

October 1987 Revised February 1999

MM74HCT32 Quad 2-Input OR Gate

General Description

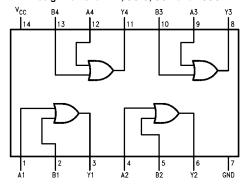
The MM74HCT32 is a logic function fabricated by using advanced silicon-gate CMOS technology, which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. This device is input and output characteristic and pin-out compatible with standard 74LS logic families. All inputs are protected from static discharge damage by internal diodes to $\rm V_{CC}$ and ground.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices.

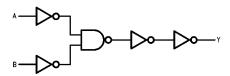
These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL, LS pin-out and threshold compatible
- Fast switching: t_{PLH}, t_{PHL} = 10 ns (typ)
- \blacksquare Low power: 10 μW at DC
- High fan-out, 10 LS-TTL loads


Ordering Code:

Order Number	Package Number	Package Description
MM74HCT32M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HCT32SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT32MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT32N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001 0.300" Wide


Devices also available in Tape and Reel. Specify by appending suffix the letter "X" to the ordering code.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP

Logic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V_{CC}) -0.5 to +7.0 V DC Input Voltage (V_{IN}) $-1.5 \text{ to } V_{CC} +1.5 \text{V}$ DC Output Voltage (V_{OUT}) $-0.5 \text{ to } V_{CC} +0.5 \text{V}$ Clamp Diode Current (I_{IK} , I_{OK}) $\pm 20 \text{ mA}$ DC Output Current, per pin (I_{OUT}) $\pm 25 \text{ mA}$ DC V_{CC} or GND Current, per pin (I_{CC}) $\pm 50 \text{ mA}$ Storage Temperature Range (T_{STG}) -65°C to $+150^{\circ}\text{C}$

Power Dissipation (P_D)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Recommended Operating Conditions

Max Units Supply Voltage (V_{CC}) 4.5 ٧ 5.5 DC Input or Output Voltage 0 ٧ (V_{IN}, V_{OUT}) V_{CC} Operating Temperature Range (T_A) ٥С -40+85 Input Rise or Fall Times (t_r, t_f)

Note 1: Absolute Maximum Ratings are those values beyond which dam-

age to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 2: Onless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –

12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

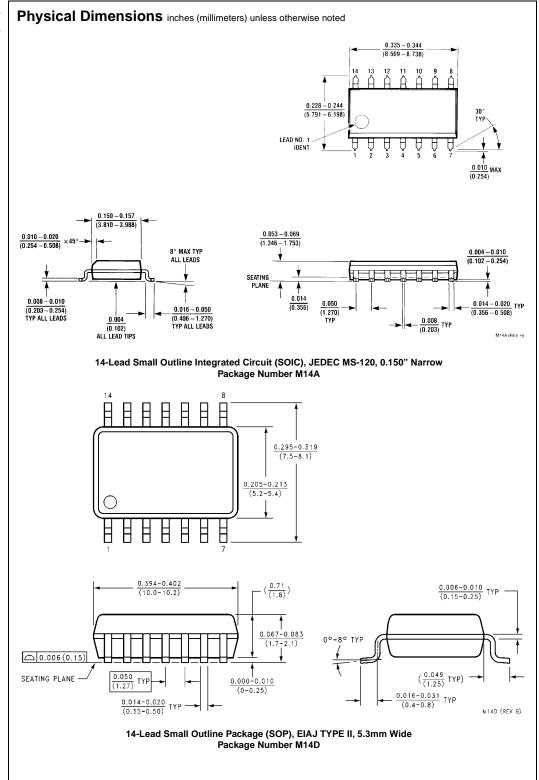
 $V_{CC} = 5V \pm 10\%$ (unless otherwise specified)

Symbol	Parameter Minimum HIGH Level	Conditions	$T_A = 25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units
Oyiliboi		Conditions	Тур	Guar	Guaranteed Limits	
V _{IH}				2.0	2.0	V
	Input Voltage					
V _{IL}	Maximum LOW Level			0.8	0.8	V
	Input Voltage					
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}				
	Output Voltage	$ I_{OUT} = 20 \mu A$	V _{CC}	$V_{CC} - 0.1$	V _{CC} - 0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$				
	Voltage	$ I_{OUT} = 20 \mu A$	0	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}		± 0.1	± 1.0	μΑ
	Current					
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND		2.0	20	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$				
		V _{IN} = 2.4V or 0.5V (Note 4)		1.2	1.4	mA

Note 4: This is measured per input with all other inputs held at V_{CC} or ground.

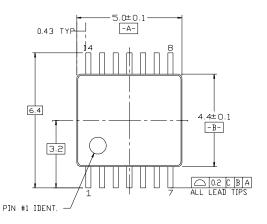
AC Electrical Characteristics

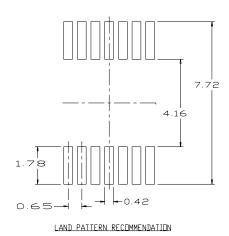
 $V_{CC} = 5.0V$, $t_r = t_f = 6$ ns, $C_L = 15$ pF, $T_A = 25C^\circ$ (unless otherwise noted)

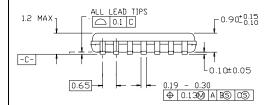

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PLH} , t _{PHL}	Maximum Propagation Delay		10		ns

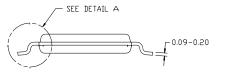
AC Electrical Characteristics

 $\rm V_{CC} = 5.0V \pm 10\%,\, t_{\rm f} = t_{\rm f} = 6$ ns, $\rm C_L = 15~pF$ (unless otherwise noted)

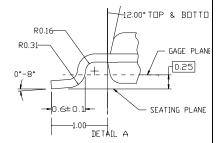

Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units
Cynibol			Тур	Gua	ranteed Limits	Julia
t _{PLH} , t _{PHL}	Maximum Propagation Delay		12	20	25	ns
t _{THL} , t _{TLH}	Maximum Output Rise & Fall Time		8	15	19	ns
C _{PD}	Power Dissipation Capacitance	(Note 5)	48			pF
C _{IN}	Input Capacitance		5	10	10	pF


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC} 2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.




Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14LD, TSSOP, JEDEC MO-153, 4.4MM WIDE



NOTES

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ABJREF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 14 13 12 11 10 9 8 INDEX AREA 0.250 ± 0.010 (6.350±0.254) PIN NO. 1 IDENT PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320(7.620 - 8.128) 0.065 0.145 - 0.200 0.060 (1.524) 4° TYP Optional (1.651) (3.683 - 5.080)95°±5° $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508)0.125 - 0.150 $\overline{(3.175 - 3.810)}$ $\overline{(1.905 \pm 0.381)}$ 0.014-0.023 TYP (7.112)-MIN $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)} \text{ TYP}$ (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)} \text{ TYP}$ $0.325 ^{\,+\,0.040}_{\,-\,0.015}$ 8.255 + 1.016N14A (REV.F)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com