

LOW-NOISE, HIGH-VOLTAGE, CURRENT-FEEDBACK OPERATIONAL AMPLIFIERS

Check for Samples: THS3110 THS3111

FEATURES

Low Noise

2-pA/√Hz Noninverting Current Noise

10-pA/√Hz Inverting Current Noise

3-nV/√Hz Voltage Noise

High Output Current Drive: 260 mA

High Slew Rate: 1300 V/µs
 - (R_L = 100 Ω, V_O = 8 V_{PP})

• Wide Bandwidth: 90 MHz (G = 2, R_L = 100 Ω)

Wide Supply Range: ±5 V to ±15 V
 Power-Down Feature: (THS3110 Only)

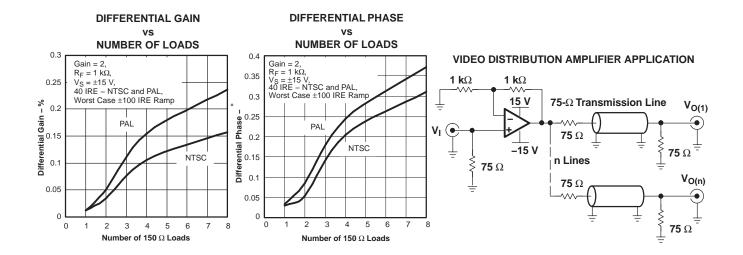
APPLICATIONS

Video Distribution

Power FET Driver

Pin Driver

Capacitive Load Driver


DESCRIPTION

The THS3110 and THS3111 are low-noise, high-voltage, current-feedback amplifiers designed to operate over a wide supply range of ±5 V to ±15 V for today's high performance applications.

The THS3110 features a power-down pin (PD) that puts the amplifier in low-power standby mode, and lowers the quiescent current from 4.8 mA to 270 µA.

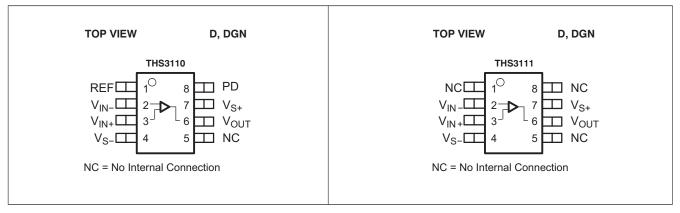
These amplifiers provide well-regulated ac performance characteristics. The unity-gain bandwidth of 100 MHz allows for good distortion characteristics below 10 MHz. Coupled with a high 1300-V/µs slew rate, the THS3110 and THS3111 amplifiers allow for high output voltage swings at high frequencies.

The THS3110 and THS3111 are offered in the SOIC-8 (D) and the MSOP-8 (DGN) packages with PowerPAD™.

 \triangle

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.


All other trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

NOTE: The device with the power-down option defaults to the ON state if no signal is applied to the PD pin. Additionally, the REF pin functional range is from V_{S_-} to $(V_{S_+} - 4 \text{ V})$.

AVAILABLE OPTIONS(1)

-	PACKAGED DEVICE						
T _A	PLASTIC SMALL OUTLINE SOIC (D)	PLASTIC MSOP (DGN) (2)	SYMBOL				
0°C to +70°C	THS3110CD	THS3110CDGN	BJB				
0.0 10 +70.0	THS3110CDR	THS3110CDGNR	DJD				
-40°C to +85°C	THS3110ID	THS3110IDGN	DID				
-40°C (0 +65°C	THS3110IDR	THS3110IDGNR	BIR				
0°C to +70°C	THS3111CD	THS3111CDGN	BJA				
0.0 10 +/0.0	THS3111CDR	THS3111CDGNR	БЈА				
40°C to +95°C	THS3111ID	THS3111IDGN	DIC				
–40°C to +85°C	THS3111IDR	THS3111IDGNR	BIS				

⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

DISSIPATION RATINGS TABLE

PACKAGE	θ _{JC} (°C/W)	θ _{JA} (°C/W)		ER RATING = +125°C
			$T_A = +25$ °C	T _A = +85°C
D-8 ⁽¹⁾	38.3	95	1.05 W	421 mW
DGN-8 ⁽²⁾	4.7	58.4	1.71 W	685 mW

⁽¹⁾ These data were taken using the JEDEC standard low-K test PCB. For the JEDEC proposed high-K test PCB, the θ_{JA} is 95°C/W with power rating at $T_A = +25$ °C of 1.05 W.

⁽²⁾ The PowerPAD is electrically isolated from all other pins.

⁽²⁾ These data were taken using 2 oz. trace and copper pad that is soldered directly to a 3 inch × 3 inch (76,2 mm × 76,2 mm) PCB. For further information, refer to the *Application Information* section of this data sheet.

www.ti.com

RECOMMENDED OPERATING CONDITIONS

RECOMMENDED OF ERATING CONDI	110110			
		MIN	NOM MAX	UNIT
Cumply voltage	Dual supply	±5	±15	
Supply voltage	Single supply	10	30	V
On another than a sin to see a subtrue. T	Commercial	0	+70	1
Operating free-air temperature, T _A	Industrial	-40	+85	°C
Operating junction temperature, continuous operating temperature, T _J		-40	+125	
Normal storage temperature, T _{STG}		-40	+85	

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature, unless otherwise noted.

		UNIT
Supply voltage, V _S - to V _{S+}	33 V	
Input voltage, V _I		± V _S
Differential input voltage, V _{ID}		± 4 V
Output current, I _O (2)		300 mA
Continuous power dissipation		See Dissipation Ratings Table
Maximum junction temperature, T _J ⁽³⁾		+150°C
Maximum junction temperature, continuous operation, long t	+125°C	
On another than a six to see a set up. T	Commercial	0°C to +70°C
Operating free-air temperature, T _A	Industrial	-40°C to +85°C
Storage temperature, T _{stg}		-65°C to +125°C
ESD ratings:		
НВМ		900
CDM		1500
MM		200

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The THS3110 and THS3111 may incorporate a PowerPAD on the underside of the chip. This feature acts as a heatsink and must be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature which could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the PowerPAD™ thermally-enhanced package.
- (3) The absolute maximum temperature under any condition is limited by the constraints of the silicon process.
- (4) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may result in reduced reliability and/or lifetime of the device.

ELECTRICAL CHARACTERISTICS

 V_S = ±15 V, R_F = 1 k Ω, R_L = 100 $\Omega,$ and G = 2, unless otherwise noted.

				OVE	OVER TEMPERATURE			MIN/TYP/
PARAMETER	TEST CONDITIO	+25°C	+25°C	0°C to +70°C	-40°C to +85°C	UNIT	MAX	
AC PERFORMANCE								
	G = 1, $R_F = 1.5 \text{ k}\Omega$, $V_O = 200$	mV_{PP}	100					
Concil pignal banduidth 2 dD	$G = 2$, $R_F = 1 k\Omega$, $V_O = 200 m$	IV _{PP}	90				,	
Small-signal bandwidth, –3 dB	$G = 5$, $R_F = 806 \Omega$, $V_O = 200$	mV _{PP}	87				MHz	TYP
	$G = 10, R_F = 604 \Omega, V_O = 200$) mV _{PP}	66				IVITZ	ITP
0.1-dB bandwidth flatness	$G = 2$, $R_F = 1.15 \text{ k}\Omega$, $V_O = 200$	0 mV _{PP}	45					
Large-signal bandwidth	$G = 5, R_F = 806 \Omega, V_O = 4 V_F$	PP .	95					
Olani zata (OE0/ ta 750/ lana)	$G = 1$, $V_O = 4$ -V step, $R_F = 1.9$	5 kΩ	800				\// _*	TVD
Slew rate (25% to 75% level)	$G = 2$, $V_O = 8-V$ step, $R_F = 1$	kΩ	1300				V/µs	TYP
Slew rate	Recommended maximum SR repetitive signals ⁽¹⁾	for	900				V/µs	MAX
Rise and fall time	$G = -5$, $V_O = 10$ -V step, $R_F =$	806 Ω	8				ns	TYP
Settling time to 0.1%	$G = -2$, $V_O = 2$ V_{PP} step		27					7.70
Settling time to 0.01%	$G = -2$, $V_O = 2$ V_{PP} step		250				ns	TYP
Harmonic distortion					1			
		$R_L = 100 \Omega$	52					
2nd harmonic distortion	G = 2, $R_F = 1 \text{ k}\Omega$,	$R_L = 1 k\Omega$	53	-				T) (D
	$V_O = 2 V_{PP}$	$R_L = 100 \Omega$	48				dBc	TYP
3rd harmonic distortion	f = 10 MHz	$R_L = 1 k\Omega$	68	-				
Input voltage noise	f > 20 kHz	11.	3				nV/√ Hz	TYP
Noninverting input current noise	f > 20 kHz		2				pA/√ Hz	TYP
Inverting input current noise	f > 20 kHz		10				pA/√Hz	TYP
		NTSC	0.011%				-	
Differential gain	G = 2, $R_L = 150 \Omega$, $R_F = 1 k\Omega$	PAL	0.013%					
		NTSC	0.029°					TYP
Differential phase		PAL	0.033°					
DC PERFORMANCE		II.						
Transimpedance	V _O = ±3.75 V, gain = 1		1	0.75	0.5	0.5	ΜΩ	MIN
Input offset voltage			3	10	12	12	mV	MAX
Average offset voltage drift	$V_{CM} = 0 V$				±10	±10	μV/°C	TYP
Noninverting input bias current			1	4	6	6	μA	MAX
Average bias current drift	$V_{CM} = 0 V$				±10	±10	nA/°C	TYP
Inverting input bias current			1.5	15	20	20	μA	MAX
Average bias current drift	$V_{CM} = 0 V$				±10	±10	nA/°C	TYP
Input offset current			2.5	15	20	20	μA	MAX
Average offset current drift	V _{CM} = 0 V				±30	±30	nA/°C	TYP
INPUT CHARACTERISTICS								
Input common-mode voltage range			±13.3	±13	±12.5	±12.5	V	MIN
Common-mode rejection ratio	V _{CM} = ±12.5 V		68	62	60	60	dB	MIN
Noninverting input resistance	TOWN TIEST		41				ΜΩ	TYP
Noninverting input capacitance			0.4				pF	TYP
OUTPUT CHARACTERISTICS							F-	
	$R_1 = 1 k\Omega$		±13.5	±13	±12.5	±12.5		
Output voltage swing	$R_L = 100 \Omega$		±13.4	±12.5	±12	±12	V	MIN
Output current (sourcing)	$R_L = 25 \Omega$		260	200	175	175	mA	MIN
Output current (sinking)	$R_L = 25 \Omega$		260	200	175	175	mA	MIN
Output impedance	f = 1 MHz, closed loop		0.15				Ω	TYP

(1) For more information, see the *Application Information* section of this data sheet.

ELECTRICAL CHARACTERISTICS (continued)

 V_S = ±15 V, R_F = 1 k Ω , R_L = 100 Ω , and G = 2, unless otherwise noted.

		TYP	OVER TEMPERATURE				MINITIVE
PARAMETER	TEST CONDITIONS	+25°C	+25°C	0°C to +70°C	-40°C to +85°C	UNIT	MIN/TYP/ MAX
POWER SUPPLY		<u> </u>			J.		l .
Specified operating voltage		±15	±16	±16	±16	V	MAX
Maximum quiescent current		4.8	6.5	7.5	7.5	mA	MAX
Minimum quiescent current		4.8	3.8	2.5	2.5	mA	MIN
Power-supply rejection (+PSRR)	V _{S+} = 15.5 V to 14.5 V, V _{S-} = 15 V	75	65	60	60	dB	MIN
Power-supply rejection (-PSRR)	$V_{S+} = 15 \text{ V}, V_{S-} = -15.5 \text{ V} \text{ to } -14.5 \text{ V}$	69	60	55	55	dB	MIN
POWER-DOWN CHARACTERISTIC	S (THS3110 Only)						
DEE(2)		V _{S+} -4				V	MAX
REF voltage range (2)		V _{S-}				V	MIN
Davis a davis valta a a la val(2)	Enable	PD ≤ REF+ 0.8				V	MIN
Power-down voltage level ⁽²⁾	Disable	PD ≥ REF + 2				٧	MAX
Power-down quiescent current	PD ≥ REF + 2 V	270	450	500	500	μA	MAX
DD : 1:	V _{PD} = 0 V, REF = 0 V,	11					TVD
PD pin bias current	V _{PD} = 3.3 V, REF = 0 V	11				μA	TYP
Turn-on time delay	90% of final value	4					TVD
Turn-off time delay	10% of final value	6				μs	TYP
Input impedance		3.4 1.7				kΩ pF	TYP

⁽²⁾ For detailed information on the behavior of the power-down circuit, see the Saving Power with Power-Down Functionality and Power-Down Reference Pin Operation sections in the Application Information section of this data sheet.

ELECTRICAL CHARACTERISTICS

 $\rm V_S=\pm 5$ V, $\rm R_F=1.15~\Omega,~R_L=100~\Omega,$ and $\rm G=2,$ unless otherwise noted.

			TYP	OVE	R TEMPER		MIN/TYP/	
PARAMETER	TEST CON	+25°C	+25°C	0°C to +70°C	-40°C to +85°C	UNIT	MAX	
AC PERFORMANCE								
	$G = 1$, $R_F = 1.5$ kΩ,	$G = 1, R_F = 1.5 \text{ k}\Omega, V_O = 200 \text{ m}V_{PP}$						
Small-signal bandwidth, -3 dB	$G = 2$, $R_F = 1.15 \text{ k}\Omega$	$V_{O} = 200 \text{ mV}_{PP}$	78					
Small-signal bandwidth, –3 db	$G = 5, R_F = 806 \Omega,$	$V_O = 200 \text{ mV}_{PP}$	80				MHz	TYP
	$G=10,R_F=604\;\Omega$	$V_{O} = 200 \text{ mV}_{PP}$	60				IVII IZ	1115
0.1-dB bandwidth flatness	$G = 2$, $R_F = 1.15 \text{ k}\Omega$	$V_{O} = 200 \text{ mV}_{PP}$	15					
Large-signal bandwidth	G = 5, $R_F = 806 \Omega$,	$V_O = 4 V_{PP}$	80					
Slew rate (25% to 75% level)	$G = 1, V_0 = 4-V \text{ ste}$	p, $R_F = 1.5 \text{ k}\Omega$	640				V/µs	TYP
Siew rate (25% to 75% lever)	$G = 2, V_0 = 4-V \text{ ste}$	p, $R_F = 1 k\Omega$	700				ν/μδ	1115
Slew rate	Recommended max repetitive signals ⁽¹⁾	kimum SR for	900				V/µs	MAX
Rise and fall time	$G = -5$, $V_O = 5-V$ st	ep, R _F = 806 Ω	7				ns	TYP
Settling time to 0.1%	$G = -2, V_O = 2 V_{PP}$	step	20					TVD
Settling time to 0.01%	$G = -2, V_O = 2 V_{PP}$	step	200				ns	TYP
Harmonic distortion								
0.11	0.0	$R_L = 100 \Omega$	55					
2nd harmonic distortion	G = 2, $R_F = 1 k\Omega$,	$R_L = 1 k\Omega$	56				-ID-	TVD
0.11	$V_O = 2 V_{PP}$	$R_L = 100 \Omega$	45				dBc	TYP
3rd harmonic distortion	f = 10 MHz	$R_L = 1 k\Omega$	62					
Input voltage noise	f > 20 kHz	_					nV/√ Hz	TYP
Noninverting input current noise	f > 20 kHz	f > 20 kHz					pA/√ Hz	TYP
Inverting input current noise	f > 20 kHz	f > 20 kHz					pA/√Hz	TYP
		NTSC	0.011%					
Differential gain	G = 2,	PAL	0.015%					
	$R_L = 150 \Omega,$ $R_F = 1 k\Omega$	NTSC	0.020°					TYP
Differential phase	'	PAL	0.033°					
DC PERFORMANCE		•						
Transimpedance	V _O = ±1.25 V, gain :	= 1	1	0.75	0.5	0.5	ΜΩ	MIN
Input offset voltage	.,		6	10	12	12	mV	MAX
Average offset voltage drift	V _{CM} = 0 V				±10	±10	μV/°C	TYP
Noninverting input bias current	.,		1	4	6	6	μA	MAX
Average bias current drift	V _{CM} = 0 V				±10	±10	nA/°C	TYP
Inverting input bias current	.,		1	8	10	10	μA	MAX
Average bias current drift	V _{CM} = 0 V				±10	±10	nA/°C	TYP
Input offset current	.,		1	6	8	8	μA	MAX
Average offset current drift	V _{CM} = 0 V				±20	±20	nA/°C	TYP
INPUT CHARACTERISTICS								
Input common-mode voltage range			±3.2	±2.9	±2.8	±2.8	V	MIN
Common-mode rejection ratio	$V_{CM} = \pm 2.5 \text{ V}$	V _{CM} = ±2.5 V		62	58	58	dB	MIN
Noninverting input resistance							ΜΩ	TYP
Noninverting input capacitance			0.5				pF	TYP
OUTPUT CHARACTERISTICS								
Output walks are suries	$R_L = 1 k\Omega$		±4	±3.8	±3.6	±3.6		N 415 1
Output voltage swing	$R_L = 100 \Omega$		±3.8	±3.7	±3.5	±3.5	V	MIN
Output current (sourcing)	$R_L = 10 \Omega$		220	150	125	125	mA	MIN
Output current (sinking)	$R_L = 10 \Omega$		220	150	125	125	mA	MIN
Output impedance	f = 1 MHz, closed lo	юр	0.15				Ω	TYP

(1) For more information, see the *Application Information* section of this data sheet.

ELECTRICAL CHARACTERISTICS (continued)

 V_S = ±5 V, R_F = 1.15 Ω , R_L = 100 Ω , and G = 2, unless otherwise noted.

		TYP	OVE	R TEMPER		MINITYDI	
PARAMETER	TEST CONDITIONS	+25°C	+25°C	0°C to +70°C	-40°C to +85°C	UNIT	MIN/TYP/ MAX
POWER SUPPLY							
Specified operating voltage		±5	±4.5	±4.5	±4.5	V	MIN
Maximum quiescent current		4	6	7	7	mA	MAX
Minimum quiescent current		4	3.2	2	2	mA	MIN
Power-supply rejection (+PSRR)	$V_{S+} = 5.5 \text{ V to } 4.5 \text{ V}, V_{S-} = 5 \text{ V}$	71	62	57	57	dB	MIN
Power-supply rejection (–PSRR)	$V_{S+} = 5 \text{ V}, V_{S-} = -5.5 \text{ V to } -4.5 \text{ V}$	66	57	52	52	dB	MIN
POWER-DOWN CHARACTERISTICS (THS3110 Only)						
DEE(2)		V _{S+} -4				V	MAX
REF voltage range ⁽²⁾		V _{S-}				V	MIN
D	Enable	PD ≤ REF + 0.8				V	MIN
Power-down voltage level ⁽²⁾	Disable	PD≥REF +2				V	MAX
Power-down quiescent current	PD ≥ REF + 2 V	200	450	500	500	μA	MAX
DD six bigs suggest	V _{PD} = 0 V, REF = 0 V,	11					TVD
PD pin bias current	V _{PD} = 3.3 V, REF = 0 V	11				μA	TYP
Turn-on time delay	90% of final value	4					TVD
Turn-off time delay	10% of final value	6				μs	TYP
Input impedance		3.4 1.7				kΩ pF	TYP

For detailed information on the behavior of the power-down circuit, see the Power-Down and Power-down Reference sections in the Application Information section of this data sheet.

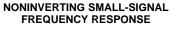

TYPICAL CHARACTERISTICS

TABLE OF GRAPHS

		FIGURE
±15-V Graphs		
Noninverting small-signal gain frequency response		1, 2
Inverting small-signal gain frequency response		3
0.1-dB flatness		4
Noninverting large-signal gain frequency response		5
Inverting large-signal gain frequency response		6
Frequency response capacitive load		7
Recommended R _{ISO}	vs Capacitive load	8
2nd harmonic distortion	vs Frequency	9
3rd harmonic distortion	vs Frequency	10
Harmonic distortion	vs Output voltage swing	11, 12
Slew rate	vs Output voltage step	13, 14, 15, 16
Noise	vs Frequency	17
Settling time		18, 19
Quiescent current	vs Supply voltage	20
Output voltage	vs Load resistance	21
Input bias and offset current	vs Case temperature	22
Input offset voltage	vs Case temperature	23
Transimpedance	vs Frequency	24
Rejection ratio	vs Frequency	25
Noninverting small-signal transient response	· · ·	26
Inverting large signal transient response		27
Overdrive recovery time		28
Differential gain	vs Number of loads	29
Differential phase	vs Number of loads	30
Closed loop output impedance	vs Frequency	31
Power-down quiescent current	vs Supply voltage	32
Turn-on and turn-off time delay	1,1,2	33
±5-V Graphs		
Noninverting small-signal gain frequency response		34
Inverting small-signal gain frequency response		35
0.1-dB flatness		36
Noninverting large-signal gain frequency response		37
Inverting large-signal gain frequency response		38
Slew rate	vs Output voltage step	39, 40, 41, 42
2nd harmonic distortion	vs Frequency	43
3rd harmonic distortion	vs Frequency	44
Harmonic distortion	vs Output voltage swing	45, 46
Noninverting small-signal transient response	1 0 2 0	47
Inverting small-signal transient response		48
Overdrive recovery time		49
Rejection ratio	vs Frequency	50

TYPICAL CHARACTERISTICS (±15 V)

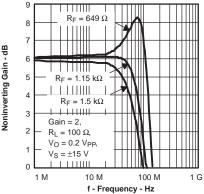


Figure 1.

NONINVERTING SMALL-SIGNAL FREQUENCY RESPONSE

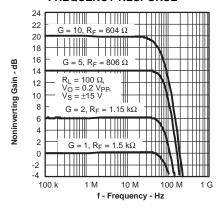


Figure 2.

INVERTING SMALL-SIGNAL FREQUENCY RESPONSE

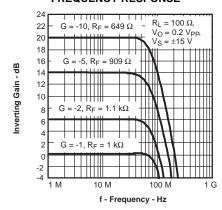


Figure 3.

0.1-dB FLATNESS

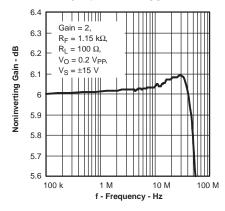


Figure 4.

NONINVERTING LARGE-SIGNAL FREQUENCY RESPONSE

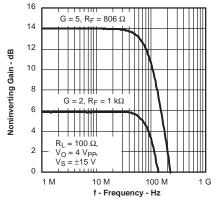


Figure 5.

INVERTING LARGE-SIGNAL FREQUENCY RESPONSE

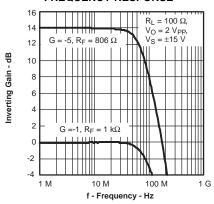


Figure 6.

FREQUENCY RESPONSE CAPACITIVE LOAD

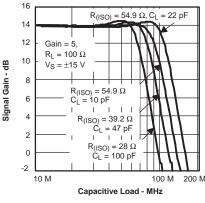


Figure 7.

RECOMMENDED R_{ISO} vs CAPACITIVE LOAD

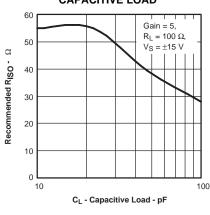


Figure 8.

2nd HARMONIC DISTORTION vs

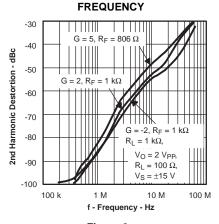
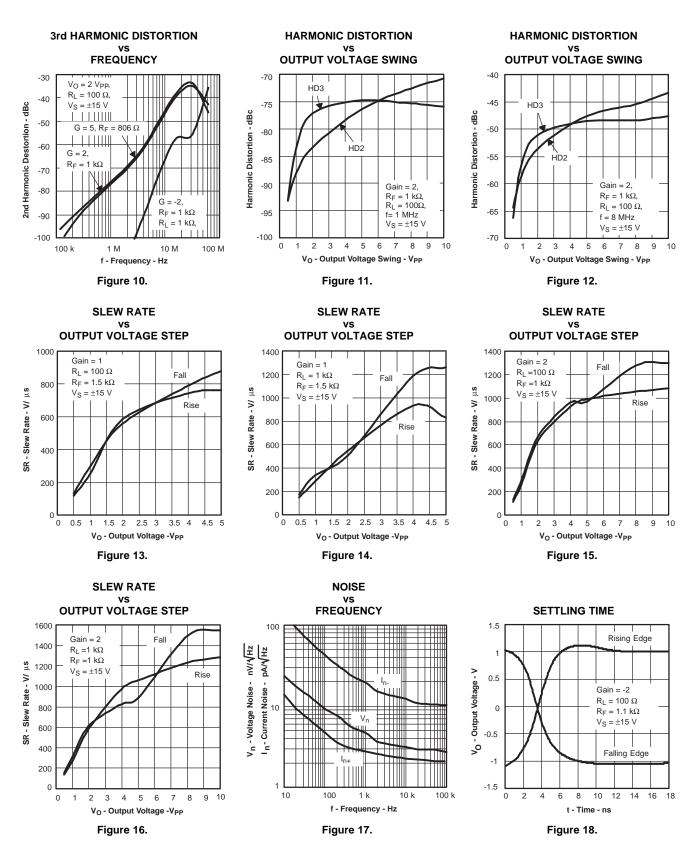
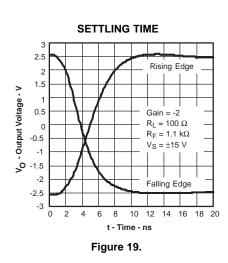
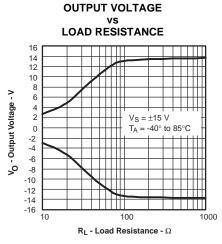




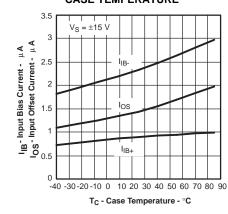
Figure 9.

QUIESCENT CURRENT VS
SUPPLY VOLTAGE

6
TA = 85 °C
TA = 25 °C
TA = -40 °C

1
0
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Vs - Supply Voltage - ±V




Figure 20.

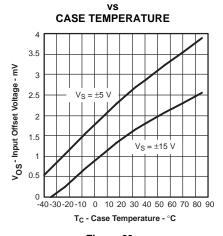

INPUT OFFSET VOLTAGE

Figure 21.

TRANSIMPEDANCE

VS FREQUENCY 110 100 90 VS = ±15 V and

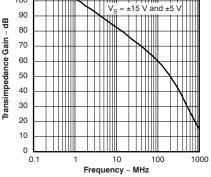
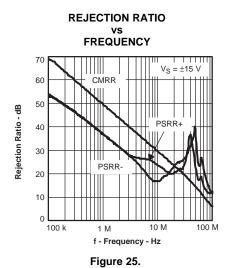



Figure 22.

Figure 23.

Figure 24.

NONINVERTING SMALL-SIGNAL TRANSIENT RESPONSE



Figure 26.

INVERTING LARGE-SIGNAL TRANSIENT RESPONSE

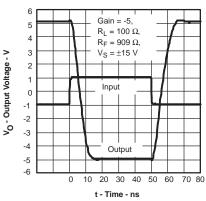


Figure 27.

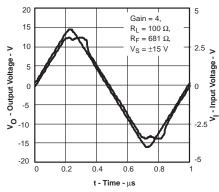


Figure 28.

DIFFERENTIAL GAIN vs NUMBER OF LOADS

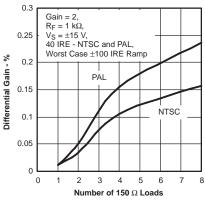


Figure 29.

DIFFERENTIAL PHASE vs NUMBER OF LOADS

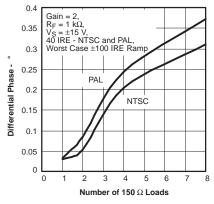
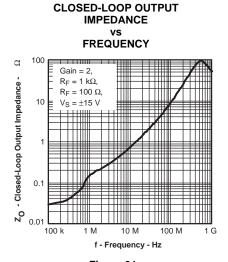
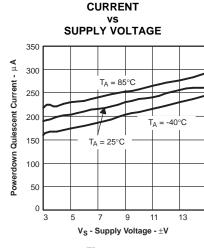




Figure 30.

POWER-DOWN QUIESCENT

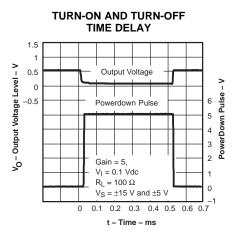


Figure 31.

Figure 32.

15

Figure 33.

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS (±5 V)

NONINVERTING SMALL-SIGNAL FREQUENCY RESPONSE

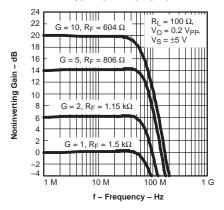


Figure 34.

INVERTING SMALL-SIGNAL FREQUENCY RESPONSE

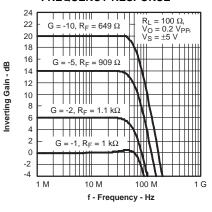


Figure 35.

0.1-dB FLATNESS

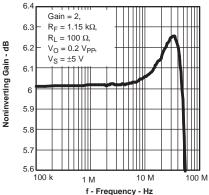


Figure 36.

NONINVERTING LARGE-SIGNAL FREQUENCY RESPONSE

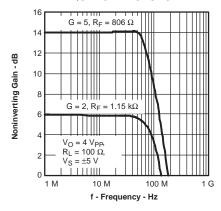


Figure 37.

INVERTING LARGE-SIGNAL FREQUENCY RESPONSE

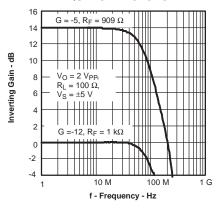


Figure 38.

SLEW RATE vs OUTPUT VOLTAGE STEP

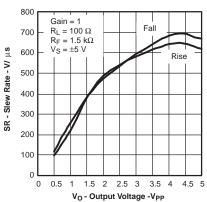


Figure 39.

SLEW RATE vs OUTPUT VOLTAGE STEP

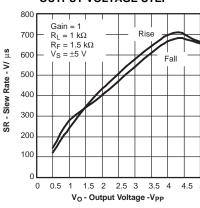


Figure 40.

SLEW RATE vs OUTPUT VOLTAGE STEP

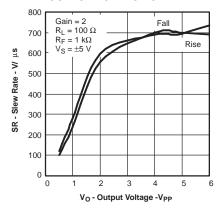


Figure 41.

SLEW RATE vs OUTPUT VOLTAGE STEP

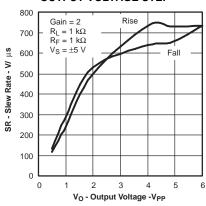
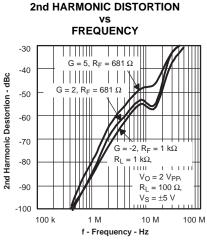
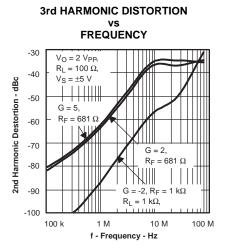




Figure 42.

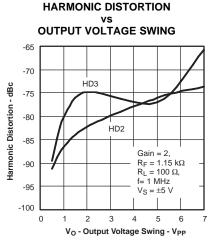
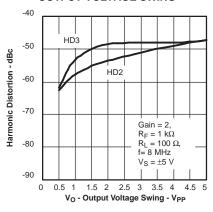



Figure 43.

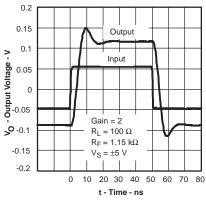

Figure 44.

Figure 45.

INVERTING LARGE-SIGNAL TRANSIENT RESPONSE

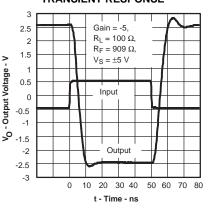
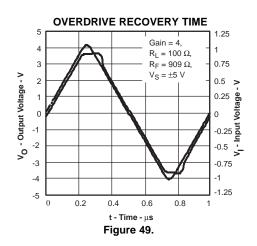
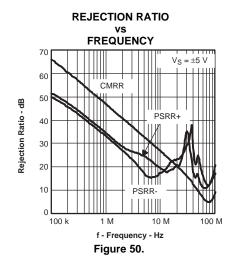




Figure 46.

Figure 47.

Figure 48.

APPLICATION INFORMATION

MAXIMUM SLEW RATE FOR REPETITIVE SIGNALS

The THS3110 and THS3111 are recommended for high slew rate pulsed applications where the internal nodes of the amplifier have time to stabilize between pulses. It is recommended to have at least 20-ns delay between pulses.

The THS3110 and THS3111 are not recommended for applications with repetitive signals (sine, square, sawtooth, or other) that exceed 900 V/ μ s. Using the part in these applications results in excessive current draw from the power supply and possible device damage.

For applications with high slew rate, repetitive signals, the THS3091 and THS3095 (single), or THS3092 and THS3096 (dual) are recommended.

WIDEBAND, NONINVERTING OPERATION

The THS3110 and THS3111 are unity-gain stable, 100-MHz, current-feedback operational amplifiers, designed to operate from a ±5-V to ±15-V power supply.

Figure 51 shows the THS3111 in a noninverting gain of 2-V/V configuration typically used to generate the performance curves. Most of the curves were characterized using signal sources with $50-\Omega$ source impedance, and with measurement equipment presenting a $50-\Omega$ load impedance.

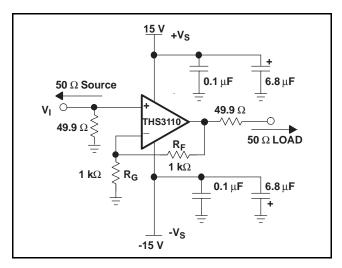


Figure 51. Wideband, Noninverting Gain Configuration

Current-feedback amplifiers are highly dependent on the feedback resistor R_{F} for maximum performance and stability. Table 1 shows the optimal gain setting resistors R_{F} and R_{G} at different gains to give maximum bandwidth with minimal peaking in the frequency response. Higher bandwidths can be achieved, at the expense of added peaking in the frequency response, by using even lower values for R_{F} . Conversely, increasing R_{F} decreases the bandwidth, but stability is improved.

Table 1. Recommended Resistor Values for Optimum Frequency Response

THS311	THS3110 AND THS3111 R_{F} AND R_{G} VALUES FOR MINIMAL PEAKING WITH R_{L} = 100 Ω						
GAIN (V/V)	SUPPLY VOLTAGE (V)	R _G (Ω)	R _F (Ω)				
4	±15	_	1.5 k				
1	±5	_	1.5 k				
2	±15	1 k	1 k				
2	±5	1.15 k	1.15 k				
-	±15	200	806				
5	±5	200	806				
10	±15	66.5	604				
10	±5	66.5	604				
-1	±15	1 k	1 k				
-1	±5	1 k	1 k				
-2	±15 and ±5	549	1.1 k				
-5	±15 and ±5	182	909				
-10	±15 and ±5	64.9	649				

WIDEBAND, INVERTING OPERATION

Figure 52 shows the THS3111 in a typical inverting gain configuration where the input and output impedances and signal gain from Figure 51 are retained in an inverting circuit configuration.

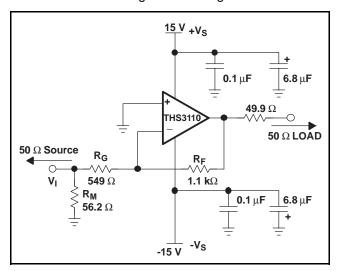


Figure 52. Wideband, Inverting Gain Configuration

SINGLE-SUPPLY OPERATION

The THS3110 and THS3111 have the capability to operate from a single-supply voltage ranging from 10 V to 30 V. When operating from a single power supply, biasing the input and output at mid-supply allows for the maximum output voltage swing. The circuits shown in Figure 53 shows inverting and noninverting amplifiers configured for single supply operations.

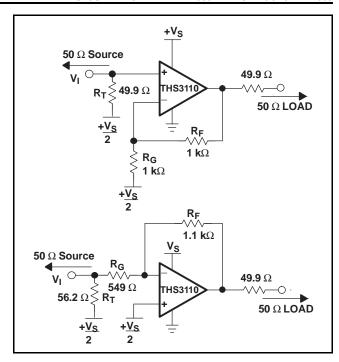


Figure 53. DC-Coupled, Single-Supply Operation

Video Distribution

The wide bandwidth, high slew rate, and high output drive current of the THS3110 and THS3111 match the demands for video distribution for delivering video signals down multiple cables. To ensure high signal quality with minimal degradation of performance, a 0.1-dB gain flatness should be at least 7x the passband frequency to minimize group delay variations from the amplifier. A high slew rate minimizes distortion of the video signal, and supports component video and RGB video signals that require fast transition times and fast settling times for high signal quality.

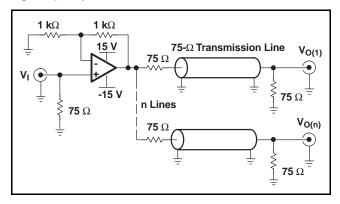


Figure 54. Video Distribution Amplifier Application

Driving Capacitive Loads

Applications such as FET drivers and line drivers can be highly capacitive and cause stability problems for high-speed amplifiers.

Figure 55 through Figure 61 show recommended methods for driving capacitive loads. The basic idea is to use a resistor or ferrite chip to isolate the phase shift at high frequency caused by the capacitive load from the amplifier feedback path. See Figure 55 for recommended resistor values versus capacitive load.

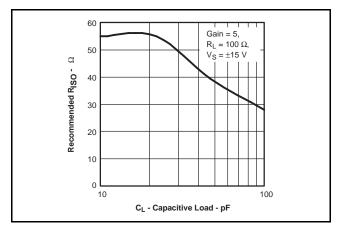


Figure 55. Recommended R_{ISO} vs Capacitive Load

Placing a small series resistor, $R_{\rm ISO}$, between the amplifier output and the capacitive load, as shown in Figure 56, is an easy way of isolating the load capacitance.

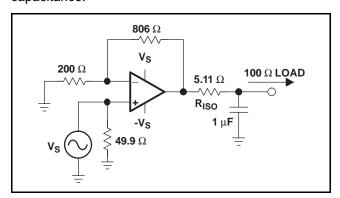


Figure 56. Resistor to Isolate Capacitive Load

Using a ferrite chip in place of $R_{\rm ISO}$, as shown in Figure 57, is another approach of isolating the output of the amplifier. The ferrite impedance characteristic versus frequency is useful to maintain the low

frequency load independence of the amplifier while isolating the phase shift caused by the capacitance at high frequency. Use a ferrite chip with similar impedance to $R_{\rm ISO},~20~\Omega$ to 50 $\Omega,$ at 100 MHz and low impedance at dc.

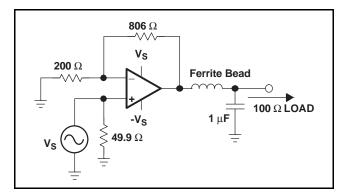


Figure 57. Ferrite Bead to Isolate Capacitive Load

Figure 58 shows another method used to maintain the low frequency load independence of the amplifier while isolating the phase shift caused by the capacitance at high frequency. At low frequency, feedback is mainly from the load side of $R_{\rm ISO}$. At high frequency, the feedback is mainly via the 27-pF capacitor. The resistor $R_{\rm IN}$ in series with the negative input is used to stabilize the amplifier and should be equal to the recommended value of $R_{\rm F}$ at unity gain. Replacing $R_{\rm IN}$ with a ferrite of similar impedance at about 100 MHz as shown in Figure 59 gives similar results with reduced dc offset and low frequency noise. (See the *Additional Reference Material* section for expanding the usability of current-feedback amplifiers.)

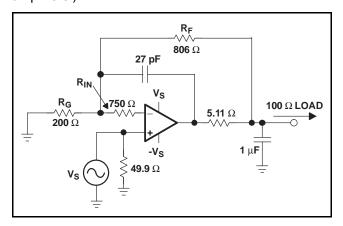


Figure 58. Feedback Technique with Input Resistor for Capacitive Load

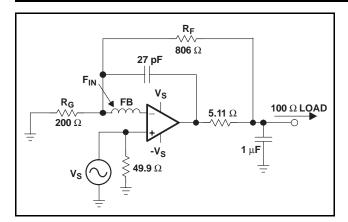


Figure 59. Feedback Technique with Input Ferrite **Bead for Capacitive Load**

Figure 60 shows how to use two amplifiers in parallel to double the output drive current to larger capacitive loads. This technique is used when more output current is needed to charge and discharge the load faster like when driving large FET transistors.

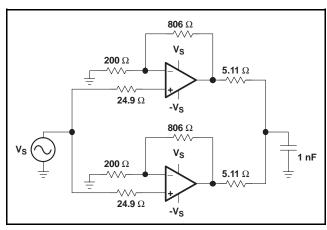


Figure 60. Parallel Amplifiers for Higher Output

Figure 61 shows a push-pull FET driver circuit typical of ultrasound applications with isolation resistors to isolate the gate capacitance from the amplifier.

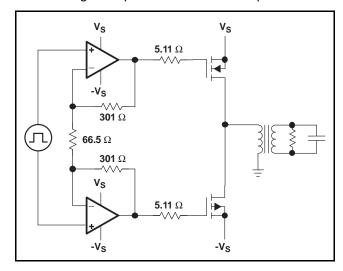


Figure 61. PowerFET Drive Circuit

SAVING POWER WITH POWER-DOWN FUNCTIONALITY AND SETTING THRESHOLD LEVELS WITH THE REFERENCE PIN

The THS3110 features a power-down pin (PD) which lowers the guiescent current from 4.8 mA down to 270 µA, ideal for reducing system power.

The power-down pin of the amplifier defaults to the REF pin voltage in the absence of an applied voltage, putting the amplifier in the normal on mode of operation. To turn off the amplifier in an effort to conserve power, the power-down pin can be driven towards the positive rail. The threshold voltages for power-on and power-down are relative to the supply rails and are given in the specification tables. Below the Enable Threshold Voltage, the device is on. Above the Disable Threshold Voltage, the device is off. Behavior in between these threshold voltages is not specified.

Note that this power-down functionality is just that: the amplifier consumes less power in power-down mode. The power-down mode is not intended to provide a high-impedance output. In other words, the power-down functionality is not intended to allow use as a 3-state bus driver. When in power-down mode, the impedance looking back into the output of the amplifier is dominated by the feedback and gain setting resistors, but the output impedance of the device itself varies depending on the voltage applied to the outputs.

Figure 62 shows the total system output impedance which includes the amplifier output impedance in parallel with the feedback plus gain resistors, which cumulate to 1870 Ω . Figure 51 shows this circuit configuration for reference.

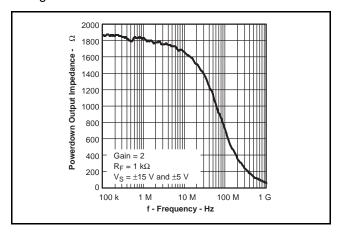


Figure 62. Power-Down Output Impedance vs Frequency

As with most current feedback amplifiers, the internal architecture places some limitations on the system when in power-down mode. Most notably is the fact that the amplifier actually turns ON if there is a ± 0.7 V or greater difference between the two input nodes (V+ and V-) of the amplifier. If this difference exceeds ± 0.7 V, the output of the amplifier creates an output voltage equal to approximately [(V+-V-)-0.7 V] × Gain. Also, if a voltage is applied to the output while in power-down mode, the V- node voltage is equal to $V_{O(applied)} \times R_G/(R_F + R_G)$. For low gain configurations and a large applied voltage at the output, the amplifier may actually turn ON due to the aforementioned behavior.

The time delays associated with turning the device on and off are specified as the time it takes for the amplifier to reach either 10% or 90% of the final output voltage. The time delays are in the order of microseconds because the amplifier moves in and out of the linear mode of operation in these transitions.

POWER-DOWN REFERENCE PIN OPERATION

In addition to the power-down pin, the THS3110 features a reference pin (REF) which allows the user to control the enable or disable power-down voltage levels applied to the PD pin. In most split-supply applications, the reference pin is connected to ground. In either case, the user needs to be aware of voltage-level thresholds that apply to the power-down pin. The tables below show examples and illustrate the relationship between the reference voltage and the power-down thresholds. In the table, the threshold levels are derived by the following equations:

PD ≤ REF + 0.8 V for enable

PD ≥ REF + 2.0 V for disable

where the usable range at the REF pin is

$$V_{S-} \le V_{REF} \le (V_{S+} - 4 \ V).$$

The recommended mode of operation is to tie the REF pin to midrail, thus setting the enable/disable thresholds to V_{midrail} + 0.8 V and V_{midrail} + 2 V respectively.

POWER-DOWN THRESHOLD VOLTAGE LEVELS						
SUPPLY VOLTAGE (V)	REFERENCE PIN VOLTAGE (V)	ENABLE LEVEL (V)	DISABLE LEVEL (V)			
±15, ±5	0.0	0.8	2.0			
±15	2.0	2.8	4			
±15	-2.0	-1.2	0			
±5	1.0	1.8	3			
±5	-1.0	-0.2	1			
+30	15	15.8	17			
+10	5.0	5.8	7			

Note that if the REF pin is left unterminated, it floats to the positive rail and falls outside of the recommended operating range given above ($V_{S-} \le V_{REF} \le V_{S+} - 4 V$). As a result, it no longer serves as a reliable reference for the PD pin and the enable/disable thresholds given above no longer apply. If the PD pin is also left unterminated, it also floats to the positive rail and the device is disabled. If balanced, split supplies are used ($\pm V_S$) and the REF and PD pins are grounded, the device is enabled.

PRINTED-CIRCUIT BOARD LAYOUT TECHNIQUES FOR OPTIMAL PERFORMANCE

Achieving optimum performance with a high-frequency amplifier, such as the THS3110 and THS3111, requires careful attention to board layout parasitic and external component types. Recommendations that optimize performance include:

- Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output and input pins can cause instability. To reduce unwanted capacitance, a window around the signal I/O pins should be opened in all of the ground and power planes around those pins. Otherwise, ground and power planes should be unbroken elsewhere on the board.
- Minimize the distance [< 0.25 inch (6,35 mm)] from the power-supply pins to high frequency 0.1-µF and 100-pF decoupling capacitors. At the device pins, the ground and power plane layout should not be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. The power-supply connections should always be decoupled with these capacitors. Larger (6.8 µF or more) tantalum decoupling capacitors, effective at lower frequency, should also be used on the main supply pins. These may be placed somewhat farther from the device and may be shared among several devices in the same area of the PC board.
- Careful selection and placement of external components preserve the high-frequency performance of the THS3110 and THS3111. Resistors should be a very low reactance type. Surface-mount resistors work best and allow a tighter overall layout. Again, keep their leads and PC board trace length as short as possible. Never use wirewound-type resistors in a high-frequency application. Because the output pin and inverting input pins are the most sensitive to parasitic capacitance, always position the feedback and series output resistors, if any, as close as possible to the inverting input pins and output pins. Other network components, such as input termination resistors, should be placed close to the gain-setting resistors. Even with a low parasitic capacitance shunting the external resistors, excessively high resistor values can create significant time constants that can degrade performance. Good axial metal-film surface-mount resistors have approximately 0.2 pF in shunt with the resistor. For resistor values greater than 2.0 kΩ, this parasitic capacitance can add a pole and/or a zero that can affect circuit operation. Keep resistor values as low as possible, consistent with load driving considerations.
- Connections to other wideband devices on the board may be made with short direct traces or through onboard transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces [0.05 inch (1,3 mm) to 0.1 inch (2,54 mm)] should be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and determine if isolation resistors on the outputs are necessary. Low parasitic capacitive loads (< 4 pF) may not need an R_S since the THS3110 and THS3111 are nominally compensated to operate with a 2-pF parasitic load. Higher parasitic capacitive loads without an R_S are allowed as the signal gain increases (increasing the unloaded phase margin). If a long trace is required, and the 6-dB signal loss intrinsic to a doubly-terminated transmission line is acceptable, implement a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A 50- Ω environment is not necessary onboard, and in fact, a higher impedance environment improves distortion as shown in the distortion versus load plots. With a characteristic board trace impedance based on board material and trace dimensions, a matching series resistor the trace from the output of the THS3110/THS3111 is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance is the parallel combination of the shunt resistor and the input impedance of the destination device: this total effective impedance should be set to match the trace impedance. If the 6-dB attenuation of doubly-terminated transmission line is unacceptable. а long trace series-terminated at the source end only. Treat the trace as a capacitive load in this case. This does not preserve signal integrity as well as a doubly-terminated line. If the input impedance of the destination device is low, there is some signal attenuation due to the voltage divider formed by the series output into the terminating impedance.
- Socketing a high-speed part like the THS3110 and THS3111 is not recommended. The additional lead length and pin-to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network which can make it almost impossible to achieve a smooth, stable frequency response. Best results are obtained by soldering the THS3110/THS3111 parts directly onto the board.

PowerPAD DESIGN CONSIDERATIONS

The THS3110 and THS3111 are available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset leadframe upon which the die is mounted (see Figure 63a and Figure 63b). This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package (see Figure 63c). Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad. Note that devices such as the THS311x have no electrical connection between the PowerPAD and the die.

The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device.

The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface mount with the, heretofore, awkward mechanical methods of heatsinking.

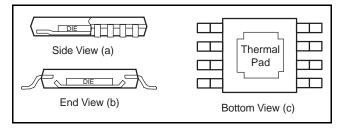
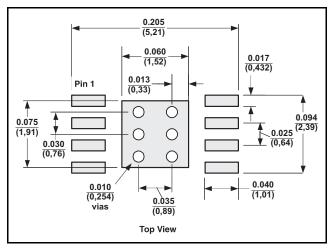



Figure 63. Views of Thermal Enhanced Package

Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommended approach.

PowerPAD LAYOUT CONSIDERATIONS

 PCB with a top side etch pattern as shown in Figure 64. There should be etch for the leads as well as etch for the thermal pad.

Dimensions are in inches (mm).

Figure 64. DGN PowerPAD PCB Etch and Via Pattern

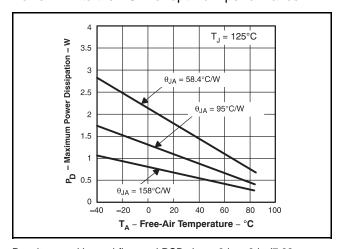
- Place five holes in the area of the thermal pad.
 These holes should be 0.01 inch (0,254 mm) in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
- 3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the THS3110/THS3111 IC. These additional vias may be larger than the 0.01-inch (0,254 mm) diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered so that wicking is not a problem.
- 4. Connect all holes to the internal ground plane. Note that the PowerPAD is electrically isolated from the silicon and all leads. Connecting the PowerPAD to any potential voltage such as V_S, is acceptable as there is no electrical connection to the silicon.
- 5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the THS3110/THS3111 PowerPAD package should make their connection to the internal ground plane with a complete connection around the

entire circumference of the plated-through hole.

- 6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes exposed. The bottom-side solder mask should cover the five holes of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the reflow process.
- 7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.
- 8. With these preparatory steps in place, the IC is simply placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed.

POWER DISSIPATION AND THERMAL CONSIDERATIONS

The THS3110 and THS3111 incorporate automatic thermal shutoff protection. This protection circuitry shuts down the amplifier if the junction temperature exceeds approximately +160°C. When the junction temperature reduces to approximately +140°C, the amplifier turns on again. But, for maximum performance and reliability, the designer must take care to ensure that the design does not exceed a junction temperature of +125°C. Between +125°C and +150°C, damage does not occur, but the performance of the amplifier begins to degrade and term reliability suffers. The characteristics of the device are dictated by the package and the PC board. Maximum power dissipation for a given package can be calculated using the following formula.


$$P_{DMax} = \frac{T_{Max} - T_{A}}{\theta_{JA}}$$
 (1)

Where:

- P_{DMax} is the maximum power dissipation in the amplifier (W)
- T_{Max} is the absolute maximum junction temperature (°C)
- T_A is the ambient temperature (°C)
- $\theta_{JA} = \theta_{JC} + \theta_{CA}$
- θ_{JC} is the thermal coefficient from the silicon junctions to the case (°C/W)
- θ_{CA} is the thermal coefficient from the case to ambient air (°C/W)

For systems where heat dissipation is more critical, the THS3110 and THS3111 are offered in an MSOP-8 with PowerPAD package offering even better thermal performance. The thermal coefficient for the PowerPAD packages are substantially improved over the traditional SOIC.

Maximum power dissipation levels are depicted in Figure 65 for the available packages. The data for the PowerPAD packages assume a board layout that follows the PowerPAD layout guidelines referenced above and detailed in the PowerPAD application note (literature number SLMA002). Figure 65 also illustrates the effect of not soldering the PowerPAD to a PCB. The thermal impedance increases substantially which may cause serious heat and performance issues. Be sure to always solder the PowerPAD to the PCB for optimum performance.

Results are with no airflow and PCB size = 3 in \times 3 in (7,62 mm \times 7,62 mm); θ_{JA} = 58.4°C/W for MSOP-8 with PowerPAD (DGN); θ_{JA} = 95°C/W for SOIC-8 High-K Test PCB (D); θ_{JA} = 158°C/W for MSOP-8 with PowerPAD, without solder.

Figure 65. Maximum Power Distribution vs Ambient Temperature

When determining whether or not the device satisfies the maximum power dissipation requirement, it is important to not only consider quiescent power dissipation, but also dynamic power dissipation. Often times, this is difficult to quantify because the signal pattern is inconsistent, but an estimate of the RMS power dissipation can provide visibility into a possible problem.

DESIGN TOOLS

Evaluation Fixtures, Spice Models, and Application Support

Texas Instruments is committed to providing its customers with the highest quality of applications support. To support this goal an evaluation board has been developed for the THS3110 and THS3111 operational amplifiers. The board is easy to use, allowing for straightforward evaluation of the device. The evaluation board can be ordered through the Texas Instruments web site, www.ti.com, or through your local Texas Instruments sales representative.

Computer simulation of circuit performance using SPICE is often useful when analyzing performance of analog circuits and systems. This is particularly true for video and RF-amplifier circuits where parasitic capacitance and inductance can have a major effect on circuit performance. A SPICE model for the THS3111 is available through the Texas Instruments web site (www.ti.com). The product information center (PIC) is also available for design assistance and detailed product information. These models do a good job of predicting small-signal ac and transient performance under a wide variety of operating conditions. They are not intended to model the distortion characteristics of the amplifier, nor do they attempt to distinguish between the package types in their small-signal ac performance. Detailed information about what is and is not modeled is contained in the model file itself.

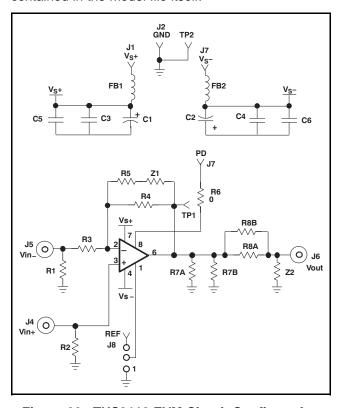


Figure 66. THS3110 EVM Circuit Configuration

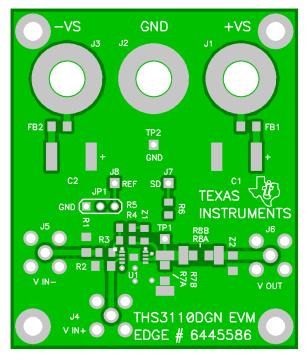


Figure 67. THS3110 EVM Board Layout (Top Layer)

NOTE: The Edge number for the THS3111 is 6445587.

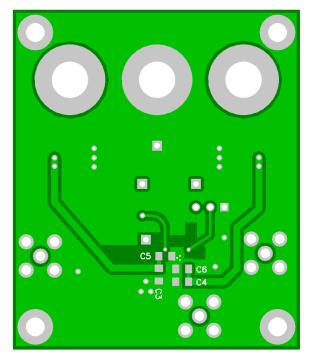


Figure 68. THS3110 EVM Board Layout (Bottom Layer)

Table 2. Bill of Materials

THS3110DGN and THS3111DGN EVM							
ITEM	DESCRIPTION	SMD SIZE	REFERENCE DESIGNATOR	PCB QTY	MANUFACTURER'S PART NUMBER ⁽¹⁾		
1	Bead, ferrite, 3 A, 80 Ω	1206	FB1, FB2	2	(Steward) HI1206N800R-00		
2	Capacitor 6.8 µF, tantalum, 35 V, 10%	D	C1, C2	2	(AVX) TAJD685K035R		
3	Open	0805	R5, Z1	2			
4	Capacitor 0.1 µF, ceramic, X7R, 50 V	0805	C3, C4	2	(AVX) 08055C104KAT2A		
5	Capacitor 100 pF, ceramic, NPO, 100 V	0805	C5, C6	2	(AVX) 08051A101JAT2A		
6	Resistor, 0 Ω, 1/8 W, 1%	0805	R6 ⁽²⁾	1	(Phycomp) 9C08052A0R00JLH		
7	Resistor, 750 Ω, 1/8 W, 1%	0805	R3, R4	2	(Phycomp) 9C08052A7500FKF		
8	Open	1206	R7A, Z2	2			
9	Resistor, 49.9 Ω, 1/4 W, 1%	1206	R2, R8A	2	(Phycomp) 9C12063A49R9FKF		
10	Resistor, 53.6 Ω, 1/4 W, 1%	1206	R1	1	(Phycomp) 9C12063A53R6FKF		
11	Open	2512	R7B, R8B	2			
12	Header, 0.1" (2,54 mm) CTRS, 0.025" (6,35 mm) SQ pins	3 Pos.	JP1 ⁽²⁾	1	(Sullins) PZC36SAAN		
13	Shunts		JP1 ⁽²⁾	1	(Sullins) SSC02SYAN		
14	Jack, banana receptance, 0.25" (6,35 mm) dia. hole		J1, J2, J3	3	(SPC) 813		
15	Test point, red		J7 ⁽²⁾ , J8 ⁽²⁾ , TP1	3	(Keystone) 5000		
16	Test point, black		TP2	1	(Keystone) 5001		
17	Connector, SMA PCB jack		J4, J5, J6	3	(Amphenol) 901-144-8RFX		
18	Standoff, 4-40 hex, 0.625" (15,875 mm) length			4	(Keystone) 1808		
19	Screw, Phillips, 4-40, 0.250" (6,35 mm)			4	SHR-0440-016-SN		
20	IC, THS3110		U1	1	(TI) THS3110DGN		
21	Board, printed-circuit (THS3110)			1	(TI) EDGE # 6445586		
22	IC, THS3111		U1	1	(TI) THS3111DGN		
23	Board, printed-circuit (THS3111)			1	(TI) EDGE # 6445587		

⁽¹⁾ Manufacturer part numbers are used for test purposes only.

ADDITIONAL REFERENCE MATERIAL

- PowerPAD Made Easy, application brief (SLMA004)
- PowerPAD Thermally-Enhanced Package, technical brief (SLMA002)
- Voltage Feedback vs Current Feedback Amplifiers, (SLVA051)
- Current Feedback Analysis and Compensation (SLOA021)
- Current Feedback Amplifiers: Review, Stability, and Application (SBOA081)
- Effect of Parasitic Capacitance in Op Amp Circuits (SLOA013)
- Expanding the Usability of Current-Feedback Amplifiers, by Randy Stephens, 3Q 2003 Analog Applications Journal www.ti.com/sc/analogapps).

⁽²⁾ Applies to the THS3110DGN EVM only.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	hanges from Revision D (May 2008) to Revision E	Page
•	Changed Power-Down Characteristics, <i>Power-down quiescent current</i> test conditions of V _S = ±15 V Electrical Characteristics	5
•	Changed Power-Down Characteristics, PD pin bias current parameter of V _S = ±15 V Electrical Characteristics	5
•	Changed Power-Down Characteristics, <i>Power-down quiescent current</i> test conditions of V _S = ±5 V Electrical Characteristics	7
•	Changed Power-Down Characteristics, <i>PD pin bias current</i> parameter of V _S = ±5 V Electrical Characteristics	
•	Added caption title to Figure 56	
•	Added caption title to Figure 57	
•	Added caption title to Figure 58	
•	Added caption title to Figure 59	
•	Added caption title to Figure 60	
•	Changed the first sentence of the second paragraph of Saving Power with Power-Down Functionality section	
Cl	hanges from Revision C (February, 2007) to Revision D Changed $V_S = \pm 15 \text{ V Transimpedance}$ specifications from 1.5 M Ω (typ) to 1 M Ω (typ); 1 M Ω (at +25°C) to 0.75 M Ω :	Page ;
	0.7 M Ω (over temperature) to 0.5 M Ω	
•	Changed $V_S = \pm 15 \text{ V}$ Input offset voltage specifications from 1.5 mV (typ) to 3 mV (typ); 6 mV (at +25°C) to 10 mV; 8 mV (over temperature) to 12 mV	
•	Changed $V_S = \pm 15 \text{ V} + PSRR$ specifications from 83 dB to 75 dB (typ); from 75 dB to 65 dB (at +25°C); from 70 dB (over temperature) to 60 dB	
•	Changed $V_S = \pm 15 \text{ V}$ – <i>PSRR</i> specifications from 78 dB to 69 dB (typ); from 70 dB to 60 dB (at +25°C); from 66 dB (over temperature) to 55 dB	
•	Changed $V_S = \pm 5 \text{ V }$ Transimpedance specifications from 1.6 M Ω (typ) to 1 M Ω (typ); 1 M Ω (at +25°C) to 0.75 M Ω ; 0.7 M Ω (over temperature) to 0.5 M Ω	6
•	Changed V _S = ±5 V <i>Input offset voltage</i> specifications from 3 mV (typ) to 6 mV (typ); 6 mV (at +25°C) to 10 mV; 8 mV (over temperature) to 12 mV	6
•	Changed $V_S = \pm 5 \text{ V} + PSRR$ specifications from 80 dB to 71 dB (typ); from 72 dB to 62 dB (at +25°C); from 67 dB (over temperature) to 57 dB	7
•	Changed V _S = ±5 V <i>-PSRR</i> specifications from 75 dB to 66 dB (typ); from 67 dB to 57 dB (at +25°C); from 62 dB (over temperature) to 52 dB	7
•	Corrected Typical Characteristic figure numbering errors from previous version	
•	Updated +15 V Transimpedance vs Frequency characteristic graph	11

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
THS3110DGN	PREVIEW	MSOP- PowerPAD	DGN	8		TBD	Call TI	Call TI	-40 to 85	, ,	
THS3110DGNR	PREVIEW	MSOP- PowerPAD	DGN	8		TBD	Call TI	Call TI	-40 to 85		
THS3110ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	31101	Samples
THS3110IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	3110I	Samples
THS3110IDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	BIR	Samples
THS3110IDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	BIR	Samples
THS3110IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	31101	Samples
THS3110IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	3110I	Samples
THS3111CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	3111C	Samples
THS3111CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	3111C	Samples
THS3111CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	BJA	Samples
THS3111CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	3111C	Samples
THS3111DGN	PREVIEW	MSOP- PowerPAD	DGN	8		TBD	Call TI	Call TI	-40 to 85		
THS3111DGNR	PREVIEW	MSOP- PowerPAD	DGN	8		TBD	Call TI	Call TI	-40 to 85		
THS3111ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	31111	Samples
THS3111IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	31111	Samples
THS3111IDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	BIS	Samples

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
THS3111IDGNG4	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BIS	Samples
THS3111IDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	BIS	Samples
THS3111IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	31111	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

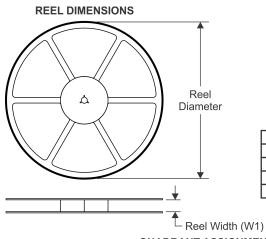
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

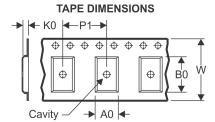
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

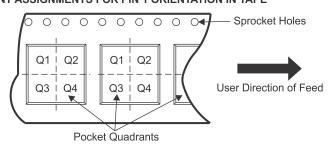
PACKAGE OPTION ADDENDUM


10-Jun-2014

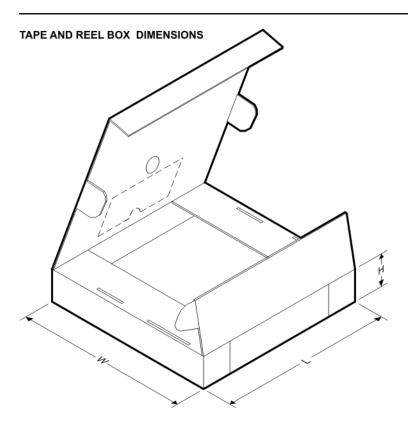

In no event shall TI's liabili	ity arising out of such information	exceed the total purchase	price of the TI part(s) at issue	in this document sold by	TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 13-Mar-2014


TAPE AND REEL INFORMATION

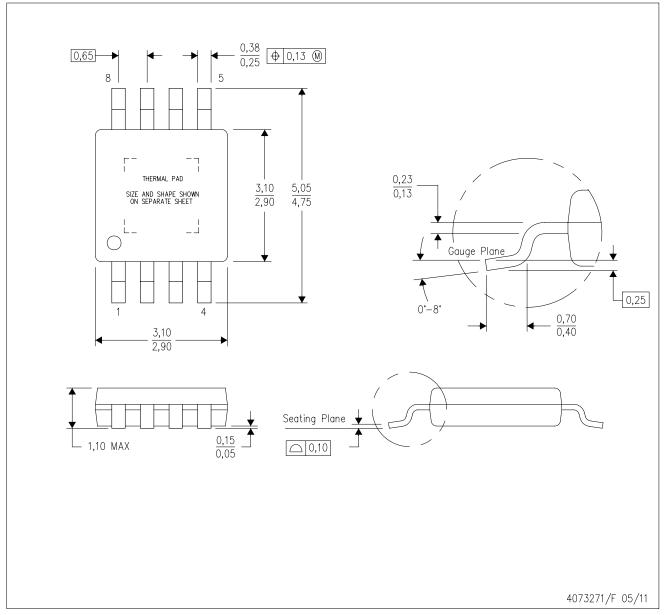
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
THS3110IDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS3110IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS3111CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS3111CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS3111IDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS3111IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 13-Mar-2014



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
THS3110IDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
THS3110IDR	SOIC	D	8	2500	367.0	367.0	35.0
THS3111CDGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
THS3111CDR	SOIC	D	8	2500	367.0	367.0	35.0
THS3111IDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
THS3111IDR	SOIC	D	8	2500	367.0	367.0	35.0

DGN (S-PDSO-G8)

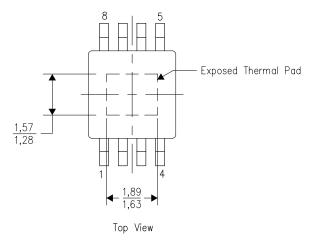
PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-187 variation AA-T

PowerPAD is a trademark of Texas Instruments.

DGN (S-PDSO-G8)


PowerPAD™ PLASTIC SMALL OUTLINE

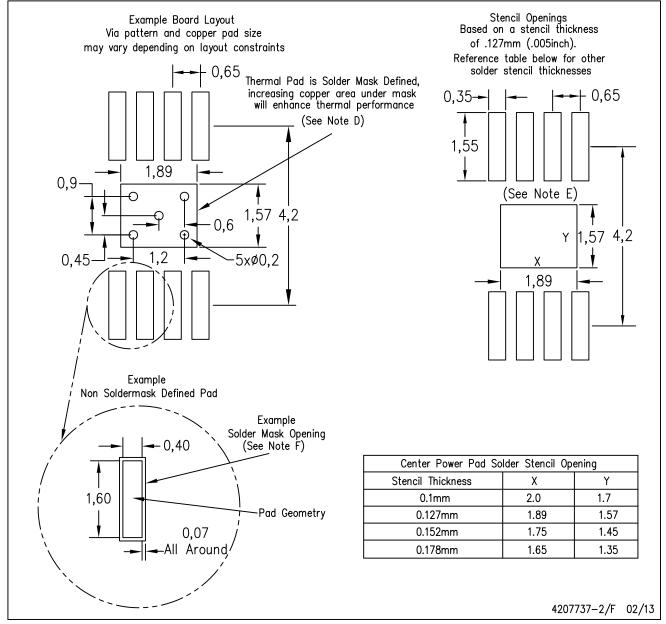
THERMAL INFORMATION

This PowerPAD $^{\text{M}}$ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

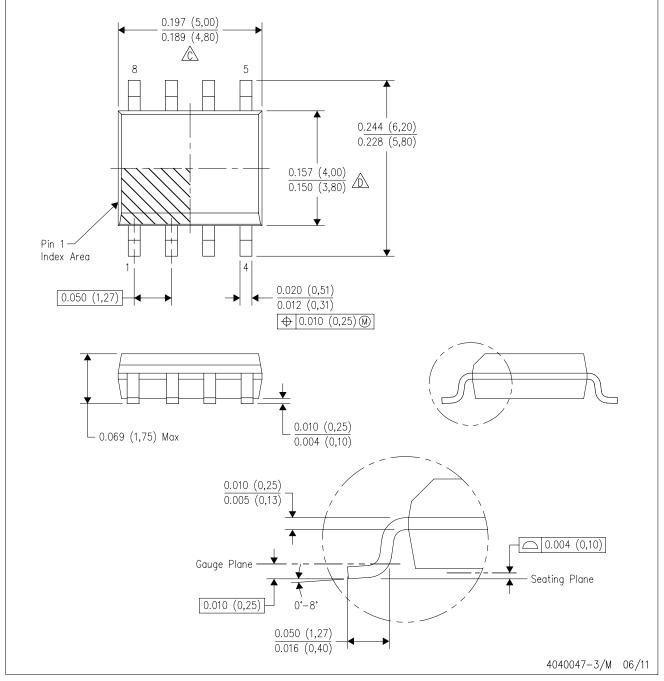

4206323-2/1 12/11

NOTE: All linear dimensions are in millimeters

DGN (R-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

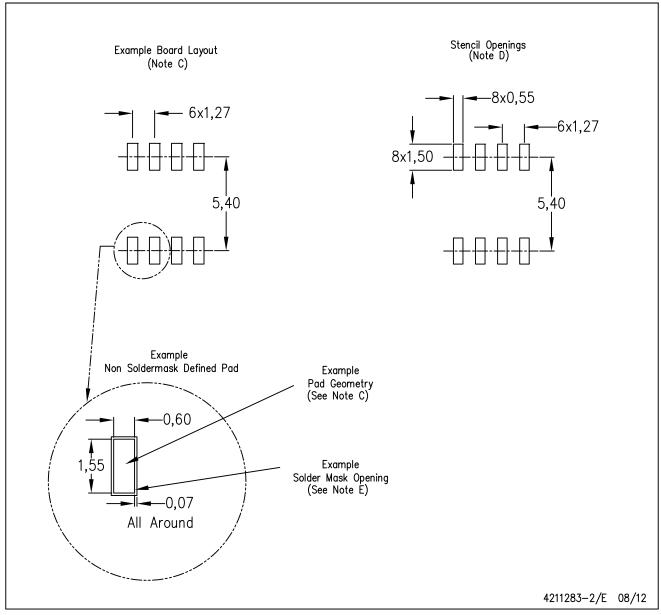
NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>