

- State-of-the-Art Advanced BiCMOS Technology (ABT) **Widebus™** Design for 2.5-V and 3.3-V Operation and Low Static Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3$ V, $T_A = 25^\circ\text{C}$
- Power Off Disables Outputs, Permitting Live Insertion
- High-Impedance State During Power Up and Power Down Prevents Driver Conflict
- Uses Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Output Ports Have Equivalent 30- Ω Series Resistors, So No External Resistors Are Required
- Auto3-State Eliminates Bus Current Loading When Output Exceeds $V_{CC} + 0.5$ V
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model; and Exceeds 1000 V Using Charged-Device Model, Robotic Method
- Flow-Through Architecture Facilitates Printed Circuit Board Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

SN54ALVTH162827 . . . WD PACKAGE
 SN74ALVTH162827 . . . DGG, DGV, OR DL PACKAGE
 (TOP VIEW)

NOTE: For order entry:

The DGG package is abbreviated to G, and
 the DGV package is abbreviated to V.

description

The 'ALVTH162827 devices are 20-bit buffers/line drivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1998, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**SN54ALVTH162827, SN74ALVTH162827
2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS**

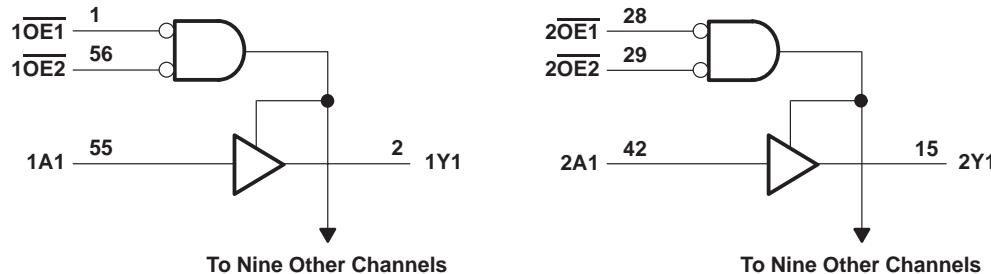
SCES079E – JULY 1996 – REVISED DECEMBER 1998

description (continued)

The devices are composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($\overline{OE1}$ and $\overline{OE2}$, or $\overline{OE1}$ and $\overline{OE2}$) inputs must be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

All outputs are designed to sink up to 12 mA, and include equivalent 30- Ω resistors to reduce overshoot and undershoot.


Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ALVTH162827 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74ALVTH162827 is characterized for operation from -40°C to 85°C .

**FUNCTION TABLE
(each 10-bit section)**

INPUTS			OUTPUT
$\overline{OE1}$	$\overline{OE2}$	A	Y
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V_{CC}	–0.5 V to 4.6 V		
Input voltage range, V_I (see Note 1)	–0.5 V to 7 V		
Voltage range applied to any output in the high-impedance or power-off state, V_O (see Note 1)	–0.5 V to 7 V		
Voltage range applied to any output in the high state, V_O (see Note 1)	–0.5 V to 7 V		
Output current in the low state, I_O : SN54ALVTH162827 SN74ALVTH162827	96 mA		
Output current in the high state, I_O : SN54ALVTH162827 SN74ALVTH162827	128 mA		
Output current in the high state, I_O : SN54ALVTH162827	–48 mA		
Output current in the high state, I_O : SN74ALVTH162827	–64 mA		
Input clamp current, I_{I_K} ($V_I < 0$)	–50 mA		
Output clamp current, I_{O_K} ($V_O < 0$)	–50 mA		
Package thermal impedance, θ_{JA} (see Note 2): DGG package DGV package	81°C/W		
DL package	86°C/W		
Storage temperature range, T_{stg}	74°C/W		
Storage temperature range, T_{stg}	–65°C to 150°C		

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (see Note 3)

		SN54ALVTH162827			SN74ALVTH162827			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
V_{CC}	Supply voltage	2.3		2.7	2.3		2.7	V
V_{IH}	High-level input voltage		1.7			1.7		V
V_{IL}	Low-level input voltage			0.7			0.7	V
V_I	Input voltage	0	V_{CC}	5.5	0	V_{CC}	5.5	V
I_{OH}	High-level output current			–6			–8	mA
I_{OL}	Low-level output current			8			12	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10			10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate			200			200	$\mu\text{s}/\text{V}$
T_A	Operating free-air temperature	–55		125	–40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

**SN54ALVTH162827, SN74ALVTH162827
2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS**

SCES079E – JULY 1996 – REVISED DECEMBER 1998

recommended operating conditions, $V_{CC} = 3.3\text{ V} \pm 0.3\text{ V}$ (see Note 3)

		SN54ALVTH162827			SN74ALVTH162827			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
V_{CC}	Supply voltage	3	3.6		3	3.6	3.6	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage		0.8			0.8	0.8	V
V_I	Input voltage	0	V_{CC}	5.5	0	V_{CC}	5.5	V
I_{OH}	High-level output current			-8			-12	mA
I_{OL}	Low-level output current			8			12	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate	200			200			$\mu\text{s}/\text{V}$
T_A	Operating free-air temperature	-55		125	-40		85	$^{\circ}\text{C}$

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range,
 $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ALVTH162827			SN74ALVTH162827			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 2.3 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = 2.3 \text{ V}$ to 2.7 V , $I_{OH} = -100 \mu\text{A}$	$V_{CC} - 0.2$			$V_{CC} - 0.2$			V
	$V_{CC} = 2.3 \text{ V}$, $I_{OH} = -6 \text{ mA}$	1.7			1.7			
V_{OL}	$V_{CC} = 2.3 \text{ V}$ to 2.7 V , $I_{OL} = 100 \mu\text{A}$			0.2			0.2	V
	$V_{CC} = 2.3 \text{ V}$, $I_{OL} = 8 \text{ mA}$			0.7				
	$V_{CC} = 2.3 \text{ V}$, $I_{OL} = 12 \text{ mA}$						0.7	
I_I	Control inputs	$V_{CC} = 2.7 \text{ V}$, $V_I = V_{CC}$ or GND		±1			±1	μA
		$V_{CC} = 0$ or 2.7 V , $V_I = 5.5 \text{ V}$		10			10	
	Data inputs	$V_I = 5.5 \text{ V}$		10			10	
		$V_I = V_{CC}$		1			1	
		$V_I = 0$		-5			-5	
I_{off}	$V_{CC} = 0$, V_I or $V_O = 0$ to 4.5 V						±100	μA
I_{BHL}^{\ddagger}	$V_{CC} = 2.3 \text{ V}$, $V_I = 0.7 \text{ V}$	415			115			μA
$I_{BHH}^{\$}$	$V_{CC} = 2.3 \text{ V}$, $V_I = 1.7 \text{ V}$		-10		-10			μA
I_{BHLO}^{\parallel}	$V_{CC} = 2.7 \text{ V}$, $V_I = 0$ to V_{CC}	300			300			μA
$I_{BHHO}^{\#}$	$V_{CC} = 2.7 \text{ V}$, $V_I = 0$ to V_{CC}	-300			-300			μA
I_{EX}^{\parallel}	$V_{CC} = 2.3 \text{ V}$, $V_O = 5.5 \text{ V}$		125		125			μA
$I_{OZ(PU/PD)}^{\star}$	$V_{CC} \leq 1.2 \text{ V}$, $V_O = 0.5 \text{ V}$ to V_{CC} , $V_I = \text{GND}$ or V_{CC} , \overline{OE} = don't care		±100		±100			μA
I_{OZH}	$V_{CC} = 2.7 \text{ V}$	$V_O = 2.3 \text{ V}$, $V_I = 0.7 \text{ V}$ or 1.7 V		5			5	μA
I_{OZL}	$V_{CC} = 2.7 \text{ V}$	$V_O = 0.5 \text{ V}$, $V_I = 0.7 \text{ V}$ or 1.7 V		-5			-5	μA
I_{CC}	$V_{CC} = 2.7 \text{ V}$, $I_O = 0$, $V_I = V_{CC}$ or GND	Outputs high	0.04	0.1	0.04	0.1		mA
		Outputs low	2.3	5	2.3	5		
		Outputs disabled	0.04	0.1	0.04	0.1		
C_I	$V_{CC} = 2.5 \text{ V}$, $V_I = 2.5 \text{ V}$ or 0		3.5		3.5			pF
C_O	$V_{CC} = 2.5 \text{ V}$, $V_O = 2.5 \text{ V}$ or 0		6		6			pF

† All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

§ The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

¶ An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least I_{BHHO} to switch this node from high to low.

|| Current into an output in the high state when $V_O > V_{CC}$

★ High-impedance state during power up or power down

**SN54ALVTH162827, SN74ALVTH162827
2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS**

SCES079E – JULY 1996 – REVISED DECEMBER 1998

**electrical characteristics over recommended operating free-air temperature range,
 $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted)**

PARAMETER	TEST CONDITIONS	SN54ALVTH162827			SN74ALVTH162827			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 3 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = 3 \text{ V}$ to 3.6 V , $I_{OH} = -100 \mu\text{A}$	$V_{CC} - 0.2$			$V_{CC} - 0.2$			V
	$V_{CC} = 3 \text{ V}$	$I_{OH} = -8 \text{ mA}$	2				2	
V_{OL}	$V_{CC} = 3 \text{ V}$ to 3.6 V , $I_{OL} = 100 \mu\text{A}$			0.2			0.2	V
	$V_{CC} = 3 \text{ V}$	$I_{OL} = 8 \text{ mA}$		0.8				
		$I_{OL} = 12 \text{ mA}$					0.8	
I_I	Control inputs	$V_{CC} = 3.6 \text{ V}$, $V_I = V_{CC}$ or GND		± 1			± 1	μA
		$V_{CC} = 0$ or 3.6 V , $V_I = 5.5 \text{ V}$		10			10	
	Data inputs	$V_I = 5.5 \text{ V}$		10			10	
		$V_I = V_{CC}$		1			1	
		$V_I = 0$		-5			-5	
I_{off}	$V_{CC} = 0$, V_I or $V_O = 0$ to 4.5 V						± 100	μA
I_{BHL}^{\ddagger}	$V_{CC} = 3 \text{ V}$, $V_I = 0.8 \text{ V}$	75		75				μA
$I_{BHH}^{\$}$	$V_{CC} = 3 \text{ V}$, $V_I = 2 \text{ V}$	-75		-75				μA
$I_{BHLO}^{\ \}$	$V_{CC} = 3.6 \text{ V}$, $V_I = 0$ to V_{CC}	500		500				μA
$I_{BHHO}^{\#}$	$V_{CC} = 3.6 \text{ V}$, $V_I = 0$ to V_{CC}	-500		-500				μA
$I_{EX}^{\ \ }$	$V_{CC} = 3 \text{ V}$, $V_O = 5.5 \text{ V}$			125			125	μA
$I_{OZ(PU/PD)}^{\star}$	$V_{CC} \leq 1.2 \text{ V}$, $V_O = 0.5 \text{ V}$ to V_{CC} , $V_I = \text{GND}$ or V_{CC} , \overline{OE} = don't care			± 100			± 100	μA
I_{OZH}	$V_{CC} = 3.6 \text{ V}$	$V_O = 3 \text{ V}$, $V_I = 0.8 \text{ V}$ or 2 V		5			5	μA
I_{OZL}	$V_{CC} = 3.6 \text{ V}$	$V_O = 0.5 \text{ V}$, $V_I = 0.8 \text{ V}$ or 2 V		-5			-5	μA
I_{CC}	$V_{CC} = 3.6 \text{ V}$, $I_O = 0$, $V_I = V_{CC}$ or GND	Outputs high	0.07	0.1	0.07	0.1		mA
		Outputs low	3.2	5.5	3.2	5.5		
		Outputs disabled	0.07	0.1	0.07	0.1		
ΔI_{CC}^{\square}	$V_{CC} = 3 \text{ V}$ to 3.6 V , One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND			0.4			0.4	mA
C_I	$V_{CC} = 3.3 \text{ V}$, $V_I = 3.3 \text{ V}$ or 0			3.5			3.5	pF
C_O	$V_{CC} = 3.3 \text{ V}$, $V_O = 3.3 \text{ V}$ or 0			6			6	pF

† All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

§ The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

|| An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least I_{BHHO} to switch this node from high to low.

|| Current into an output in the high state when $V_O > V_{CC}$

★ High-impedance state during power up or power down

□ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54ALVTH162827, SN74ALVTH162827
 2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS
 WITH 3-STATE OUTPUTS

SCES079E – JULY 1996 – REVISED DECEMBER 1998

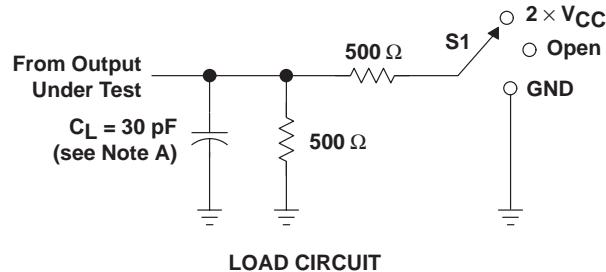
switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ALVTH162827		SN74ALVTH162827		UNIT
			MIN	MAX	MIN	MAX	
t_{PLH}	A	Y	1.7	4.1	1.7	4.1	ns
t_{PHL}			1.6	4	1.6	4	
t_{PZH}	\overline{OE}	Y	2.1	4.8	2.1	4.8	ns
t_{PZL}			1.9	4.8	1.9	4.8	
t_{PHZ}	\overline{OE}	Y	2.4	6	2.4	6	ns
t_{PLZ}			1.7	5	1.7	5	

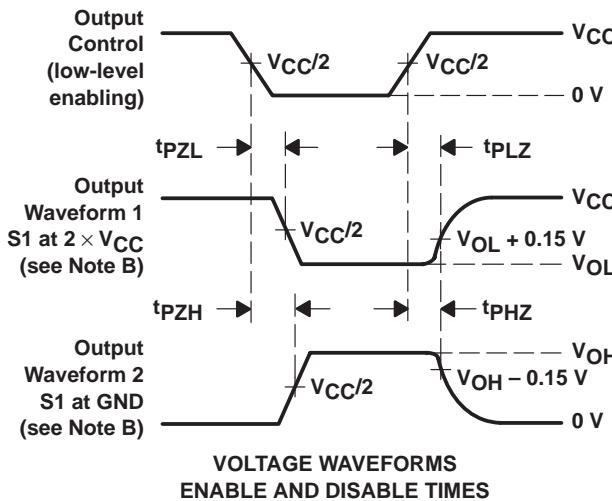
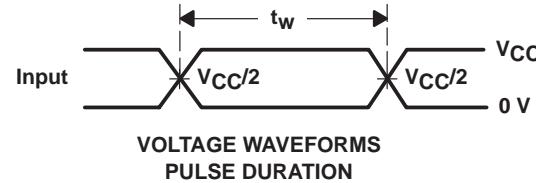
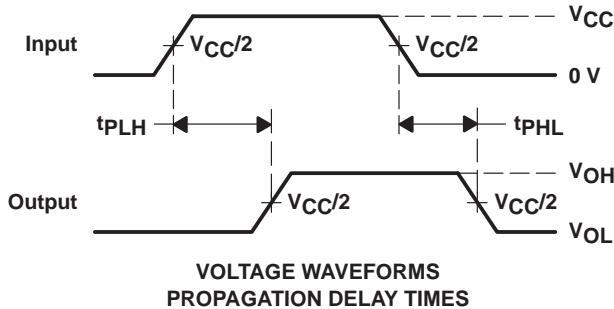
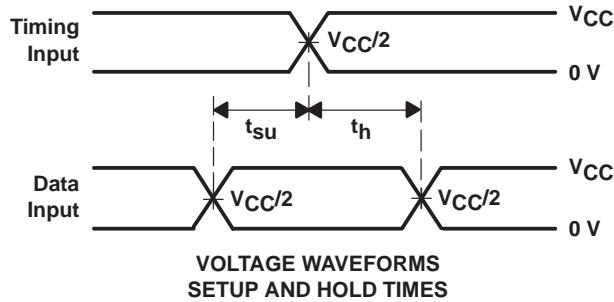
switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ALVTH162827		SN74ALVTH162827		UNIT
			MIN	MAX	MIN	MAX	
t_{PLH}	A	Y	1	3.9	1	3.9	ns
t_{PHL}			1.5	3.7	1.5	3.7	
t_{PZH}	\overline{OE}	Y	1	5.6	1	5.6	ns
t_{PZL}			1.7	4.1	1.7	4.1	
t_{PHZ}	\overline{OE}	Y	3.6	6.3	3.6	6.3	ns
t_{PLZ}			1.7	5.1	1.7	5.1	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.



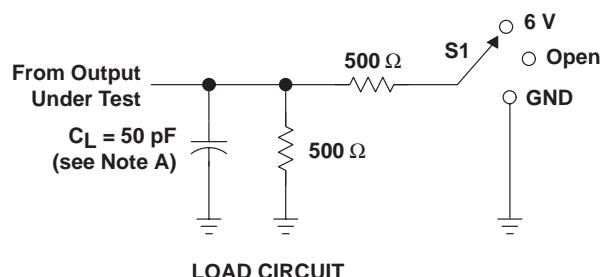
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265





**SN54ALVTH162827, SN74ALVTH162827
2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS**

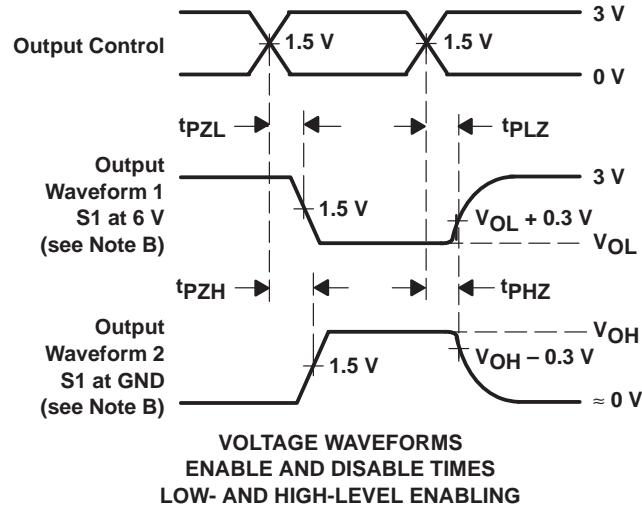
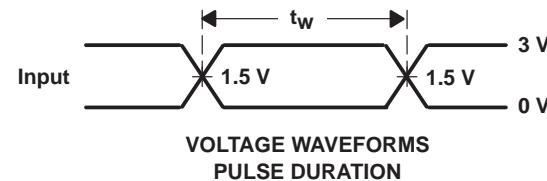
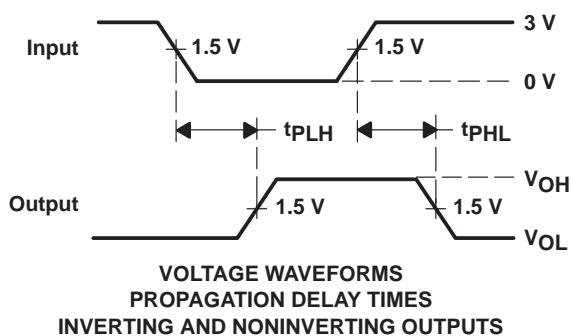
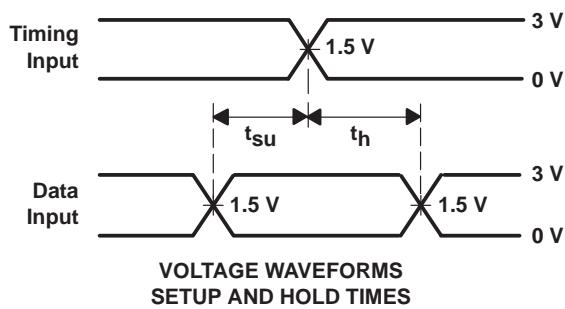
SCES079E – JULY 1996 – REVISED DECEMBER 1998

PARAMETER MEASUREMENT INFORMATION
 $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	$2 \times V_{CC}$
t_{PHZ}/t_{PZH}	GND


NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2 \text{ ns}$, $t_f \leq 2 \text{ ns}$.
- The outputs are measured one at a time with one transition per measurement.





Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	6 V
t_{PHZ}/t_{PZH}	GND

NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.
- The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ALVTH162827DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVTH162827	Samples
SN74ALVTH162827GR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVTH162827	Samples
SN74ALVTH162827VR	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	VT2827	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

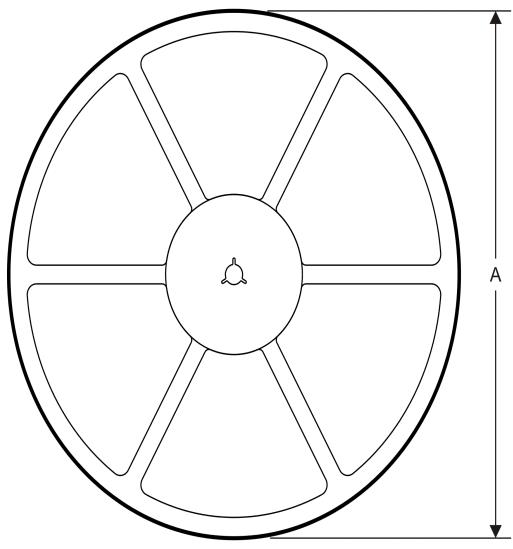
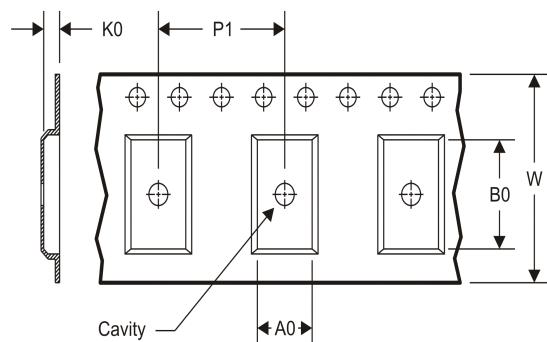
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

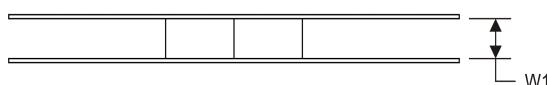
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

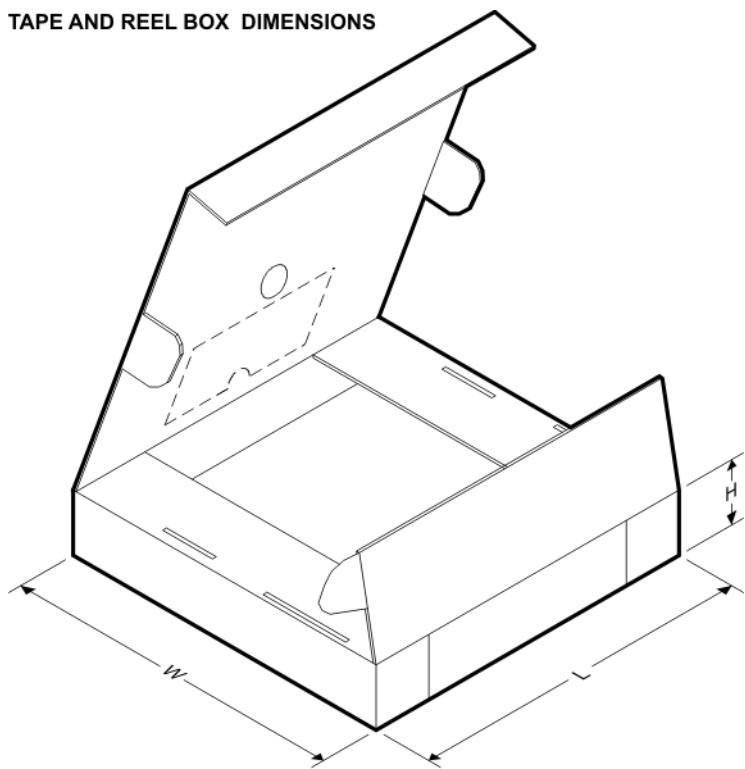


PACKAGE OPTION ADDENDUM

10-Jun-2014



continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

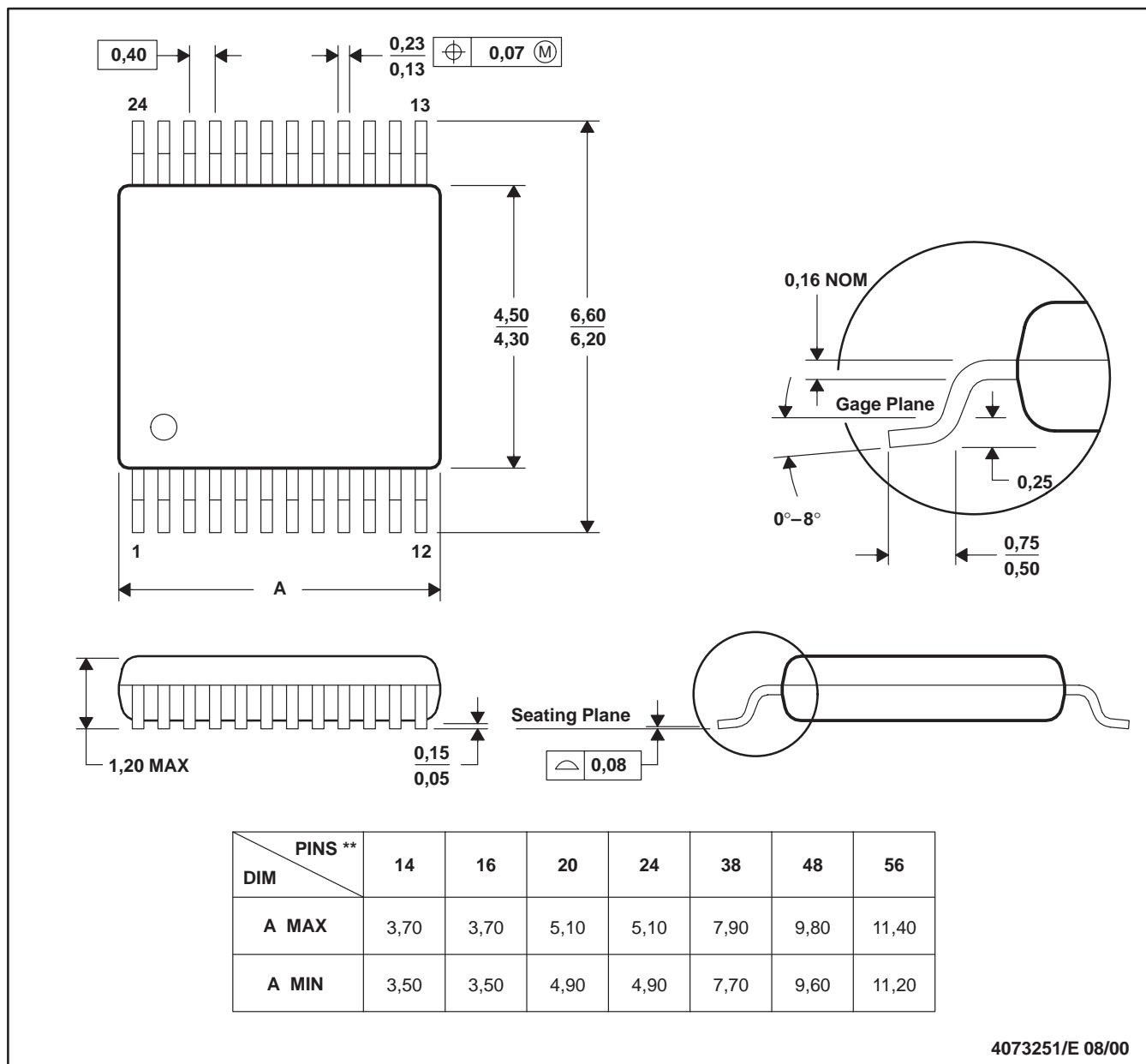
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVTH162827GR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN74ALVTH162827VR	TVSOP	DGV	56	2000	330.0	24.4	6.8	11.7	1.6	12.0	24.0	Q1

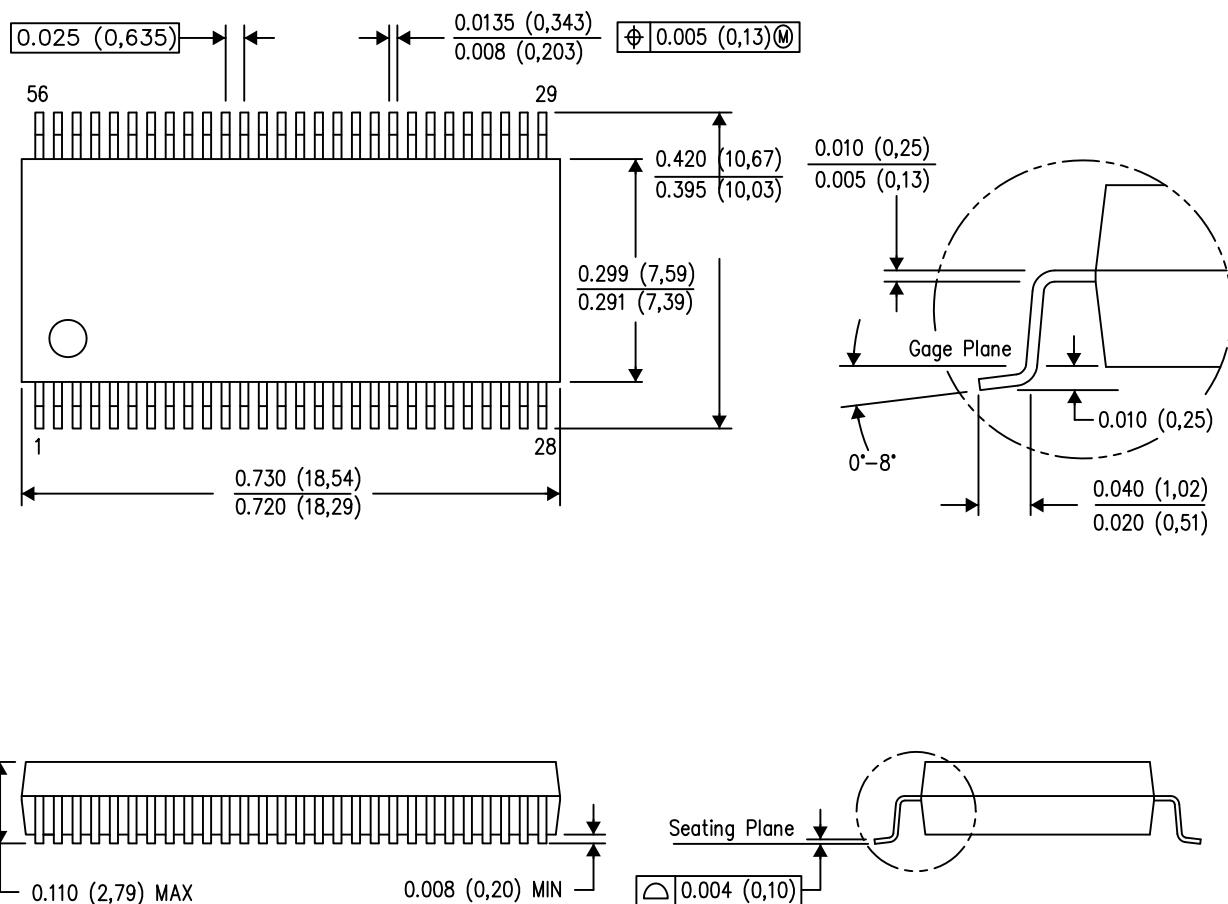
TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVTH162827GR	TSSOP	DGG	56	2000	367.0	367.0	45.0
SN74ALVTH162827VR	TVSOP	DGV	56	2000	367.0	367.0	45.0

DGV (R-PDSO-G**)

PLASTIC SMALL-OUTLINE


24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
 D. Falls within JEDEC: 24/48 Pins – MO-153
 14/16/20/56 Pins – MO-194

DL (R-PDSO-G56)

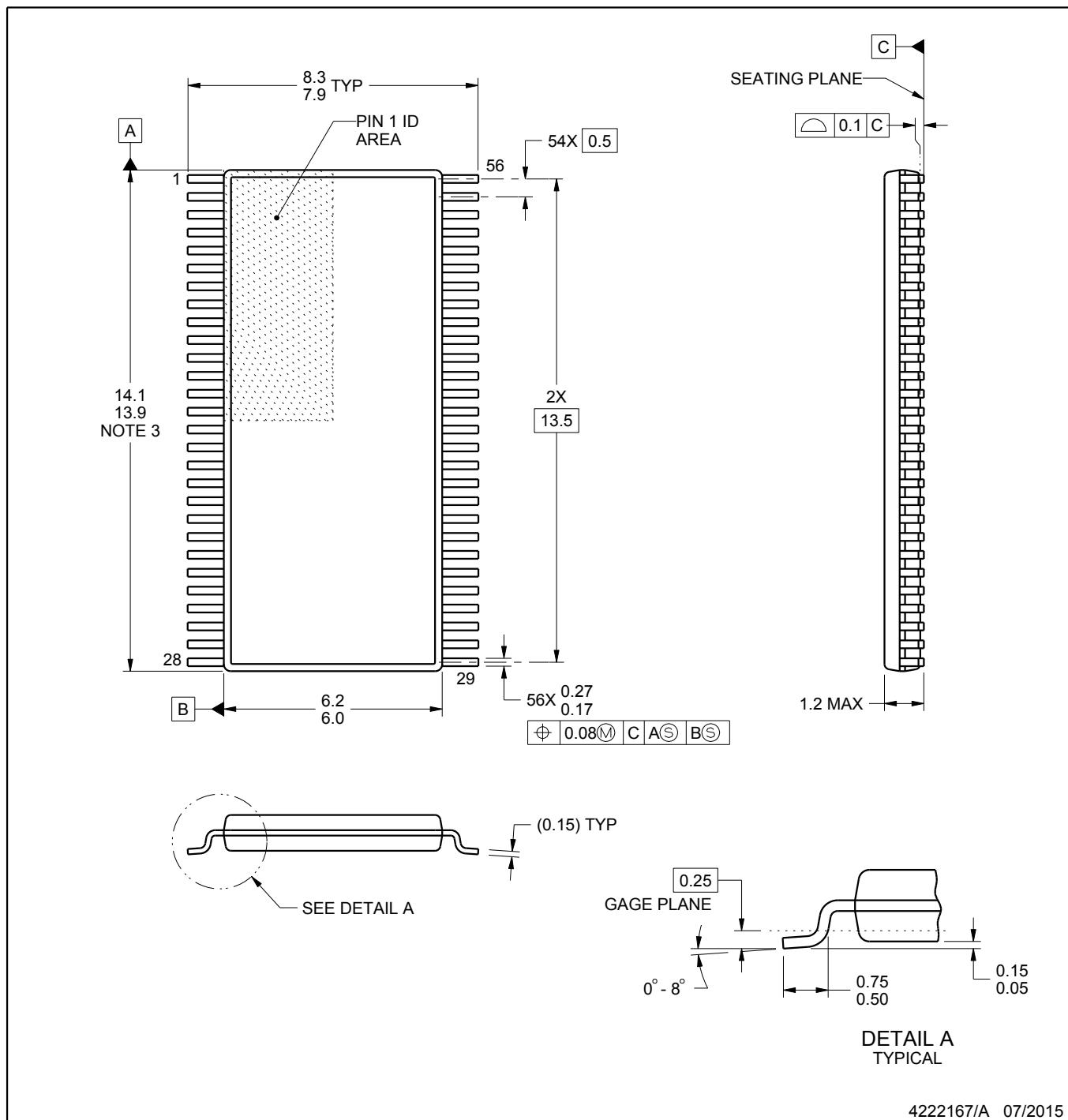
PLASTIC SMALL-OUTLINE PACKAGE

4040048-4/F 05/13

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC M0-118

PowerPAD is a trademark of Texas Instruments.

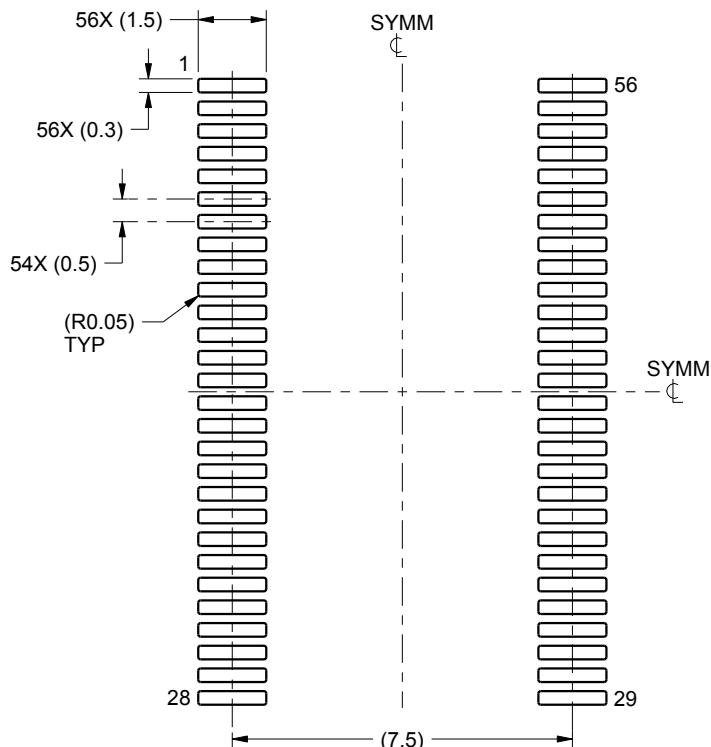

PACKAGE OUTLINE

DGG0056A

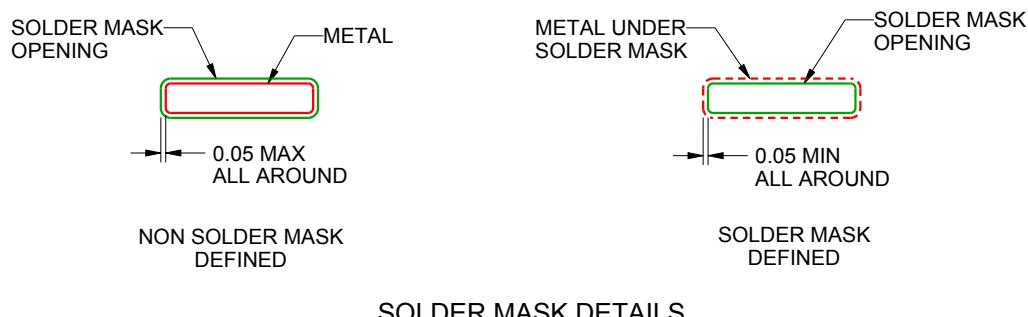
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153.

EXAMPLE BOARD LAYOUT


DGG0056A

TSSOP - 1.2 mm max height

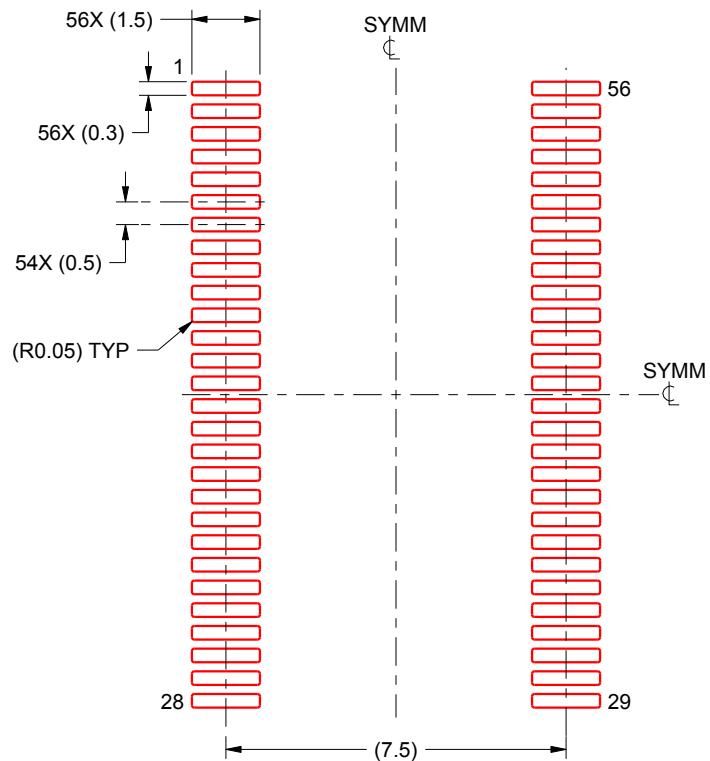
SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
SCALE:6X

SOLDER MASK DETAILS

4222167/A 07/2015

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DGG0056A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X

4222167/A 07/2015

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com