Am25LS2535

Eight-Input Multiplexer with Control Register

DISTINCTIVE CHARACTERISTICS

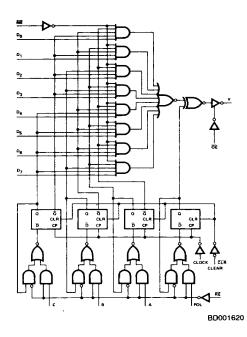
- High speed eight-input multiplexer
- On-chip Multiplexer Select and Polarity Control Register
- Output polarity control for inverting or non-inverting output
- Common register enable

- Asynchronous register clear
- Three-state output for expansion
- Am25LS features improved noise margin, higher drive, and faster operation

GENERAL DESCRIPTION

The Am25LS2535 is an eight-input Multiplexer with Control Register. The device features high speed from clock to output and is intended for use in high speed computer control units or structured state machine designs.

The Am25LS2535 contains an internal register which holds the A, B, and C multiplexer select lines as well as the POL (polarity) control bit. When the Register Enable input (RE) is LOW, new data is entered into the register on the LOW-to-HIGH transition of the clock. When RE is HIGH, the register retains its current data. An asynchronous clear input (CLR) is used to reset the register to a logic LOW level.

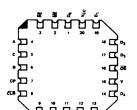

The A, B and C register outputs select one of eight multiplexer data inputs. A HIGH on the Polarity Control flip-

flop output causes a true (non-inverting) multiplexer output, and a LOW causes the output to be inverted. In a computer control unit, this allows testing of either true or complemented flag data at the microprogram sequencer test input.

An active LOW Multiplexer Enable input (ME) allows the selected multiplexer input to be passed to the output. When ME is HIGH, the output is determined only by the Polarity Control bit.

The Am25LS2535 also features a three-state Output Enable control (\overline{OE}) for expansion. When \overline{OE} is LOW, the output is enabled. When \overline{OE} is HIGH, the output is in the high impedance state.

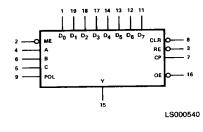
BLOCK DIAGRAM



03697B

Refer to Page 13-1 for Essential Information on Military Devices

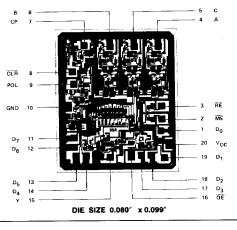
CONNECTION DIAGRAM Top View



L-20-1

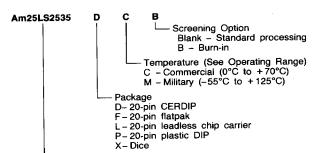
Note: Pin 1 is marked for orientation

LOGIC SYMBOL



cirate,

Device type 8-Input Multiplexer


METALLIZATION AND PAD LAYOUT

CD001920

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Combinations

PC
DC, DM
FM
LC, LM
XC, XM

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

03697B

9-114

Refer to Page 13-1 for Essential Information on Military Devices

PIN DESCRIPTION

Pin No.	Name	1/0	Description
4, 6, 5	A, B, C	0	Multiplexer Select Lines. One of eight multiplexer data inputs is selected by the A, B and C register outputs.
9	POL	0	Polarity Control Bit. A HIGH register output causes a true (non-inverted) output and a LOW causes the output to be inverted.
2	ME		Multiplexer Enable. When LOW, it enabled the 8-input multiplexer. When HIGH, the Y output is determined by only the Polarity Control bit.
3	RE		Register Enable. When LOW, the Multiplexer Select and Polarity Control Register is enabled for loading. When HIGH, the register holds its current data.
8	CLR	1 —	Clear. A LOW asynchronously resets the Multiplexer Select and Polarity Control Register.
	D ₁ -D ₈	1	Data Inputs to the 8-input multiplexer.
7	СР		Clock Pulse. When RE is LOW, the Multiplexer Select and Polarity Control Register changes state on the LOW-to-HIGH transition of CP.
16	ŌĒ	0	Output Enable. When LOW, the output is enabled. When HIGH, the output is in the high-impedance state.
15	Y	0	The chip output.

FUNCTION TABLE

	INPUTS				INTERNAL			INPUTS		OUTPUT				
MODE	С	В	A	POL	RE	CLR	СР	QC	QB	QA	QPOL	ME	ŌĒ	Y
Clear	Ĭ	Ť	*	×	×	Ļ	Ť	Ļ	ļ.	Ţ	<u></u>	H L X	LLH	Н D ₀ Z
Reg. Disable	х	Х	×	×	н	н	х	NC	NC	NC	NC	L	L	D _i /D _i (Note 1)
Select (Multiplex)			LHLHLHLH	L/H		H			L	L H L H L	L/H			D ₀ /D ₀ D ₁ /D ₁ D ₂ /D ₂ D ₃ /D ₃ D ₄ /D ₄ D ₅ /D ₅ D ₆ /D ₆ D ₇ /D ₇
Multiplexer Disable	X	×	×	x 	×	н 	×	×	×	X	H	H	L	H
Tri-state Output Disable					<u> </u>			×	×	×	х	х	н	z

NC = No Change X = Don't Care

Note 1: The output will follow the selected input, Di, or its complement depending on the state of the POL flip-flop.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
(Ambient) Temperature Under Bias55°C to +125°C
Supply Voltage to Ground Potential
Continuous0.5V to +7.0V
DC Voltage Applied to Outputs For
High Output State0.5V to +V _{CC} max
DC Input Voltage0.5V to +5.5V
DC Output Current, Into Outputs 30mA
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature	0°C to +70°C
Supply Voltage	
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	
Operating ranges define those limits	over which the function-
ality of the device is guaranteed.	

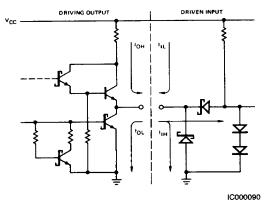
DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description	Test Conditions (Note 2)		te 2)	Min	Typ (Note 1)	Max	Units
	 	V _{CC} = MIN	MIL, I _{OH} = -2.0mA		2.4	3.4		
VOH	Output HIGH Voltage	V _{IN} = V _{IH} or V _{IL}			2.4	3.2		Volts
			I _{OL} = 4.0 mA				0.4	Volts
Vol	Output LOW Voltage	VCC = MIN	I _{OL} = 8.0mA				0.45	
V OL	Culput 2511 Tanaga	VIN = VIH or VIL	I _{OL} = 20mA				0.5	
ViH	Input HIGH Level	Guaranteed input voltage for all inp			2.0			Volts
	<u> </u>	Guaranteed input	logical LOW	MiL			0.7	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs.		COM'L			0.8	Volts
Vı	Input Clamp Voltage	V _{CC} = MIN, I _{IN} =	V _{CC} = MIN, I _{IN} = -18mA				-1.5	Volts
- 1		V _{CC} = MAX	ME, OE, RE				-0.72	mA
l _{IL}	Input LOW Current	V _{IN} = 0.4V	DN, A, B, C, POL, CP, CLR				-2.0	IIIA
		V _{CC} = MAX	ME, OE, RE				40	
lн	Input HIGH Current	V _{IN} = 2.7V	DN, A, B, C, POL, CP, CLR				50	μА
		V _{CC} = MAX	ME, OE, RE				0.1	
tj ·	Input HIGH Current	V _{IN} = 5.5V	D _N , A, B, C,	POL, CP, CLR			1.0	mA_
	0.00 (0.00 h looned)		V _O = 0.4V				- 50	
loz	Off-State (High-Impedance) Output Current	$V_{CC} = MAX$ $V_O = 2.4V$				50	μΑ	
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX			-40		-100	mA
loc	Power Supply Current (Note 4)	V _{CC} = MAX				97	148	mA

Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.
2. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. D₁-D₇, A, B, C, POL, ME, CLR at GND. All other inputs and outputs open.

Measured after a momentary ground then 4.5 V applied to clock input.

SWITCHING CHARACTERISTICS ($T_A = +25$ °C, $V_{CC} = 5.0V$)


Parameters	Description	Test Conditions	Min	Тур	Max	Units	
^t PLH				21	32		
tPHL.	Clock to Y POL - LOW	i F		19	29	ns	
tpLH				16	24		
1PHL	Clock to Y POL - HIGH	.		19	29	ns	
1PLH				10	16		
t _{PHL}	D _n to Y			13	19	ns	
1PLH		C _L = 15pF		22	33		
tphL	CLR to Y	$R_L = 2.0k\Omega$		22	33	ns	
				12	18		
tpLH	ME to Y	l t		12	18	ns	
tphL				8	14		
†ZL	1	l l		В	14	ns	
tzH	OE to Y	C _L = 5.0pF		10	17		
t _{LZ}	-	$R_L = 2.0k\Omega$		10	17	ns	
tHZ	A, B, C, POL		10	1			
ts	RE		15	<u> </u>		ns	
	ČLR Recovery	C _L = 15pF	5	<u> </u>		ns	
ts	Clock	R _L = 2.0kΩ	10				
tpw	Clear (LOW)	—	10			ns	
th	A, B, C, POL, RE		0			ns	

SWITCHING CHARACTERISTICS over operating range unless otherwise specified*

Parameters			COMM	ERCIAL	MILIT		
			Am25	LS2535	Am25l		
	Description	Test Conditions	Min	Max	Min	Max	Units
t _{PLH}				40		47	ns
t _{PHL}	Clock to Y, POL-L			34		38	115
t _{PLH}				29		33	_
tPHL	Clock to Y, POL-H			35		41	
t _{PLH}				19		21	ns
tpHL	D _N to Y	C _L = 50pF R _L = 2.0kΩ		22		24	
				39		45	ns
PLH	CLR to Y			39		45	
tPHL				22		26	ns
tPLH	ME to Y			19		20	
tphL	+			19		24	
tZL	OE to Y			22		29	
tzH		C _L = 5.0pF		24		30	
t _{LZ}	OE to Y	$R_L = 2.0k\Omega$		24		30	ns
412	A, B, C POL		11		12]
ts	RE		18		20		ns
l _s	CLR Recovery	C _L = 50pF R _L = 2.0kΩ	6		7		ns
-	Clock	HL = 2.0k32	11		12		ns
t _{pw}	Člear (LOW)		11		12		lis
th	A, B, C, POL, RE		3	I	3	<u> </u>	ns

^{*}AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

Am25LS2535 LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

RELATED PRODUCTS

Part No.	Description					
Am2922	8 Input Multiplexer					
Am2923	8 Input Multiplexer					