTCLK} = 6–54 MHz, V_{DD} = V_{DDIO_TX} = V_{DD_IO} = 1.8 V; V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8 V; T_j = 25°C, unless stated otherwise)

Symbol	Parameter	Condition		Min	Typ	Max	Unit
I _{DD}	Digital Core Supply Current	Operating in Serial Mode (Note 4)	Context A	–	23	50	mA
I _{AA}	Analog Supply Current			–	40	50	mA
I _{AA_PIX}	Pixel Supply Current			–	1.5	3	mA
I _{DDIO_TX}	MIPI Supply Current			–	5	3	mA
I _{DD}	Digital Core Supply Current		Context B	–	35	70	mA
I _{AA}	Analog Supply Current			–	40	70	mA
I _{AA_PIX}	Pixel Supply Current			–	0.8	3	mA
I _{DDIO_TX}	MIPI Supply Current			–	8	10	mA
I _{HARDSTANDBY}	Total Standby Current	STANDBY Pin Asserted, R0x0028 = 1 (Note 5)	–	–	20	μA	
I _{HARDSTANDBY}		STANDBY Pin Asserted, R0x0028 = 0 (Note 7)	–	–	90	μA	
I _{SOFTSTANDBY}		R0x0018[0] = 1 (Note 6)	–	–	90	μA	
I _{SOFTSTANDBY}		R0x0018[0] = 1, R0x0028 = 0 (Note 7)	–	–	2	mA	
I _{SOFTSTANDBY}		R0x0018[0] = 1, R0x0028 = 1 (Note 7)	–	–	3	mA	

1. V_{DD_IO} current is dependent on the output data rate.
2. PLL is on with 85 MHz output frequency setting.
3. V_{DD_IO_TX} current is only applicable in serial output mode.
4. PLL is on with 480 MHz VCO frequency settings.
5. Either with EXTCLK running or EXTCLK stopped and EXCLK pin is either pulled up or pulled down. Measured at T_j = 70°C.
6. EXTCLK is stopped and EXCLK pin is either pulled up or pulled down.
7. EXTCLK running at 27 MHz.

APPENDIX A – V_{DD}_IO CURRENT ADDITION

Introduction

This appendix describes the system requirements to achieve lowest power consumption in the V_{DD}_IO domain during low power hardware standby mode in ON Semiconductor's MT9D115 CMOS digital image sensor.

V_{DD}_IO Current

V_{DD}_IO current is used to measure the power consumption of the IO pad ring of our sensor. Therefore, it is extremely system-dependent and greatly affected by the external conditions as current can flow out of the chip through the IO ring and into the system. In this document, we outline requirements at the system level to achieve minimum power consumption during low power hardware standby mode.

To achieve the lowest V_{DD}_IO current, it is critical to match V_{DD}_IO level in the sensor and the controller. Otherwise, there can be elevated current drawn on the V_{DD}_IO due to mismatch in termination voltage level on the sensor pins. In ON Semiconductor system design, the IO voltage between the sensor and the controller is matched by using the same voltage regulator, as shown in Figure 35. This is recommended for both the system design and setup to measure the V_{DD}_IO power consumption.

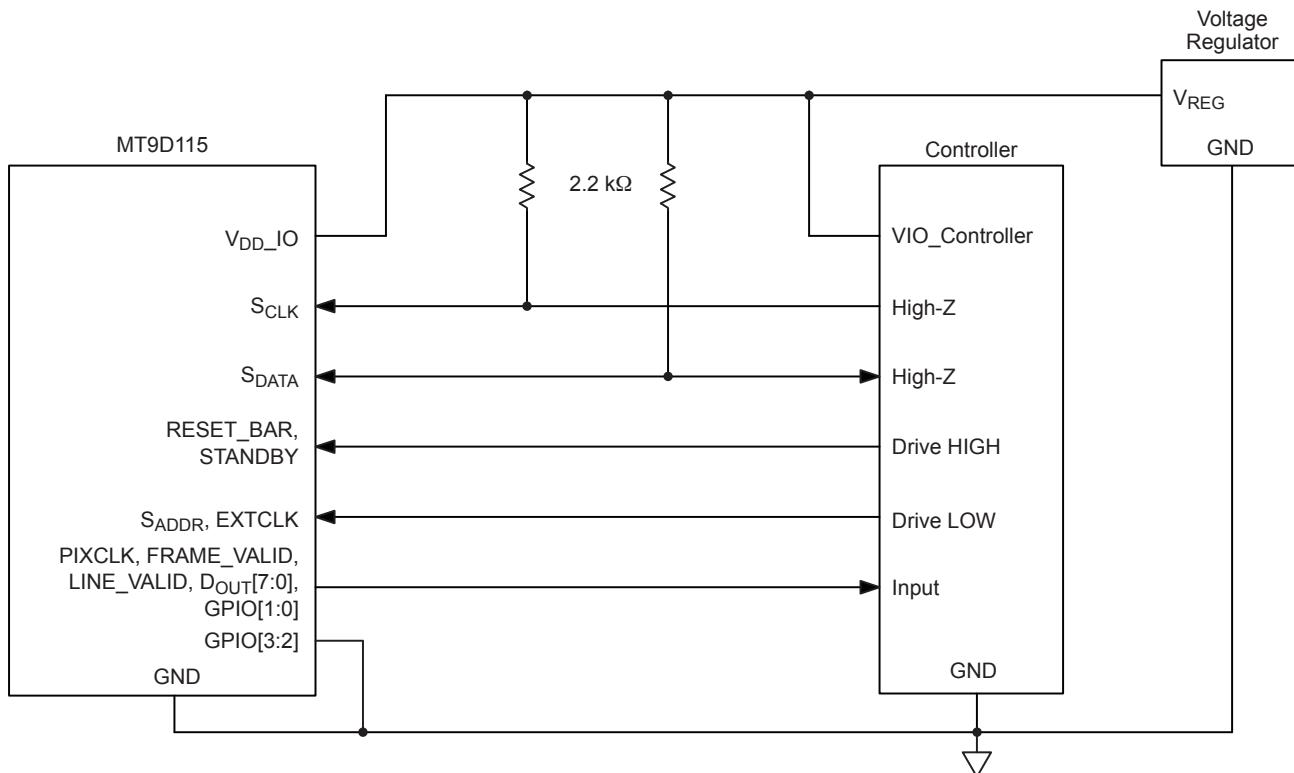


Figure 35. Recommended System and Test Setup for Minimum V_{DD}_IO Power Consumption

IO Pin States

In addition to matching V_{DD_IO} levels between the controller chip and the sensor, the control signals to the input pins of the sensor must be at a specified level to achieve minimal V_{DD_IO} current draw. Table 30 shows the pin

states recommended to achieve minimum V_{DD_IO} current during hardware standby mode.

It is always a good practice to measure the pin voltage during hard standby and try to match the recommended pin state.

Table 30. STATUS OF SIGNALS DURING STANDBY STATE

Signal	State on Sensor Pin	ON Semiconductor Test System
DOUT[7:0]	High-Z by Default (configurable through OE_BAR or two-wire serial interface register)	No Control (Note 4)
PIXCLK	High-Z by Default (configurable)	
LINE_VALID	High-Z by Default (configurable)	
FRAME_VALID	High-Z by Default (configurable)	
GPIO[3:0]	Depending on how the system uses them as DOUT_LSB1/DOUT_LSB0/FLASH/OE_BAR	Pulled to GND (Note 8, 9)
DOUT_N	0	Float (Note 7)
DOUT_P	0	
CLK_N	0	
CLK_P	0	
SADDR	Input	Pulled to GND (Note 1, 6)
EXTCLK	Input	
SDATA	Input	High-Z (Note 3)
SCLK	Input	
RESET_BAR	Input	Pulled to V_{DD_IO} Level (Notes 2, 5)
STANDBY	Input	

1. V_{IL} specification for input signal applies. Refer to Table 21, "GPIO Related Registers and Variables".

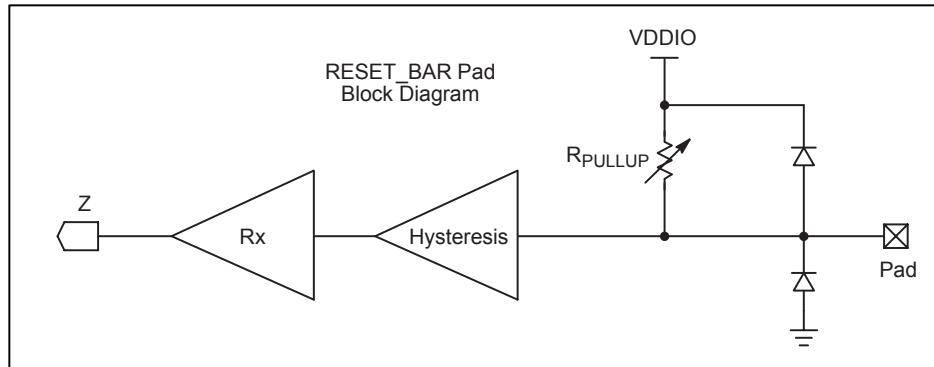
2. V_{IH} specification for input signal applies. Refer to Table 21, "GPIO Related Registers and Variables".

3. These pins are not directly connected to V_{DD_IO} supply but through a voltage follower to the controller.

4. The pins on the controller connected to these sensor pins are input pins.

5. These pins are not directly connected to V_{DD_IO} supply but through the controller.

6. These pins are not directly connected to GND but through the control signal on the controller.


7. These pins are floating in parallel mode operation.

8. Tie all the unused GPIO pins to D_{GND} or V_{DD_IO} level in the module.

9. If GPIO3 is connected to GPIO pin on the controller, program GPIO3 as an input before low power hard standby mode and drive GPIO3 externally from the controller to D_{GND} level.

RESET_BAR with Internal Pull-Up

The RESET_BAR pin has an internal pull-up device to V_{DD_IO} (see Figure 36).

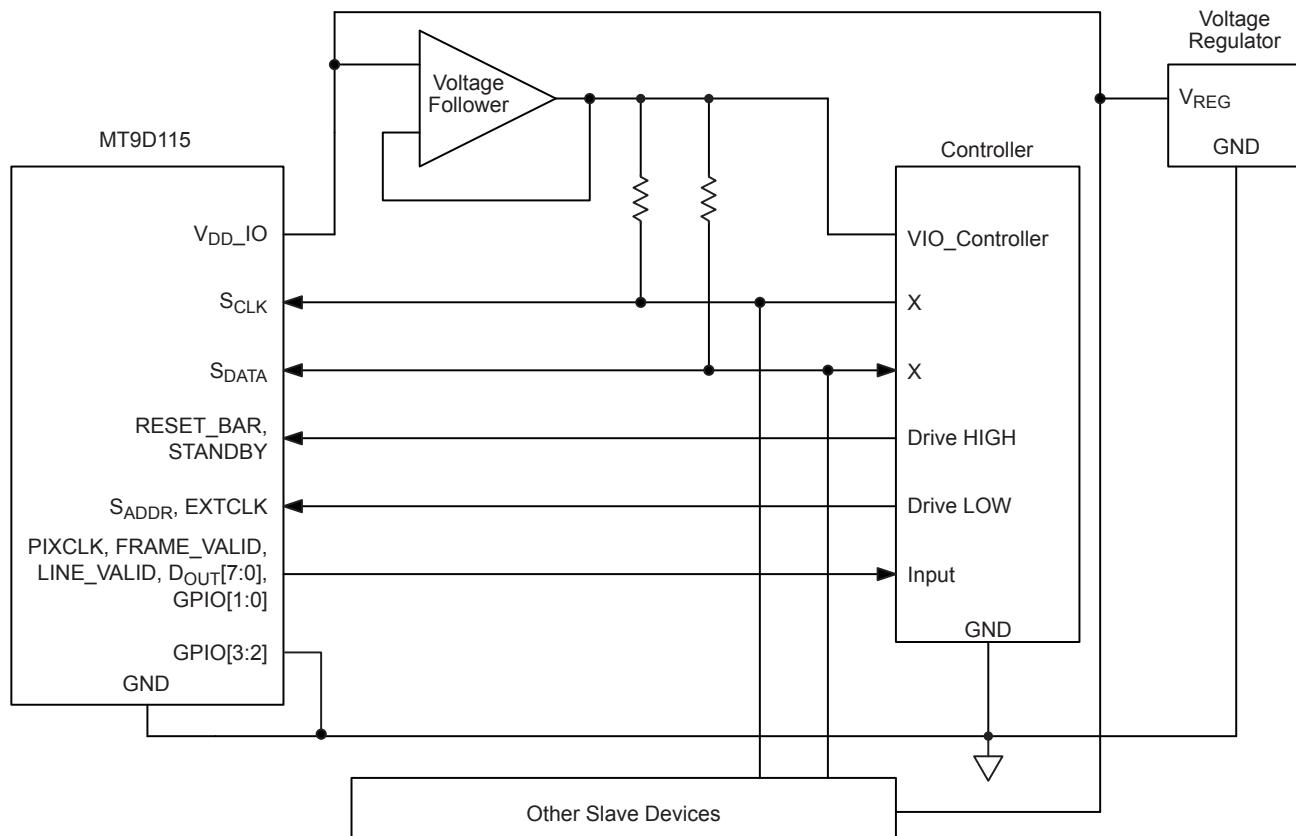
Figure 36. RESET_BAR Pad Architecture

Since R_{PULLUP} is active devices connected in triode state, the value of R_{PULLUP} is dependent on the difference between V_{DD_IO} and V_{PAD} Level (see Table 31).

Table 31. TYPICAL MISMATCH CURRENT IN V_{DD_IO} DUE TO MISMATCH IN RESET_BAR LEVEL AND V_{DD_IO} LEVEL

(Conditions: $V_{DD} = V_{DD_IO_TX} = 1.8$ V; $V_{AA} = V_{AA_PIX} = V_{DD_PLL} = 2.8$ V; $T_j = 30^\circ\text{C}$, EXTCLK is off and tied to GND level. All other pin states and levels are set according to ON Semiconductor E2E on pin states.)

V_{DD_IO}	V_{PAD}	Min	Typ	Max	Unit
1.80	1.70	14	18	22	μA
	1.80	2	5	10	
	1.95	-13	-17	-21	
2.80	2.50	61	67	72	μA
	2.80	2	7	12	
	3.10	-54	-60	-66	


NOTE: The above data is for engineering purposes only. These represent typical values that can be expected.

Recommended System and Test Setup with Multiple Serial Interface Slave Devices

The recommended system and test setup shown in Figure 37 is only valid for a system where MT9D115 is the only two-wire serial interface slave device connected to the controller chip. As the S_{CLK} and S_{DATA} are to be pulled high to the V_{DD_IO} level during the hardware standby to minimize the IO current consumption due to the data toggling in the two-wire serial interface, this design is not

feasible if there is an additional slave device sharing the same two-wire serial interface on the controller chip.

In such systems, it is recommended to have a voltage follower to isolate the pull-up resistors attached between the two-wire serial interface and V_{DD_IO} supply of MT9D115 as shown in Figure 37. Otherwise, the data toggling from the two-wire serial interface transactions to other could cause leakage from the V_{DD_IO} supply of MT9D115.

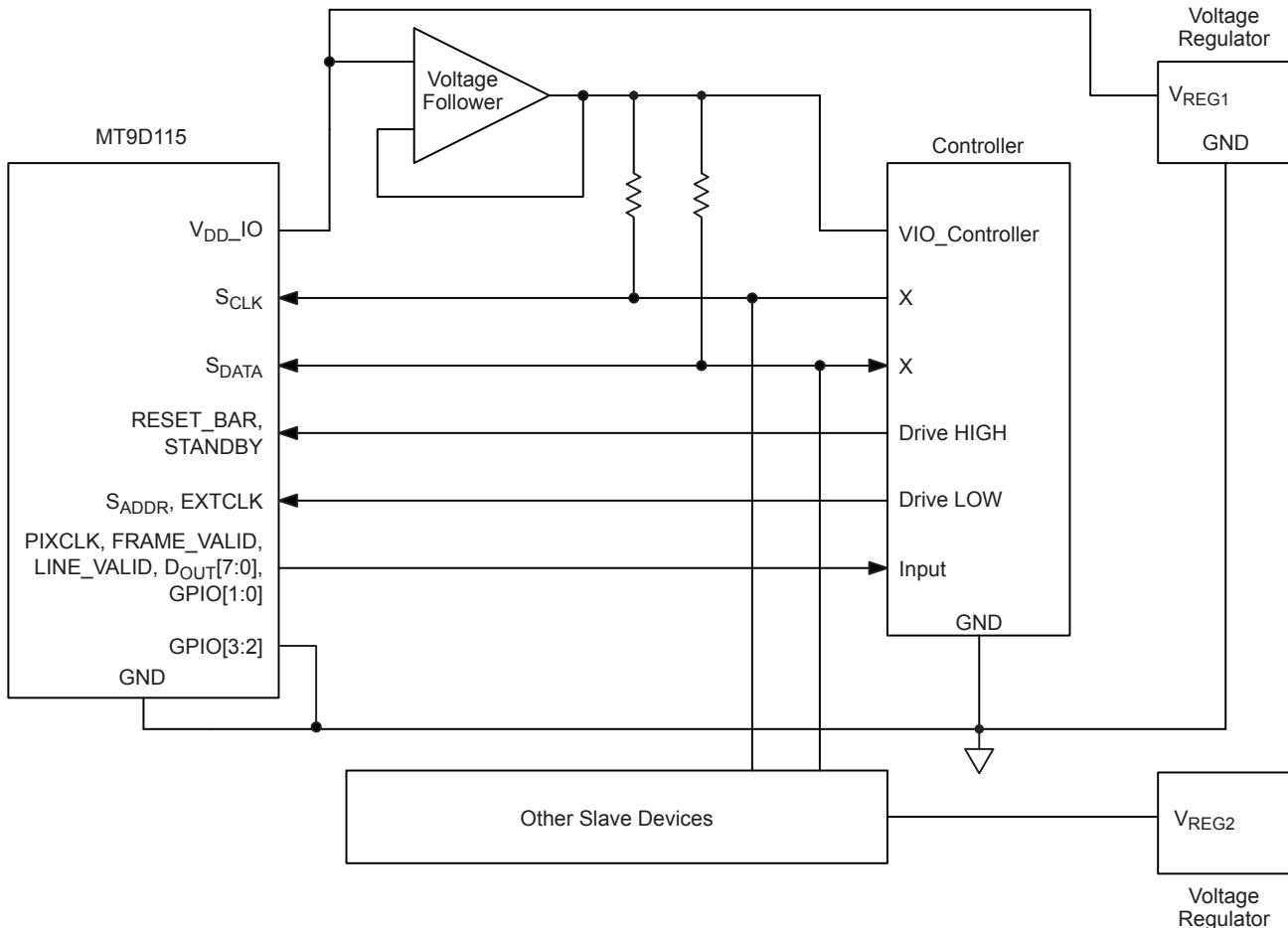


Figure 37. Recommended System and Test Setup for Minimum V_{DD_IO} Power Consumption in the MT9D115 Sharing with Multiple Two-wire Serial Interface Devices

MT9D115

In addition, in some system designs where the IO level of the additional devices sharing the same two-wire serial interface with MT9D115 is different from that of MT9D115, it is recommended that the IO voltage level between the

controller and the MT9D115 be maintained to the same level by sourcing from the same voltage regulator as shown in Figure 38.

Figure 38. Recommended System and Test Setup for Minimum V_{DD_IO} Power Consumption in the MT9D115 Sharing with Multiple Two-wire Serial Interface Devices at Different IO Level

For a system which uses separate voltage regulators for MT9D115 sensor and the controller chip as shown in Figure 39, it is important to match the voltage levels between two regulators as close as possible. If the voltage levels are not matched, there can be additional current consumption in the V_{DD_IO} domain connected to the sensor. This additional current is generated in the internal pull up resistor present in RESET_BAR pad and external resistors used for two-wire serial interface.

The current leakage from the voltage level mismatch in RESET_BAR pad can be characterized as follows:

$$I_{DD_IOMismatch} = \frac{V_{REG2} - V_{REG1}}{R_{PULLUP_RESET_BAR@V_{DD_IO}}} \quad (\text{eq. 19})$$

The internal pull up resistance is dependent on the V_{DD_IO} level. Typical levels of mismatch current at different V_{DD_IO} levels can be found in Table 31.

MT9D115

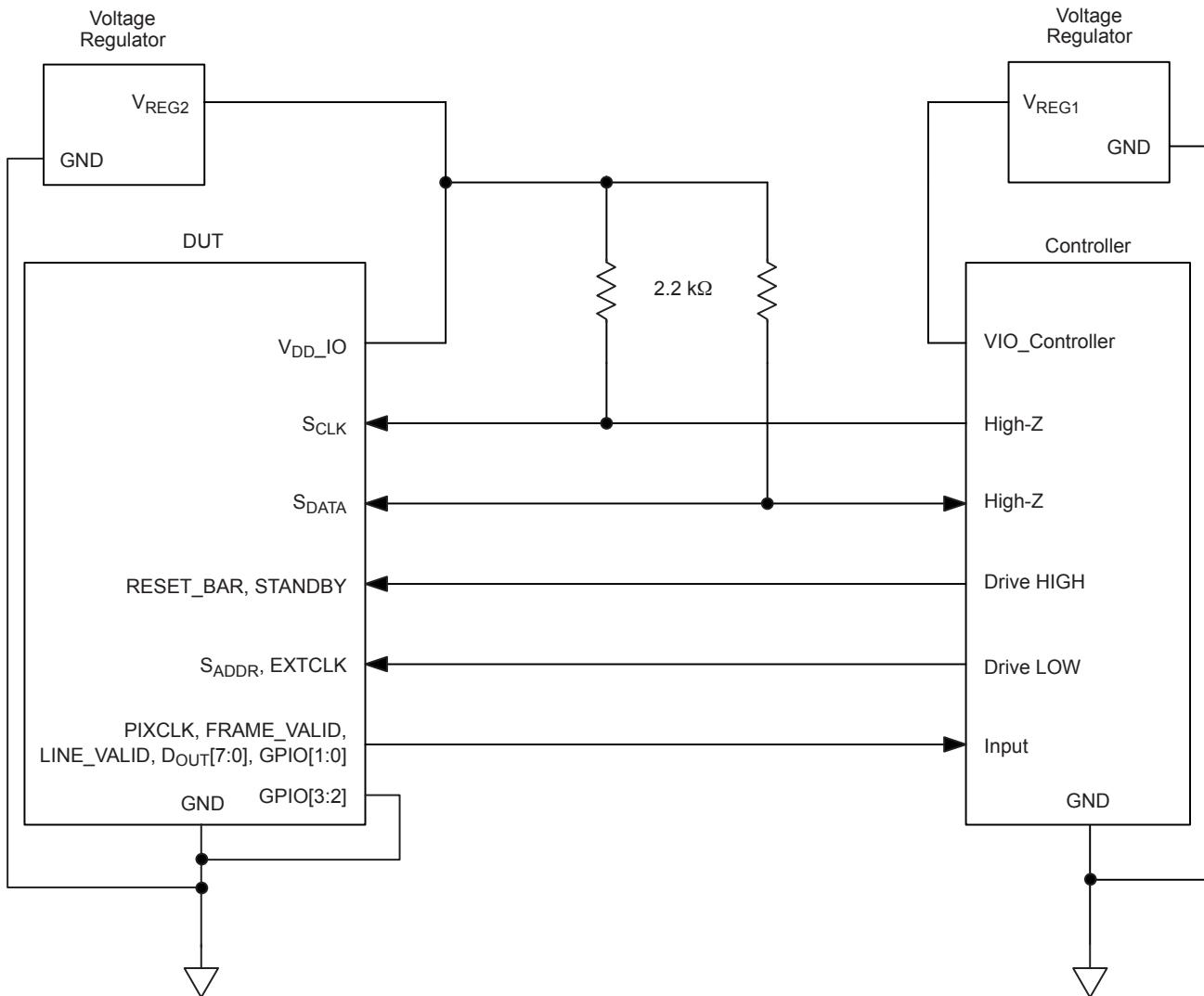
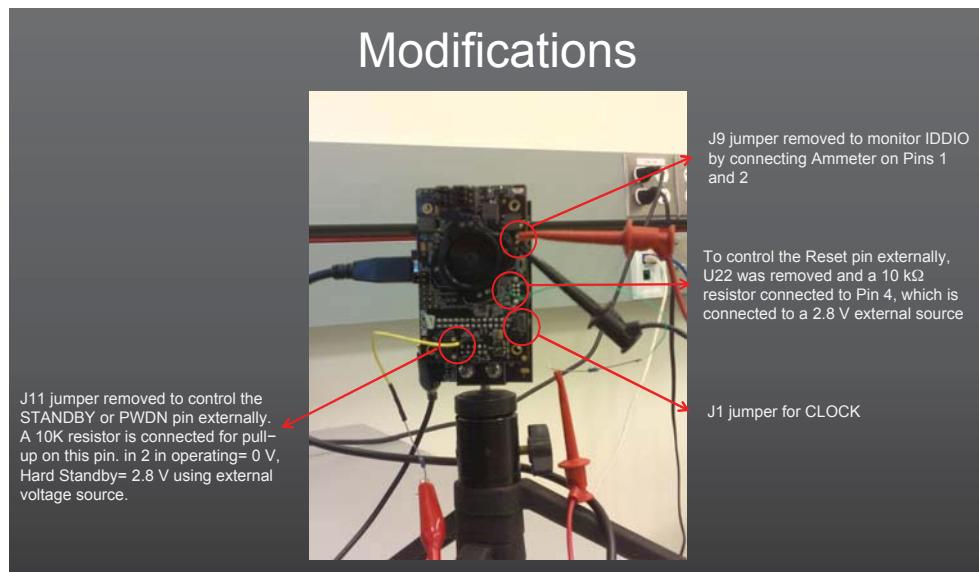


Figure 39. System Setup with Independent Voltage Sources for MT9D115 and Controller Chip

Test Sequence for Measuring V_{DD}_IO Current at Hard Standby Mode


Follow the procedure defined within the sensor data sheet. The following test sequence takes the MT9D115 as a reference. Contact your local ON Semiconductor Applications Engineer for any specific product.

To measure V_{DD}_IO current at hard standby mode:

1. Supply PWRDN (also known as STANDBY) pin (J11 pin2) with 0 volt externally.
2. Supply the RESET_BAR pin (U22 pin4) with V_{DD}_IO volt externally.
3. Connect an ammeter between I_{DD}_IO (J9) and D_{GND}.
4. Use jumpers J5, J17, and J20 to make sure GPIO pins are connected to either GND or V_{DD}_IO.

At this point, the part is in operating mode and it is possible to load an .INI file to get an image with DevWare.

5. Supply the PWRDN pin with V_{DD}_IO volt externally and wait for one frame + 50 clock. At this stage, the part is in hard standby.
6. By removing J1, the EXTCLK is disconnected to the part and then connect EXTCLK pin (J1 pin2) to either D_{GND} or V_{DD}_IO.
7. Now the part is in hard standby with EXTCLK off. The user can read off the V_{DD}_IO current from the ammeter at step 3 above.

Figure 40. Modifications to the Demo2 Sensor Head Board for V_{DD}_IO Current Measurement

Conclusion

It is important from the system perspective to ensure IO levels between MT9D115 and the controller chip at the same potential level to achieve minimum IO power consumption

in MT9D115. A system configuration to achieve this is proposed in this document. In addition, suggestions on how to approach system designs with multiple two-wire serial interface devices and multiple IO level devices are provided.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative