

April 1988 Revised August 1999

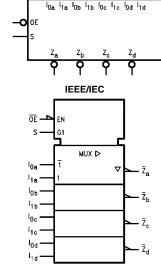
74F258A

Quad 2-Input Multiplexer with 3-STATE Outputs

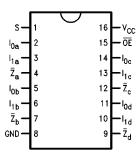
General Description

The 74F258A is a quad 2-input multiplexer with 3-STATE outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable $(\overline{\text{OE}})$ input, allowing the outputs to interface directly with bus-oriented systems.

Features


- Multiplexer expansion by tying outputs together
- Inverting 3-STATE outputs

Ordering Code:


Order Number	Package Number	Package Description
74F258ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F258ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F258APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

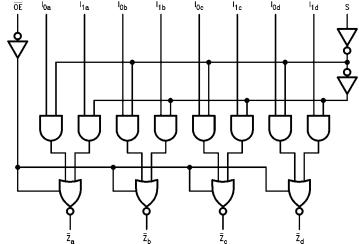
Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
S	Common Data Select Input	1.0/1.0	20 μA/-0.6 mA	
ŌĒ	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA	
$I_{0a}-I_{0d}$	Data Inputs from Source 0	1.0/1.0	20 μA/-0.6 mA	
I _{1a} –I _{1d}	Data Inputs from Source 1	1.0/1.0	20 μA/-0.6 mA	
\overline{Z}_a – \overline{Z}_d	3-STATE Inverting Data Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)	

Truth Table

	0.1	_			
Output	Select	Da	Output		
Enable	Input	Inp			
OE	S	I ₀	I ₁	Z	
Н	Х	Х	Х	Z	
L	Н	X	L	Н	
L	Н	X	Н	L	
L	L	L	X	Н	
L	L	Н	X	L	

H = HIGH Voltage Level

- L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance


Functional Description

The 74F258A is a quad 2-input multiplexer with 3-STATE outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the $\rm I_{0x}$ inputs are selected and when Select is HIGH, the $\rm I_{1x}$ inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The 74F258A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equation for the outputs is shown below:

$$\overline{Z}_n = \overline{OE} \bullet (I_{1n} \bullet S + I_{0n} \bullet \overline{S})$$

When the Output Enable input (\overline{OE}) is HIGH, the outputs are forced to a high impedance OFF state. If the outputs of the 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-STATE devices whose outputs are tied together are designed so there is no overlap.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \end{array}$

 $\begin{array}{lll} \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \end{array}$

Voltage Applied to Output in HIGH State (with V_{CC} = 0V)

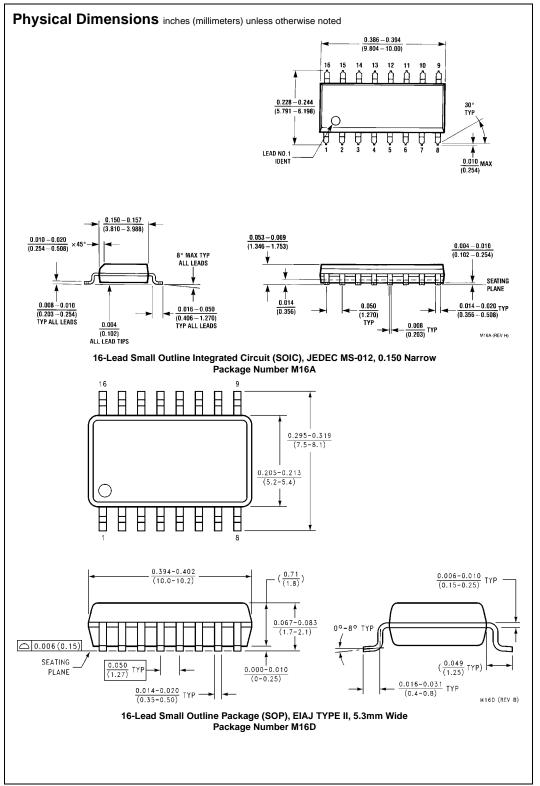
 $\begin{array}{ll} \mbox{Standard Output} & -0.5\mbox{V to V}_{\mbox{CC}} \\ \mbox{3-STATE Output} & -0.5\mbox{V to } +5.5\mbox{V} \end{array}$

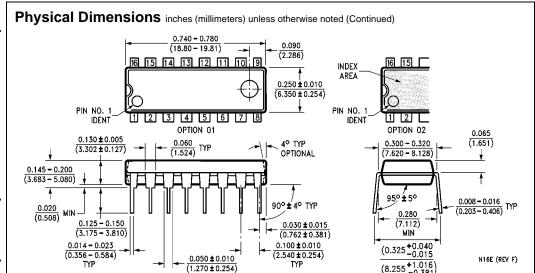
Current Applied to Output

 $\label{eq:lower_lower} \mbox{in LOW State (Max)} \qquad \mbox{twice the rated $I_{\rm OL}$ (mA)} \\ \mbox{ESD Last Passing Voltage (Min)} \qquad \mbox{4000V}$

Free Air Ambient Temperature 0° C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$
		5% V _{CC}	2.7			V	IVIII	$I_{OH} = -1 \text{ mA}$
		$5\% V_{CC}$	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OI} = 24 mA
	Voltage				0.5	V	IVIIII	10L - 24 IIIA
I _{IH}	Input HIGH				5.0	μА	Max	V _{IN} = 2.7V
	Current				0.0	μπ	IVICA	VIN - 2.7 V
I _{BVI}	Input HIGH Current				7.0	μА	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΛ	IVIAX	V _{IN} = 7.0 V
I _{CEX}	Output HIGH				50	μА	Max	V _{OLIT} = V _{CC}
	Leakage Current				30	μΛ	IVIAX	<u>1001 − 100</u>
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			V	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75		0.0	V _{IOD} = 150 mV
	Circuit Current				3.73	μА	0.0	All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = V_{CC}$
I _{CCH}	Power Supply Current			6.2	9.5	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			15.1	23	mA	Max	$V_O = LOW$
I _{CCZ}	Power Supply Current			11.3	17	mA	Max	V _O = HIGH Z

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = -5^{\circ}\text{C to } +125^{\circ}\text{C}$ $V_{CC} = 5.0\text{V}$ $C_L = 50 \text{ pF}$		$T_A = 0$ °C to +70°C $V_{CC} = 5.0V$ $C_L = 50$ pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5		5.3	2.0	7.5	2.0	6.0	
t_{PHL}	I_n to \overline{Z}_n	1.0		4.0	1.0	6.0	1.0	5.0	ns
t _{PLH}	Propagation Delay	3.0		7.5	3.0	9.5	3.0	8.5	
t_{PHL}	S to \overline{Z}_n	2.5		7.0	2.5	9.0	2.5	8.0	ns
t _{PZH}	Output Enable Time	2.0		6.0	2.0	8.0	2.0	7.0	
t_{PZL}		2.5		7.0	2.5	9.0	2.5	8.0	200
t _{PHZ}	Output Disable Time	2.0		6.0	1.5	7.0	2.0	7.0	ns
t_{PLZ}		2.0		6.0	2.0	8.5	2.0	7.0	

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.