TLCS-900 Series TMP96C141AF

CMOS 16-bit Microcontroller TMP96C141AF

1. Outline and Device Characteristics

The TMP96C141AF is high-speed advanced 16-bit microcontroller developed for controlling medium to large-scale equipment.

The TMP96C141AF is housed in an 80-pin flat package. Device characteristics are as follows:

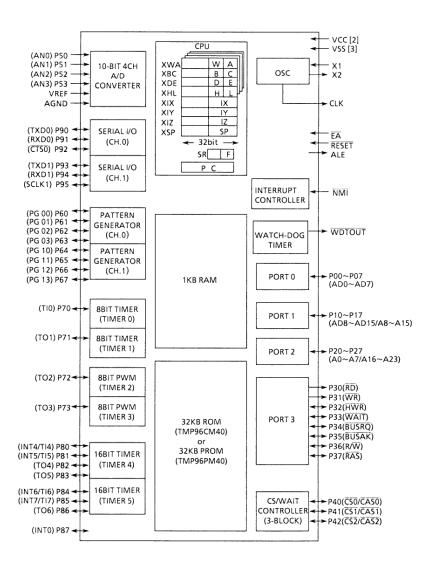
- (1) Original 16-bit CPU
- TLCS-90 instruction mnemonic upward compatible.
- 16M-byte linear address space
- General-purpose registers and register bank system
- 16-bit multiplication/division and bit transfer/arithmetic instructions
- High-speed micro DMA
 - 4 channels (1.6µs/2 bytes @ 20MHz)
- (2) Minimum instruction execution time
 - 200ns @ 20MHz
- (3) Internal RAM: 1K byte

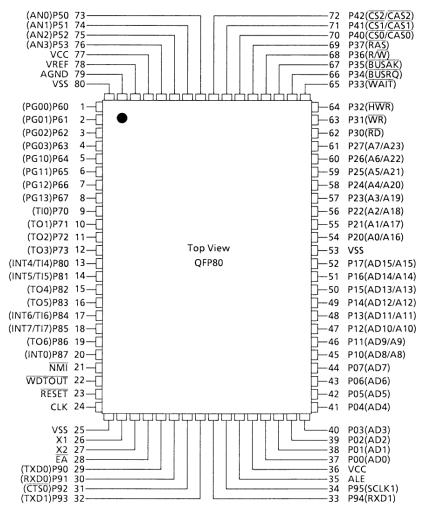
Internal ROM: None

- (4) External memory expansion
- Can be expanded up to 16M bytes (for both programs and data).
- Can mix 8- and 16-bit external data buses.
 - ...Dvnamic data bus sizing
 - 6) 8-bit timers: 2 channels
- (6) 8-bit PWM timers: 2 channels
- (7) 16-bit timers: 2 channels
- (8) Pattern generators: 4 bits, 2 channels
- (9) Serial interface: 2 channels
- (10) 10-bit A/D converter: 4 channels
- (11) Watchdog timer
- (12) Chip select/wait controller: 3 blocks
- (13) Interrupt functions
- 3 CPU interrupts·····SWI instruction, privileged violation, and Illegal instruction
- 14 internal interrupts
 6 external interrupts
 7-level priority can be set.
- (14) I/O ports
- (15) Standby function: 3 halt modes (RUN, IDLE, STOP)

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic equipments, communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.

The information contained here is subject to change without notice.




Figure 1. TMP96C141AF Block Diagram

2. Pin Assignment and Functions

2.1 Pin Assignment

The assignment of input/output pins for TMP96C141AF, their name and outline functions are described below.

Figure 2.1 shows pin assignment of TMP96C141AF.

Note : Because the TMP96C141AF has an external ROM, P00 to P17 pins are fixed to AD0 to AD15; P30 to \overline{RD} ; and P31 to \overline{WR} .

Figure 2.1 Pin Assignment (80-pin QFP)

2.2 Pin Names and Functions

The names of input/output pins and their functions are described below.

Table 2.2. Pin Names and Functions

Pin Name	Number of Pins	1/0	Functions
P00 ~ P07 AD0 ~ AD7	8	I/O Tri-state	Port 0: I/O port that allows I/O to be selected on a bit basis Address / data (lower): 0 - 7 for address / data bus
P10 ~ P17 AD8 ~ AD15 A8 ~ A15	8	I/O Tri-state Output	Port 1: I/O port that allows I/O to be selected on a bit basis Address data (upper): 8 - 15 for address / data bus Address: 8 to 15 for address bus
P20 ~ P27 A0 ~ A7 A16 ~ A23	8	I/O Output Output	Port 2: I/O port that allows selection of I/O on a bit basis (with pull-down resistor) Address: 0 - 7 for address bus Address: 16 - 23 for address bus
P30 RD	1	Output Output	Port 30: Output port Read: Strobe signal for reading external memory
P31 WR	1	Output Output	Port 31: Output port Write: Strobe signal for writing data on pins ADO -7
P32 HWR	1	I/O Output	Port 32: I/O port (with pull-up resistor) High write: Strobe signal for writing data on pins AD8 - 15
P33 WAIT	1	I/O Input	Port 33: I/O port (with pull-up resistor) Wait: Pin used to request CPU bus wait
P34 BUSRQ	1	I/O Input	Port 34: I/O port (with pull-up resistor) Bus request: Signal used to request high impedance for ADO - 15, AO - 23, RD, WR, HWR, R/W, RAS, CSO, CS1, and CS2 pins. (For external DMAC)
P35 BUSAK	1	I/O Output	Port 35: I/O (with pull-up resistor) Bus acknowledge: Signal indicating that ADO - 15, AO - 23, RD, WR, HWR, R/W, RAS, CSO, CS1, and CS2 pins are at high impedance after receiving BUSRQ. (For external DMAC)
P36 R/W	1	I/O Output	Port 36: I/O port (with pull-up resistor) Read/write: 1 represents read or dummy cycle; 0, write cycle.
P37 RAS	1	I/O Output	Port 37: I/O port (with pull-up resistor) Row address strobe: Outputs RAS strobe for DRAM.
P40 CS0 CAS0	1	I/O Output Output	Port 40: I/O port (with pull-up resistor) Chip select 0: Outputs 0 when address is within specified address area. Column address strobe 0: Outputs CAS strobe for DRAM when address is within specified address area.

Note: With the external DMA controller, this device's built-in memory or built-in I/O cannot be accessed using the BUSRQ and BUSAK pins.

4

Pin Name	Number of Pins	I/O	Functions
P41 CS1 CAS1	1	I/O Output Output	Port 41: I/O port (with pull-up resistor) Chip select 1: Outputs 0 if address is within specified address area. Column address strobe 1: Outputs CAS strobe for DRAM if address is within specified address area.
P42 CS2 CAS2	1	I/O Output Output	Port 42: I/O port (with pull-up resistor) Chip select 2: Outputs 0 if address is within specified address area. Column address strobe 2: Outputs CAS strobe for DRAM if address is within specified address area.
P50 ~ P53 AN0 ~ AN3	4	Input Input	Port 5: Input port Analog input: Input to A/D converter
VREF	1	Input	Pin for reference voltage input to A/D converter
AGND	1	Input	Ground pin for A/D converter
P60 ~ P63 PG00 ~ PG03	4	I/O Output	Ports 60 - 63: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor) Pattern generator ports: 00 - 03
P64 ~ P67 PG10 ~ PG13	4	I/O Output	Ports 64 - 67: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor) Pattern generator ports: 10 - 13
P70 T10	1	I/O Input	Port 70: I/O port (with pull-up resistor) Timer input 0: Timer 0 input
P71 T01	1	I/O Output	Port 71: I/O port (with pull-up resistor) Timer output 1: Timer 0 or 1 output
P72 T02	1	I/O Output	Port 72: I/O port (with pull-up resistor) PWM output 2: 8-bit PWM timer 2 output
P73 T03	1	I/O Output	Port 73: I/O port (with pull-up resistor) PWM output 3: 8-bit PWM timer 3 output
P80 TI4 INT4	1	I/O Input Input	Port 80: I/O port (with pull-up resistor) Timer input 4: Timer 4 count/capture trigger signal input Interrupt request pin 4: Interrupt request pin with programmable rising/falling edge
P81 TI5 INT5	1	I/O Input Input	Port 81: I/O port (with pull-up resistor) Timer input 5: Timer 4 count/capture trigger signal input Interrupt request pin 5: Interrupt request pin with rising edge
P82 T04	1	I/O Output	Port 82: I/O port (with pull-up resistor) Timer output 4: Timer 4 output pin
P83 T05	1	I/O Output	Port 83: I/O port (with pull-up resistor) Timer output 5: Timer 4 output pin

Pin Name	Number of Pins	I/O	Functions
P84 TI6 INT6	1	I/O Input Input	Port 84: I/O port (with pull-up resistor) Timer input 6: Timer 5 count/capture trigger signal input Interrupt request pin 6: Interrupt request pin with programmable rising/falling edge
P85 T17 INT7	1	I/O Input Input	Port 85: I/O port (with pull-up resistor) Timer input 7: Timer 5 count/capture trigger signal input Interrupt request pin 7: Interrupt request pin with rising edge
P86 T06	1	I/O Output	Port 86: I/O port (with pull-up resistor) Timer output 6: Timer 5 output pin
P87 INT0	1	I/O Input	Port 87: I/O port (with pull-up resistor) Interrupt request pin 0: Interrupt request pin with programmable level/rising edge
P90 TXD0	1	I/O Output	Port 90: I/O port (with pull-up resistor) Serial send data 0
P91 RXD0	1	I/O Input	Port 91: I/O port (with pull-up resistor) Serial receive data 0
P92 CTS0	1	I/O Input	Port 92: I/O port (with pull-up resistor) Serial data send enable 0 (Clear to Send)
P93 TXD1	1	I/O Output	Port 93: I/O port (with pull-up resistor) Serial send data 1
P94 RXD1	1	I/O Input	Port 94: I/O port (with pull-up resistor) Serial receive data 1
P95 SCLK1	1	I/0 I/0	Port 95: I/O port (with pull-up resistor) Serial clock I/O 1
WDTOUT	1	Output	Watchdog timer output pin
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at rising edge by program.
CLK	1	Output	Clock output: Outputs [X1 ÷ 4] clock. Pulled-up during reset.
EA	1	Input	External access: 0 should be inputted with TMP96C141AF 1, with TMP96CM40F/TMP96PM40F.
ALE	1	Output	Address latch enable
RESET	1	Input	Reset: Initializes LSI. (With pull-up resistor)
X1/X2	2	1/0	Oscillator connecting pin
VCC	2		Power supply pin (+ 5V)
VSS	3		GND pin (0V)

Note: Pull-up/pull-down resistor can be released from the pin by software.

3. Operation

This section describes in blocks the functions and basic operations of the TMP96C141AF device.

Check the chapter Guidelines and Restrictions for proper care of the device.

3.1 CPU

The TMP96C141AF device has a built-in high-performance 16-bit CPU. (For CPU operation, see TLCS-900 CPU in the book Core Manual Architecture User Manual.)

This section describes CPU functions unique to TMP96C141AF that are not described in that manual.

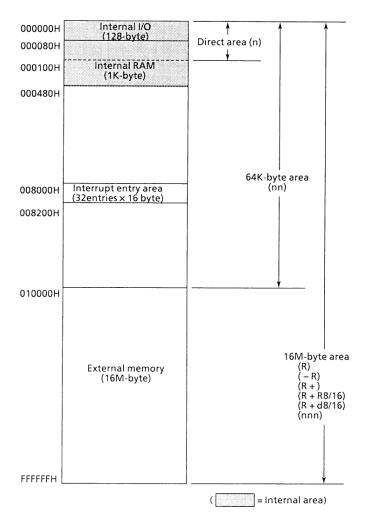
3.1.1 Reset

To reset the TMP96C141AF, the $\overline{\text{RESET}}$ input must be kept at 0 for at least 10 system clocks (10 states: 1 μ s with a 20MHz system clock) within an operating voltage range and with a stable oscillation.

When reset is accepted, the CPU sets as follows:

• Program counter (PC) to 8000H.

- Stack pointer (XSP) for system mode to 100H.
- SYSM bit of status register (SR) to 1. (Sets to system mode.)
- IFF2 to 0 bits of status register to 111. (Sets mask register to interrupt level 7.)
- MAX bit of status register to 0. (Sets to minimum mode.)
- Bits RFP2 to 0 of status register to 000. (Sets register banks to 0.)


When reset is released, instruction execution starts from address 8000H. CPU internal registers other than the above are not changed.

When reset is accepted, processing for built-in I/Os, ports, and other pins is as follows:

- Initializes built-in I/O registers as per specifications.
- Sets port pins (including pins also used as built-in I/Os) to general-purpose input/output port mode (sets I/O ports to input ports).
- Sets the WDTOUT pin to 0. (Watchdog timer is set to enable after reset.)
- Pulls up the CLK pin to 1.
- Sets the ALE pin to 0.

3.2 Memory Map

Figure 3.2 is a memory map of the TMP96C141AF.

Note: The start address after reset is 8000H. Resetting sets the stack pointer (XSP) on the system mode side to $100 \mathrm{H}.$

Figure 3.2 Memory Map

8

3.3 Interrupts

The TLCS-900 interrupts are controlled by the CPU interrupt mask flip-flop (IFF2 to 0) and the built-in interrupt controller.

The TMP96C141AF have altogether the following 23 interrupt sources:

A fixed individual interrupt vector number is assigned to each interrupt source; six levels of priority (variable) can also be assigned to each maskable interrupt. Non-maskable interrupts have a fixed priority of 7.

When an interrupt is generated, the interrupt controller

- Interrupts from the CPU···3 (Software interrupts, privileged violations, and Illegal (undefined) instruction execution)
- Interrupts from external pins (NMI, INTO, and INT4 to 7)...6
- Interrupts from built-in I/Os…14

sends the value of the priority of the interrupt source to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the value of the highest priority (7 for non-maskable interrupts is the highest) to the CPU.

The CPU compares the value of the priority sent with the value in the CPU interrupt mask register (IFF2 to 0). If the value is greater than that of the CPU interrupt mask register, the interrupt is accepted. The value in the CPU interrupt mask register (IFF2 to 0) can be changed using the EI instruction (contents of the EI num/IFF<2:0> = num). For example, programming EI 3 enables acceptance of maskable interrupts with a priority of 3 or greater, and non-maskable interrupts which are set in the interrupt controller. The DI instruction

(IFF<2:0> = 7) operates in the same way as the El 7 instruction. Since the priority values for maskable interrupts are 0 to 6, the DI instruction is used to disable maskable interrupts to be accepted. The El instruction becomes effective immediately after execution. (With the TLCS-90, the El instruction becomes effective after execution of the subsequent instruction.)

In addition to the general-purpose interrupt processing mode described above, there is also a high-speed micro DMA processing mode. High-speed micro DMA is a mode used by the CPU to automatically transfer byte or word data. It enables the CPU to process interrupts such as data saves to built-in I/Os at high speed.

Figure 3.3 (1) is a flowchart showing overall interrupt processing.

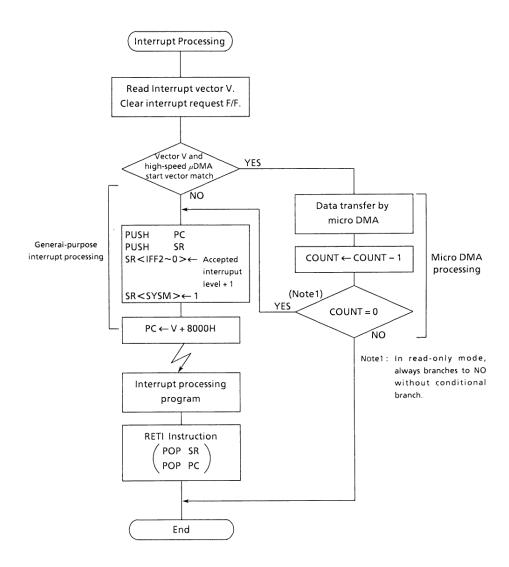


Figure 3.3 (1) Interrupt Processing Flowchart

3.3.1 General-Purpose Interrupt Processing

When accepting an interrupt, the CPU operates as follows:

- (1) The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same level is generated simultaneously, the interrupt controller generates interrupt vectors in accordance with the default priority (which is fixed as follows: the smaller the vector value, the higher the priority), then clears the interrupt request.
- (2) The CPU pushes the program counter and the status register to the system stack area (area indicated by the system mode stack pointer).
- (3) The CPU sets a value in the CPU interrupt mask register <IFF2 to 0> that is higher by 1 than the value of the accepted interrupt level. However, if the value is 7, 7 is set without an increment.
- (4) The CPU sets the <SYSM> flag of the status register to 1 and enters the system mode.
- (5) The CPU jumps to address 8000H + interrupt vector, then starts the interrupt processing routine.

In minimum mode, all the above processing is completed in 15 states (1.5 μ s @ 20MHz). In maximum mode, it is completed in 17 states.

Bus Width of Stack	Interrupt Processing State Number				
Area	MAX mode	Min mode			
8 bit	23	19			
16 bit	17	15			

To return to the main routine after completion of the interrupt processing, the RETI instruction is usually used. Executing this instruction restores the contents of the program counter and the status registers.

Though acceptance of non-maskable interrupts cannot be disabled by program, acceptance of maskable interrupts can. A priority can be set for each source of maskable interrupts. The CPU accepts an interrupt request with a priority higher than the value in the CPU mask register <IFF2 to 0>. The CPU mask register <IFF2 to 0> is set to a value higher by 1 than the priority of the accepted interrupt. Thus, if an interrupt with a level higher than the interrupt being processed is generated, the CPU accepts the interrupt with the higher level, causing interrupt processing to nest. The CPU does not accept an interrupt request of the same level as that of the interrupt being processed.

Resetting initializes the CPU mask registers <IFF2 to 0> to 7; therefore, maskable interrupts are disabled.

The addresses 008000H to 0081FFH (512 bytes) of the TLCS-900 are assigned for interrupt processing entry area.

Table 3.3 (1) TMP96C141AF Interrupt Table

Default Priority	Туре		Interrupt Source	Vector Value "V"	Start Address	High-Speed Micro DMA Start Vector
1		Reset	, or SW10 instruction	0 0 0 0 H	8 0 0 0 H	_
2		INTPREV:	Privileged violation, or SWI1	0 0 1 0 H	8 0 1 0 H	-
3		INTUNDEF:	Illegal instruction, or SWI2	0 0 2 0 H	8 0 2 0 H	-
4		SWI 3 Instruction		0 0 3 0 H	8 0 3 0 H	-
5	Non-	SWI 4 Instruction		0 0 4 0 H	8 0 4 0 H	_
6	Maskable	SWI 5 Instruction		0 0 5 0 H	8 0 5 0 H	-
7		SWI 6 Instruction		0 0 6 0 H	8 0 6 0 H	-
8		SWI 7 Instruction		0 0 7 0 H	8 0 7 0 H	-
9		NMI Pin		0 0 8 0 H	8 0 8 0 H	08H
10		INTWD:	Watchdog timer	0 0 9 0 H	8 0 9 0 H	09H
11		INTO pin		0 0 A 0 H	8 0 A 0 H	0AH
12		INT4 pin		0 0 B 0 H	8 0 B 0 H	0BH
13		INT5 pin		0 0 C 0 H	8 0 C 0 H	0CH
14		INT6 pin		0 0 D 0 H	8 0 D 0 H	0DH
15		INT7 pin		0 0 E 0 H	8 0 E 0 H	0EH
-		(Reserved)		0 0 F 0 H	8 0 F 0 H	0FH
16		INTTO:	8-bit timer 0	0 1 0 0 H	8 1 0 0 H	10H
17		INTT1:	8-bit timer 1	0 1 1 0 H	8 1 1 0 H	11H
18		INTT2:	8-bit timer 2/PWM0	0 1 2 0 H	8 1 2 0 H	12H
19		INTT3:	8-bit timer 3/PWM1	0 1 3 0 H	8 1 3 0 H	13H
20	Maritable	INTTR4:	16-bit timer 4 (TREG4)	0 1 4 0 H	8 1 4 0 H	14H
21	Maskable	INTTR5:	16-bit timer 4 (TREG5)	0 1 5 0 H	8 1 5 0 H	15H
22		INTTR6:	16-bit timer 5 (TREG6)	0 1 6 0 H	8 1 6 0 H	16H
23		INTTR7:	16-bit timer 5 (TREG7)	0 1 7 0 H	8 1 7 0 H	17H
24		INTRX0:	Serial receive (Channel.0)	0 1 8 0 H	8 1 8 0 H	18H
25		INTTX0:	Serial send (Channel.0)	0 1 9 0 H	8 1 9 0 H	19H
26		INTRX1:	Serial receive (Channel.1)	0 1 A 0 H	8 1 A 0 H	1AH
27		INTTX1:	Serial send (Channel.1)	0 1 B 0 H	8 1 B 0 H	1BH
28		INTAD:	A / D conversion completion	0 1 C 0 H	8 1 C 0 H	1CH
		(Reserved)		0 1 D 0 H	8 1 D 0 H	1DH
-		(Reserved)		0 1 E 0 H	8 1 E 0 H	1EH
_		(Reserved)		0 1 F 0 H	8 1 F 0 H	1FH

3.3.2 High-Speed Micro DMA

In addition to the conventional interrupt processing, the TLCS-900 also has a high-speed micro DMA function. When an interrupt is accepted, in addition to an interrupt vector, the CPU receives data indicating whether processing is high-speed micro DMA mode or general-purpose interrupt. If high-speed micro DMA mode is requested, the CPU performs high-speed micro DMA processing.

The TLCS-900 can process at very high speed compared with the TLCS-90 micro DMA because it has transfer parameters in dedicated registers in the CPU. Since those dedicated registers are assigned as CPU control registers, they can only be accessed by the LDC (privileged) instruction.

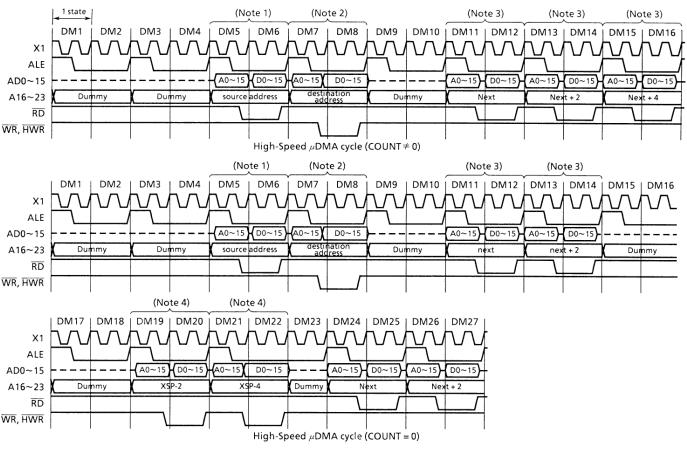
(1) High-Speed Micro DMA Operation

High-speed micro DMA operation starts when the accepted interrupt vector value matches the micro DMA start vector value set in the interrupt controller. The high-speed micro DMA has four channels so that it can be set for up to four types of interrupt source.

When a high-speed micro DMA interrupt is accepted, data is automatically transferred from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented. If the value in the counter after decrementing is other than 0, high-speed micro DMA processing is completed. If the value in the counter after decrementing is 0, general-purpose interrupt processing is performed. In read-only mode, which is provided for DRAM refresh, the value in the counter is ignored and dummy read is repeated.

The 32-bit control registers are used for setting transfer source/destination addresses. However, the TLCS-900 has only 24 address pins for output. A 16M-byte space is available for the high-speed micro DMA. Also in normal mode operation, the all address space (in other words, the space for system

mode which is set by the CS/WAIT controller) can be accessed by high-speed micro DMA processing.

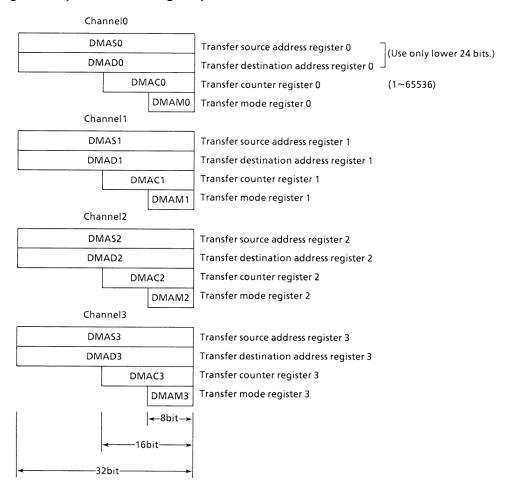

There are two data transfer modes: one-byte mode and one-word mode. Incrementing, decrementing, and fixing the transfer source/destination address after transfer can be done in both modes. Therefore data can easily be transferred betweenI/O and memory and between I/Os. For details of transfer modes, see the description of transfer mode registers.

The transfer counter has 16 bits, so up to 65536 transfers (the maximum when the initial value of the transfer counter is 0000H) can be performed for one interrupt source by high-speed micro DMA processing.

A the data transferred by the μDMA function, the transfer nter was decreased.

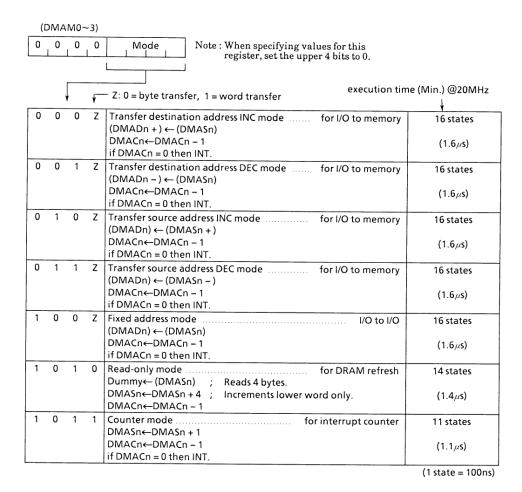
When this counter is "0"H, the processor operates general interrupt processing. At this time if the same channel of interrupt is required next interrupt, the transfer counter starts from 65536.

Interrupt sources processed by high-speed micro DMA processing are those with the high-speed micro DMA start vectors listed in Table 3.3 (1).


(Note 1) This is added 2 states the case of the bus width of source address area is 8bit

(Note2) This is added 2 states the case of the bus width of destination address area is 8bit (Note3) This may be a dummy cycle with instruction queue buffer.
 (Note4) This is added 2 states the case of the bus width of stack address area is 8bit

The following timing chart is a high-speed μDMA cycle of the Transfer Address Increment mode (the other mode exe-


cept the Read-only mode is same as this) (Condition: MIN mode, 16bit Bus width for 16M Byte, 0 wait)

(2) Register Configuration (CPU Control Register)

These Control Registers cannot be set only "LCD cr, r" instruction.

(3) Transfer Mode Register Details

This condition is 16-bit bus width and 0 wait of source/destination address space.

Note: n: corresponds to high-speed μDMA channels 0 - 3.

DMADn +/DMASn +: Post-increment (Increments register value after transfer.)
DMADn -/DMASn -: Post-decrement (Decrement register value after transfer.)

All address space (the space for system mode) can be for transfer mode control. accessed by high-speed μDMA . Do not use undefined codes

Usage of read only mode (DRAM refresh)>

When the hardware configuration is as follows:

DRAM mapping size: = 1MB
DRAM data bus size: = 8 bits
DRAM mapping address range: = 100000H to

1FFFFFH

Set the following registers first; refresh is performed automatically.

Register initial value setting

LD LDC LD	XIX, 100000H DMAS0,XIX A, 00001010B	···mapping start address
LDC	DMAMO,	A···read only mode (for DRAM refresh)

② Timer Setting

Set the timers so that interrupts are generated at intervals of $62.5\mu s$ or less.

③ Interrupt controller setting

Set the timer interrupt mask h other interrupt mask. Write the above timer interrupt vector value in the High-Speed μ DMA start vector register, DMA0V.

(Operation description)

The DRAM data bus is an 8-bit bus and the micro DMA is in read-only mode (4 bytes), so refresh is performed four times per interrupt.

When a 512 refresh/8ms DRAM is connected, DRAM refresh is performed sufficiently if the micro DMA is started every $15.625\mu s \times 4 = 62.4\mu s$ or less, since the timing is $15.625\mu s$ /refresh.

(Overhead)

Each processing time by the micro DMA is 1.8μs (18 states) @ 20MHz with an 8-bit data bus.

In the above example, the micro DMA is started every 62.5 μ s, 1.8 μ s/62.5 μ s = 0.029; thus, the overhead is 2.9%.

3.3.3 Interrupt Controller

Figure 3.3.3 (1) is a block diagram of the interrupt circuits. The left half of the diagram shows the interrupt controller; the right half includes the CPU interrupt request signal circuit and the HALT release signal circuit.

Each interrupt channel (total of 20 channels) in the interrupt controller has an interrupt request flip-flop, interrupt prior-

ity setting register, and a register for storing the high-speed micro DMA start vector. The interrupt request flip-flop is used to latch interrupt requests from peripheral devices. The flip-flop is cleared to 0 at reset, when the CPU reads the interrupt channel vector after the acceptance of interrupt, or when the CPU executes an instruction that clears the interrupt of that channel (writes 0 in the clear bit of the interrupt priority setting register).

For example, to clear the INTO interrupt request, set the register after the **DI instruction** as follows.

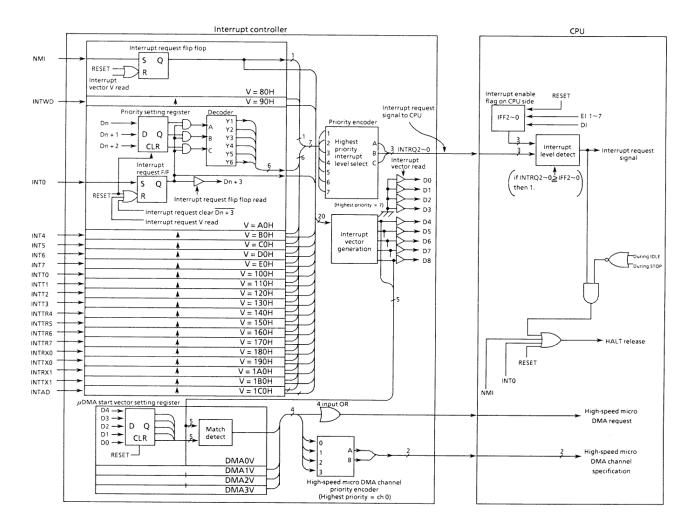
INTEOAD←---- 0 --- Zero-clears the INTO Flip-Flop.

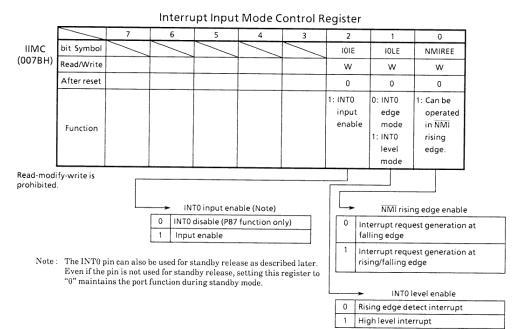
The status of the interrupt request flip-flop is detected by reading the clear bit. Detects whether there is an interrupt request for an interrupt channel.

The interrupt priority can be set by writing the priority in the interrupt priority setting register (e.g., INTE0AD, INTE45, etc.) provided for each interrupt source. Interrupt levels to be set are from 1 to 6. Writing 0 or 7 as the interrupt priority disables the corresponding interrupt request. The priority of the non-maskable interrupt (NMI pin, watchdog timer, etc.) is fixed to 7. If interrupt requests with the same interrupt level are generated simultaneously, interrupts are accepted in accordance with the default priority (the smaller the vector value, the higher the priority).

The interrupt controller sends the interrupt request with the highest priority among the simultaneous interrupts and its vector address to the CPU. The CPU compares the priority value <IFF2 to 0> set in the Status Register by the interrupt request signal with the priority value sent; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 in the CPU SR<IFF2 to 0>. Interrupt requests where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine. When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the priority value saved in the stack before the interrupt was generated to the CPU SR<IFF2 to 0>.

The interrupt controller also has four registers used to store the high-speed micro other DMA start vector. These are I/O registers; unlike other DMA registers (DMAS, DMAD, DMAM, and DMAC), they can be accessed in either normal or system mode. Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.3 (1)), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS and DMAD) prior to the micro DMA processing.




Figure 3.3.3 (1) Block Diagram of Interrupt Controller

(1) Interrupt Priority Setting Register

(Read-modify-write prohibited.)

Symbol	Address	7	6	5	4	3	2	1	-	0	
37501	7.00.033			AD				T0		-	←Interrupt source
		IADC		IADM1	IADM0	IOC	10M2	10M1	: 10	M0	←bit Symbol
INTE0AD	0070H	R/W		W		R/W		W			←Read/Write
		0	0	0	0	0	0	0		0	←After reset
				T5			IN	T4			
		I5C			15M0	14C	14M2	14M1	: 14	M0	
INTE45	0071H	R/W		W		R/W		W			
		0	0		0	0	0	0		0	
			IN	T7	•		IN	T6			
		I7C	17M2	17M1	17M0	16C	16M2	16M1	: 16	M0	
INTE67	0072H	R/W		W		R/W		W			
		0	0	0	0	0	0	0		0	
			INTT1 (Timer1)			INTT0 (Timer0)			
		IT1C	IT1M2		IT1M0	IT0C	IT0M2	IT0M1	ITC	0M0	
INTET10	0073H	R/W		W		R/W		W			
		0	0	0	0	0	0	0	-	0	
		11	NTT3 (Tim	er3/PWM	1)		NTT2 (Tim	er2/PWN	10)		
					IPW1M0	IPW0C	IPW0M2			0M0	
INTEPW10	0074H	R/W		w		R/W		W			
		0	0	0	0	0	0	. 0	-	0	
			INTTR5	(TREG5)			INTTR4	(TREG4)			
		IT5C	IT5M2	IT5M1	IT5M0	IT4C	IT4M2	IT4M1	IT4	1M0	
INTET54	0075H	R/W		W		R/W		w			
		0	0	0	0	0	0	0	-	0	
-			INTTR7	(TREG7)			INTTR6	(TREG6)			
		IT7C			: IT7M0	IT6C	IT6M2	IT6M1	: IT6	5M0	
INTET76	0076H	R/W		W		R/W		W			
		0	0	0	0	0	0	0		0	
			INT	TX0			INT	RX0			
INITEGO	007711	ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M	1 : IRX	0M0	
INTES0	0077H	R/W		W		R/W		W			
		0	0	0	0	0	0	0		0	
			INT	TX1			INT	RX1			
INITEC	0078H	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M	1 IRX	1M0	
INTES1	0078H	R/W		W		R/W		W			
		0	0	0	0	0	0	0		0	
		لـــــا	L			\Box	L				
lxxM2	IxxM1	lxxM	0		Function	(Write)					
0	0	0		hihits inte	errupt requ						
0	0	1			t request le		' .				
0	1	o			t request le						
0	1	1			t request le						
1	0	0			t request le						
1	0	1			t request le						
1	1	0			t request le errupt requ						
lxxC		Eunstian			T		n (Write)				
0	Function (Read) Indicates no interrupt request.				Clear	sinterrup		flag	\dashv		
1		tes interru				Don'					
	inuica	ces milerri	prieque	J		0011	· cure				

(2) External Interrupt Control

Setting of External Interrupt Pin Functions

Interrupt	Pin name		Mode	Setting method
NMI		7_	Falling edge	IIMC <nmiree> = 0</nmiree>
INIVII	_	¬	 Rising and falling edges 	IIMC <nmiree> = 1</nmiree>
INTO	D07		Rising edge	IIMC <iole> = 0, <ioie> = 1</ioie></iole>
11410	INTO P87		Level	IIMC <iole> = 1, <ioie> = 1</ioie></iole>
INT4	P80		Rising edge	T4MOC <cap12m1,0> = 0,0 or 0,1 or 1,1</cap12m1,0>
11414	F 60	7_	Falling edge	T4MOD <cap12m1, 0=""> = 1, 0</cap12m1,>
INT5	P81		Rising edge	
INT6	P84		Rising edge	T5MOC <cap34m1,0> = 0,0 or 0,1 or 1,1</cap34m1,0>
11410	F 04	7	Falling edge	T5MOD <cap34m1, 0=""> = 1, 0</cap34m1,>
INT7	P85		Rising edge	

(3) High-Speed Micro DMA Start Vector

When the CPU reads the interrupt vector after accepting an interrupt, it simultaneously compares the interrupt vector with each channel's micro DMA start vector (bits 4 to 8 of the interrupt vec-

tor). When both match, the interrupt is processed in micro DMA mode for the channel whose value matched.

If the interrupt vector matches more than one channel, the channel with the lower channel number has a higher priority.

Micro DMA0 Start Vector

(read-modify-write is not possible.)

		7	6	5	4	3	2	1	0			
DMAOV	bit Symbol				DMA0V8	DMA0V7	DMA0V6	DMA0V5	DMA0V4			
(007CH)	Read / Write		W									
	After reset				0	0	0	0	0			
	Micro DMA	1 Start Vec	tor				(read-r	nodify-write is n	ot possible.)			
		7	6	5	4	3	2	1	0			
DMA1V (007DH)	bit Symbol				DMA1V8	DMA1V7	DMA1V6	DMA1V5	DMA1V4			
	Read / Write						W					
	After reset				0	0	0	0	0			
	Micro DMA	2 Start Vec	tor			•	(read-r	nodify-write is n	ot possible.)			
		7	6	5	4	3	2	1	0			
DMA2V	bit Symbol				DMA2V8	DMA2V7	DMA2V6	DMA2V5	DMA2V4			
(007EH)	Read / Write						W					
	After reset				0	0	0	0	0			
	Micro DMA3 Start Vector (read-modify-write is not possible											
		7	6	5	4	3	2	1	0			
DMA3V	bit Symbol				DMA3V8	DMA3V7	DMA3V6	DMA3V5	DMA3V4			
(007FH)	Read / Write						W					
	After reset				0	0	0	0	0			

(4) Notes

The instruction execution unit and the bus interface unit of this CPU operate independently of each other. Therefore, if the instruction used to clear an interrupt request flag of an interrupt is fetched before the interrupt is generated, it is possible that the CPU might execute the fetched instruction to clear the interrupt request flag

while reading the interrupt vector after accepting the interrupt. If so, the CPU would read the default vector 00A0H and start the interrupt processing from the address 80A0H.

To avoid this, make sure that the instruction used to clear the interrupt request flag comes after the DI instruction.

20

3.4 Standby Function

When the HALT instruction is executed, the TMP96C141AF enters RUN, IDLE, or STOP mode depending on the contents of the HALT mode setting register.

(1) RUN : Only the CPU halts; power consumption

remains unchanged.

(2)IDLE : Only the built-in oscillator operates, while all other built-in circuits halt. Power consumption is reduced to 1/10 or less than that during normal operation.

(3) STOP

: All internal circuits including the built-in oscillator halt. This greatly reduces power consumption. The states of the port pins in STOP mode can be set as listed in Table 3.4 (1) using the I/O register

WDMOD<DRVE>bit.

		7	6	5	4	3	2	1	0
WDMOD	Bit Symbol	WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE
(005CH)	Read/Write		·		R/W				
, ,	After reset	1	0	0	0	0	0	0	0
	Function	1 : WDT Enable	01 : 2 10 : 2 11 : 2	1 ¹⁶ / fc 1 ¹⁸ / fc 1 ²⁰ / fc 1 ²² / fc on time	Warming up time 0 : 2 ¹⁶ /fc 1 : 2 ¹⁸ /fc	Standby mode 00 : RUN 01 : STOP 10 : IDLE 11 : Don't care	mode mode mode	1: Connects watchdog timer output to RESET pin internally.	1: Drive pin even in STOP mode.

When STOP mode is released by other than a reset, the system clock output starts after allowing some time for warming up set by the warming-up counter fro stabilizing the bulit-in oscillator. To release STOP mode by reset, it is necessary to

allow the oscillator to stabilize.

To release standby mode, a reset or an interrupt is used. To release IDLE or STOP mode, only an interrupt by the $\overline{\text{NMI}}$ or INTO pin, or a reset can be used. The details are described below:

Standby Release by Interrupt

Interrupt Level Standby Mode	Interrupt Mask (IFF2 to 0) ≤ Interrupt Request Level	Interrupt Mask (IFF2 to 0) > Interrupt Request Level
	Can be released by any interrupt.	Can only be released by INTO pin.
RUN	After standby mode is released, interrupt processing starts.	Processing resumes from address next to HALT instruction.
IDLE	Can only be released by NMI or INTO pin. After standby mode is released, interrupt processing starts.	↑
STOP	↑ (Note)	1

Table 3. 4 (1) Pin States in STOP Mode

D'a Nama	1/0	96C	141AF	96CM40/96PM40		
Pin Name	I/O	DRVE = 0	DRVE = 1	DRVE = 0	DRVE = 1	
P0	Input mode/AD0 ~ 7 Output mode	_ x	_ x	- -	– Output	
P1	Input mode/AD8 ~ 15 Output mode/A8 ~ 15	_ X	_ x		– Output	
P2	Input mode Output mode/A0 ~ 7, A16 ~ 23	PD* PD*	PD* Output	PD* PD*	PD* Output	
P30 (RD), P31 (WR)	Output	-	"1" Output	_	Output	
P32 ~ P37	Input mode Output mode	PU PU	PU Output			
P40, P41	Input mode Output mode	PU* PU*	PU Output			
P42 (CS2/CAS2)	Input mode Output mode	PD* PD*	PD Output			
P5	Input	_	_			
P6	Input mode Output mode	PU* PU*	PU Output			
P7	Input mode Output mode	PU* PU*	PU Output			
P80 ~ P86	Input mode Output mode	PU* PU*	PU Output			
P87 (INT0)	Input mode Output mode	PU PU	PU Output	→	_	
P9	Input mode Output mode	PU* PU*	PU Output			
NMI	Input	Input	Input			
WDTOUT	Output	Output	Output			
ALE	Output	"0"	"0"			
CLK	Output	_	"1"			
RESET	Input	Input	Input			
ĒĀ	Input	Input	Input			
X1	Input	_	-			
X2	Output	"1"	"1"			

^{-:} Input for input mode/input pin is invalid; output mode/output pin is at high impedance.

Input: Input enable state

input: Input gate in operation. Fix input voltage to 0 or 1 so that input pin stays constant.

Output: Output state

PU: Programmable pull-up pin. Fix the pin to avoid through current since the input gate operates when a pull-up resistor is not set.

PD: Programmable pull-down pin. Fix the pin like a pull-up pin when a pull-down resistor is not set.

*: Input gate disable state. No through current even if the pin is set to high impedance.

x: Cannot set.

Note: Port registers are used for controlling programmable pull-up/pull-down. If a pin is also used for an output function (e.g., TO1) and the output function is specified, whether pull-up or pull-down is selected depends on the output function data. If a pin is also used for an input function, whether pull-up or pull-down is selected depends on the port register setting value only.

3.5 Functions of Ports

The TMP96CM40F/TMP96PM40F has 65 bits for I/O ports. The TMP96C141AF, TMP96C041AF has 47 bits for I/O ports because Port0, Port1, P30, and P31 are dedicated pins for AD0 to 7, AD8 to

15, \overline{RD} , and \overline{WR} .

These port pins have I/O functions for the built-in CPU and internal I/Os as well as general-purpose I/O port functions. Table 3.5 lists the function of each port pin.

↓ = With programmable pull-down

Table 3.5 Functions of Ports

Port Name	Pin Name	Number of Pins	Direction	R	Direction Setting Unit	Pin Name for Built-in Function
Port0	P00 ~ P07	8	1/0	-	Bit	AD0 ~ AD7
Port1	P10 ~ P17	8	1/0	-	Bit	AD8 ~ AD15/ A8 ~ A15
Port2	P20 ~ P27	8	1/0	\	Bit	A0 ~ A7/ A16 ~ A23
Port 3	P30 P31 P32	1 1 1	Output Output I/O	- - ^	(Fixed) (Fixed) Bit	RD WR HWR
	P33 P34 P35 P36 P37	1 1 1 1 1	I/O I/O I/O I/O I/O	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	Bit Bit Bit Bit Bit	WAIT BUSRQ BUSAK R/W RAS
Port4	P40 P41 P42	1 1 1	I/0 I/0 I/0	↑ ↑ ↓	Bit Bit Bit	CS0 / CAS0 CS1 / CAS1 CS2 / CAS2
Port5	P50 ~ P53	4	Input	-	(Fixed)	ANO ~ AN3
Port6	P60 ~ P67	8	1/0	1	Bit	PG00 ~ PG03, PG10 ~ PG13
Port7	P70 P71 P72 P73	1 1 1 1	I/O I/O I/O I/O	↑ ↑ ↑	Bit Bit Bit Bit	T10 T01 T02 T03
Port8	P80 P81 P82 P83 P84 P85 P86	1 1 1 1 1 1 1 1	I/O I/O I/O I/O I/O I/O I/O	↑ ↑ ↑ ↑	Bit Bit Bit Bit Bit Bit Bit	T14/INT4 T15/INT5 T04 T05 T16 / INT6 T17 / INT7 T06 INT0
Port9	P90 P91 P92 P93 P94 P95	1 1 1 1 1	I/O I/O I/O I/O I/O	↑ ↑ ↑	Bit Bit Bit Bit Bit Bit	TXD0 RXD0 CTS0 TXD1 RXD1 SCLK1

Resetting makes the port pins listed below function as general-purpose I/O ports.

I/O pins programmable for input or output function as input ports.

To set port pins for built-in functions, a program is required.

Since the TMP96C141AF has an external ROM, some ports are permanently assigned to the CPU.

• P00 ~ P07 → AD0 ~ AD7

• P10 ~ P17 → AD8 ~ AD15

P30 → RD
 P31 → WR

Bus release function

The TMP96C141AF has the internal pull-up and pull-down resistors to fix the bus control signals at bus release.

Table 3.5 (1) shows the pin condition at bus release $(\overline{BUSAK}) = "L"$).

Pin Name	Pin state at bus release					
riii Naiile	Port mode	Function mode				
P00 - P07 (AD0 - AD7) P10 - P17 (AD8 - AD15)	No status change (these pins are not "Hz")	These pins are "Hz".				
P30 (RD) P31 (WR)	↑	These pins are "Hz". ("Hz" status after these pins are driven to high level.)				
P32 (HWR) P37 (RAS)	↑	The output buffer is "OFF" after these pins are drinen high. These pins are added in the internal resistor of pull-up. It's no relation for the value of output latch.				
P36 (<u>R/W</u>) P40 (<u>CS0/CAS0</u>) P41 (<u>CS1/CAS1</u>)	↑	↑				
P42 (CS2/CAS2)	↑	(*)↑				
P20 - P27 (A16 - A23) P42 (CS2/CAS2)	↑	The output buffer is "OFF" after these pins are drinen high. These pins are added in the internal resistor of pull-down. It's no relation for the value of output latch.				

(*) P42 has the resistor of programmable pull-down, but when the bus are released, P42 pin is added a resistor of pull-up.

That is, when it is used for bus release ($\overline{\text{BUSAK}}$ = "0"), the pins of below need pull-up or pull-down resistor for an external circuit.

P00 - P07 (AD07)

P10 - P17 (AD8 - AD15)

P30 (RD)

P31 (WR)

When the bus is released, both internal memory and internal I/O cannot be accessed. But the internal I/O continues to run. Therefore, be careful about releasing time and set the setection time WDT.

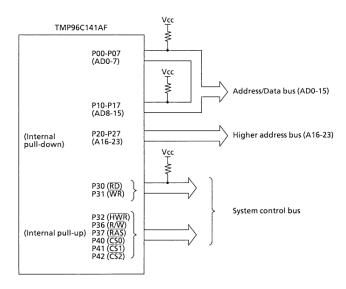
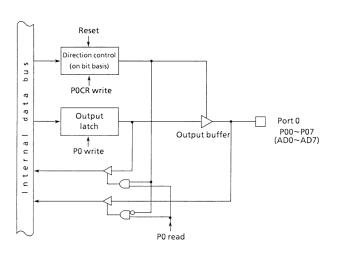


Figure 3.5. Example of external bus interface using bus release function.

3.5.1 Port 0 (P00 - P07)

Port 0 is an 8-bit general-purpose I/O port. I/O can be set on a bit basis using control register POCR to 0 and sets Port 0 to input mode.

In addition to functioning as a general purpose I/O port, Port 0 also functions as an address data bus (AD0 to 7). To access external memory, Port 0 functions as an address data bus (AD 0 to 7) and all bits of the control register POCR are cleared to 0.


With the TMP96C141AF/TMP96C041AF, which comes with an external ROM, Port 0 always functions as an address data bus (AD0 to 7) regardless of the value set in control register POCR.

3.5.2 Port 1 (P10 - P17)

Port 1 is an 8-bit general-purpose I/O port. I/O can be set on a bit basis using control register P1CR and function register P1FC. Resetting resets all bits of output latch P1, control register P1CR, and function register P1FC to 0 and sets Port 1 to input mode.

In addition to functioning as a general purpose I/O port, Port 1 also functions as an address data bus (AD8 to 15) or an address bus (A8 to 15).

With the TMP96C141AF/TMP96C041AF, which comes with an external ROM, Port 1 always functions as an address data bus (AD8 to 15) regardless of the value set in control register P1CR.

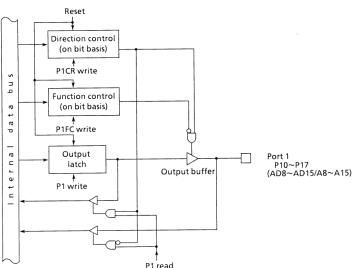


Figure 3.5 (1). Port 0

Figure 3.5 (2). Port 1

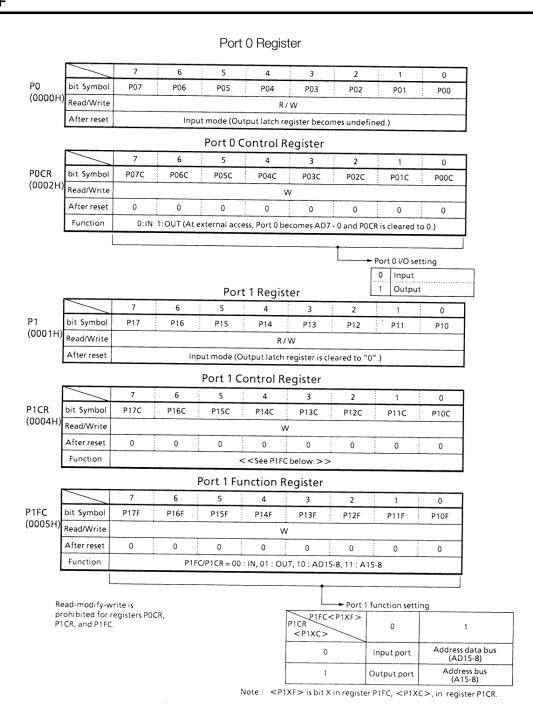


Figure 3.5 (3). Registers for Ports 0 and 1

3.5.3 Port 2 (P20 - P27)

Port 2 is an 8-bit general-purpose I/O port. I/O can be set on bit basis using the control register P2CR and function register P2FC. Resetting resets all bits of output latch P2, control register P2CR and function register P2FC to 0. It also sets Port 2 to

input mode and connects a pull-down resistor. To disconnect the pull-down resistor, write 1 in the output latch.

In addition to functioning as a general-purpose I/O port, Port 2 also functions as an address data bus (A0 to 7) and an address bus (A16 to 23).

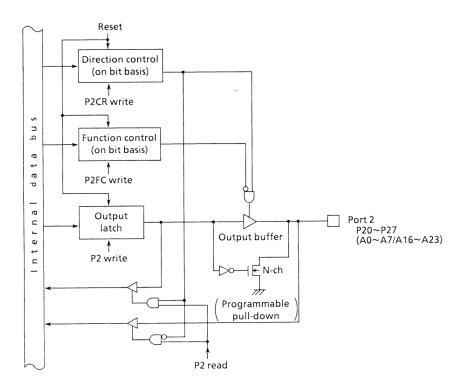


Figure 3.5 (4). Port 2

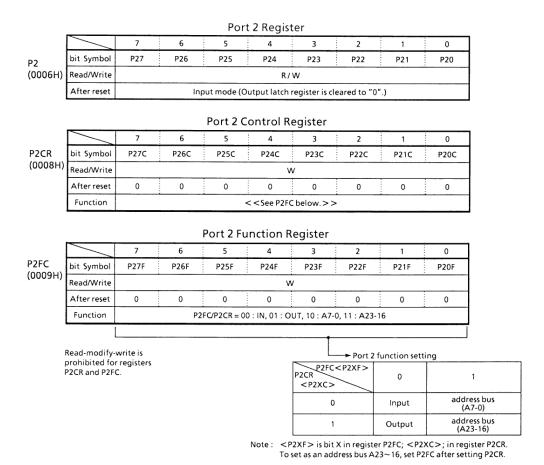


Figure 3.5 (5). Registers for Port 2

28

3.5.4 Port 3 (P30 - P37)

Port 3 is an 8-bit general-purpose I/O port.

I/O can be set on a bit basis, but note that P30 and P31 are used for output only. I/O is set using control register P3CR and function register P3FC. Resetting resets all bits of output latch P3, control register P3CR (bits 0 and 1 are unused), and function register P3FC to 0. Resetting also outputs 1 from P30 and P31, sets P32 to P37 to input mode, and connects a pullup resistor.

In addition to functioning as a general-purpose I/O port, Port 3 also functions as an I/O for the CPU's control/status signal.

With the TMP96C141AF, when P30 pin is defined as \overline{RD} signal output mode (<P30F> = 1), clearing the output latch register <P30> to 0 outputs the \overline{RD} strobe (used for the pseudo static RAM) from the P30 pin even when the internal address area is accessed.

If the output latch register <P30> remains 1, the $\overline{\text{RD}}$ strobe signal is output only when the external address area is accessed.

With the TMP96C141AF/TMP96C041AF, which comes with an external ROM, Port 30 outputs the RD signal; P31, the WR signal, regardless of the values set in function registers P30F and P31F.

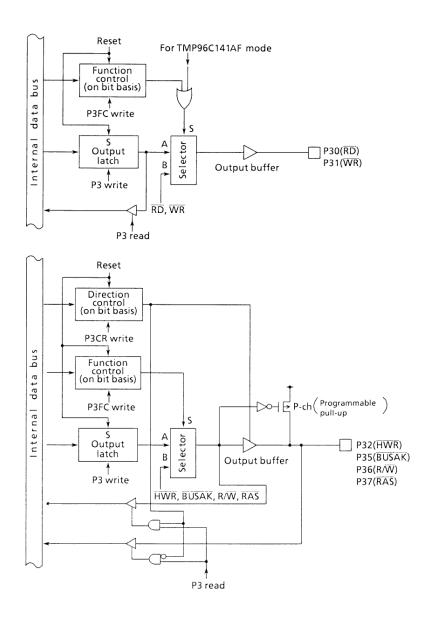


Figure 3.5 (6). Port 3 (P30, P31, P32, P35, P36, P37)

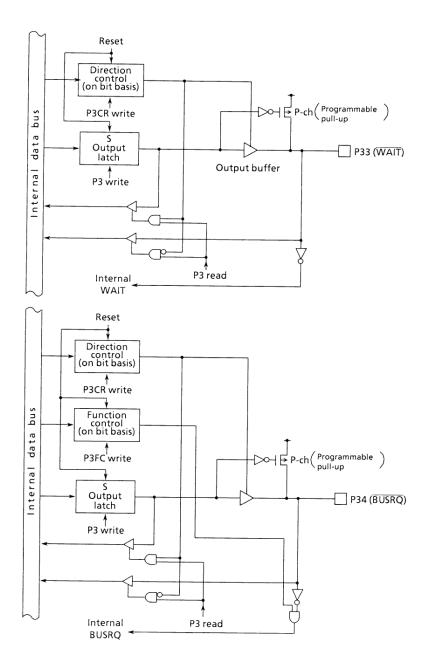
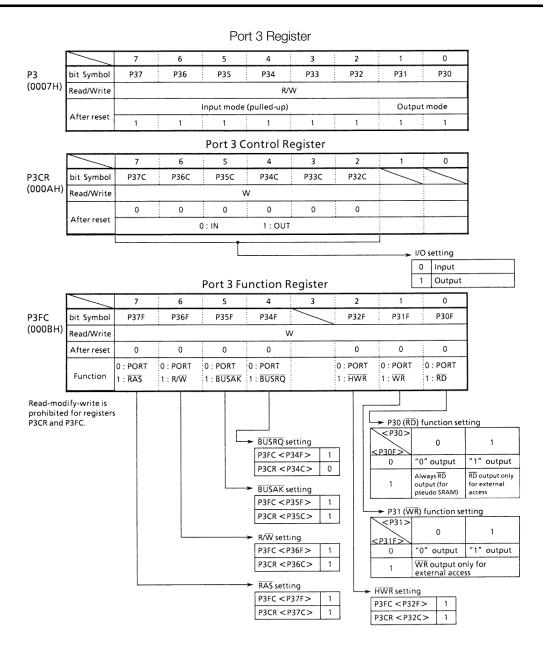



Figure 3.5 (7). Port 3 (P33, P34)

Note: When P33/WAIT pin is used as a WAIT pin, set P#CR <P33C> to "0" and Chip Select/Wait control register.

Figure 3.5 (8). Registers for Port 3

32

33

3.5.5 Port 4 (P40 - P42)

Port 4 is a 3-bit general-purpose I/O port. I/O can be set on a bit basis using control register P4CR and function register P4FC. Resetting does the following:

- Sets the P40 and P42 output latch registers to 1.
- Resets all bits of the P42 output latch register, the control register P4CR, and the function register P4FC to 0.
- Sets P40 and P41 to input mode and connects a pull-up resistor.
- Sets P42 to input mode and connects a pull-down resistor.

In addition to functioning as a general-purpose I/O port, Port 4 also functions as a chip select output signal (CSO to CS2 or CASO to CAS2).

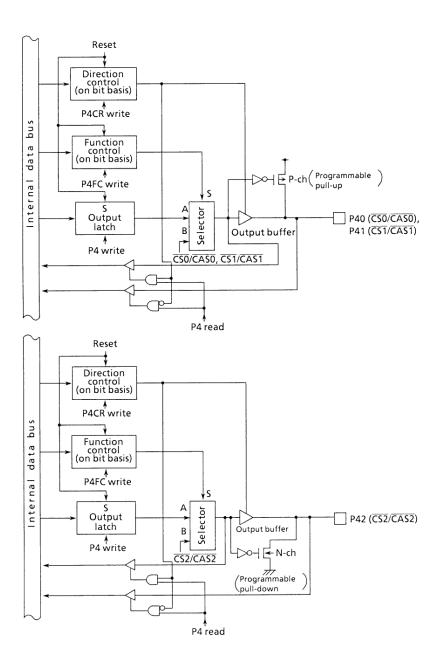
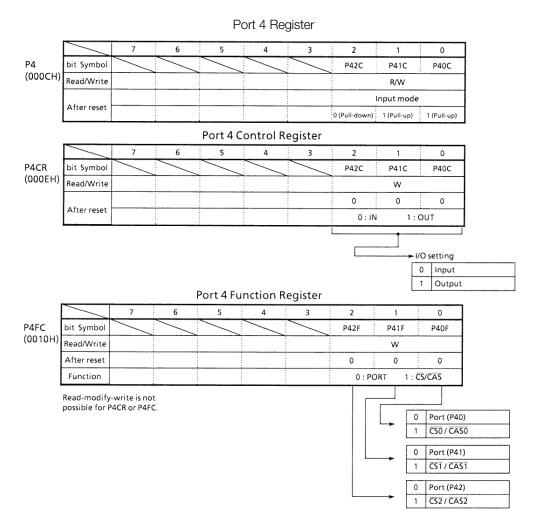



Figure 3.5 (9). Port 4

Note: To output chip select signal (CSO/CASO to CS2/CAS2), set the corresponding bits of the control register P4CR and the function register to P4FC.

The BOCS, B1CS, and B2CS registers of the chip select/wait controller are used to select the CS/CAS function.

Figure 3.5 (10). Registers for Port 4

3.5.6 Port 5 (P50 - P53)

Port 5 is a 4-bit input port, also used as an analog input pin.

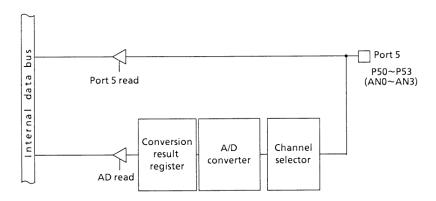


Figure 3.5 (11). Port 5

Port 5 Register

P5 (000DH)

	7	6	5	4	3	2	1	0	
bit Symbol					P53	P52	P51	P50	
Read/Write					R				
After reset					Input mode				

Note: The input channel selection of A/D Converter is set by A/D Converter mode register ADMOD2.

Figure 3.5 (12). Registers for Port 5

3.5.7 Port 6 (P60 - P67)

Port 6 is an 8-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port 6 as an input port and connects a pull-up resistor. It also sets all bits of the output latch to 1. In addition to functioning as a general-purpose I/O port, Port 6 also functions as a pattern generator PGO/PG1 output. PGO is

assigned to P60 to P63; PG1, to P64 to P67. Writing 1 in the corresponding bit of the port 6 function register (P6FC) enables PG output. Resetting resets the function register P6FC value to 0, and sets all bits to ports.

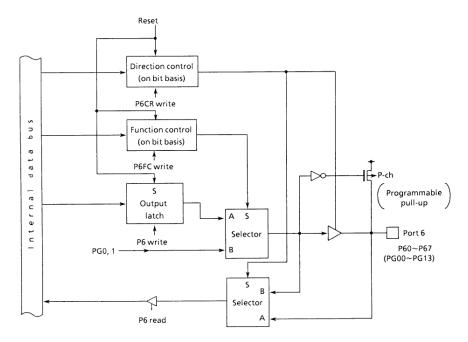


Figure 3.5 (13). Port 6

Port 6 Register 6 2 0 P6 P67 P66 P65 bit Symbol P61 P60 (0012H)Read/Write R/W Input mode (Pull-up) After reset 1 Port 6 Control Register 0 P6CR bit Symbol P67C P66C P65C P64C P63C P62C P61C P60C (0014H)Read/Write W After reset 0 0 0 Function 0:IN 1 : OUT Port 6 I/O setting 0 Input Output Port 6 Function Register 0 P6FC bit Symbol P67F P66F P65F P64F P63F P62F P61F P60F (0016H)Read/Write After reset 0 0 0 0 0 Function 0 : PORT 1 : PG1-OUT 0 : PORT 1 : PG0-OUT Read-modify-write is prohibited for registers P6CR and P6FC. General-purpose port Stepping motor control / Pattern generation port

Figure 3.5 (14). Registers for Port 6

3.5.8 Port 7 (P70 - P73)

Port 7 is a 4-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port 7 as an input port and connects a pull-up resistor. In addition to functioning as a general-purpose I/O port, Port 70 also functions as an input clock pin TIO; Port

71 as an 8-bit timer output (TO1), Port 72 as a PWM0 output (TO2), and Port 73 as a PWM1 output (TO3) pin. Writing 1 in the corresponding bit of the Port 7 function register (P7FC) enables output of the timer. Resetting resets the function register P7FC value to 0, and sets all bits to ports.

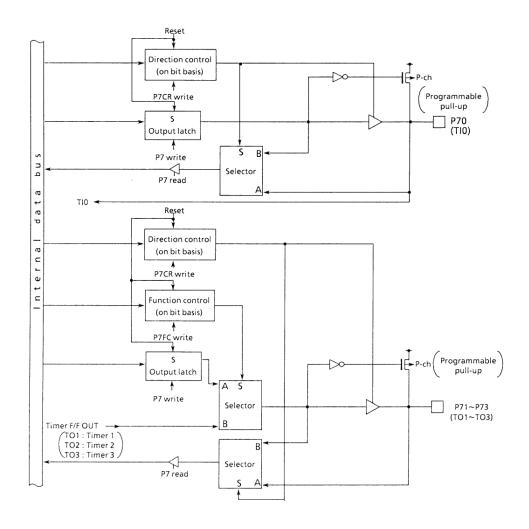
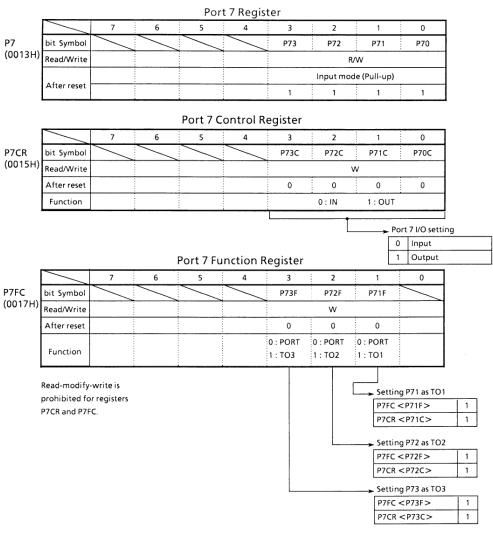



Figure 3.5 (15). Port 7

Note: P70/TI0 pin does not have a register changing PORT/FUNCTION.
For example, when it is used as an input port (P70), the input signal for P70 is inputted to 8bit Timer 0 as a timer input 0 (TI0).

Figure 3.5 (16). Registers for Port 7

3.5.9 Port 8 (P80 - P83)

Port 8 is an 8-bit general-purpose I/O port. I/O can be set on a bit basis. Resetting sets Port 8 as an input port and connects a pull-up resistor. It also sets all bits of the output latch register P8 to 1. In addition to functioning as a general-purpose I/O port, Port 8 also functions as an input for 16-bit timer 4 and 5

clocks, an output for 16-bit timer F/F 4, 5 and 6 output, and an input for INTO. Writing 1 in the corresponding bit of the Port 8 function register (P8FC) enables those functions. Resetting resets the function register P8FC value to 0, and sets all bits to ports.

(1) P80 ~ P86

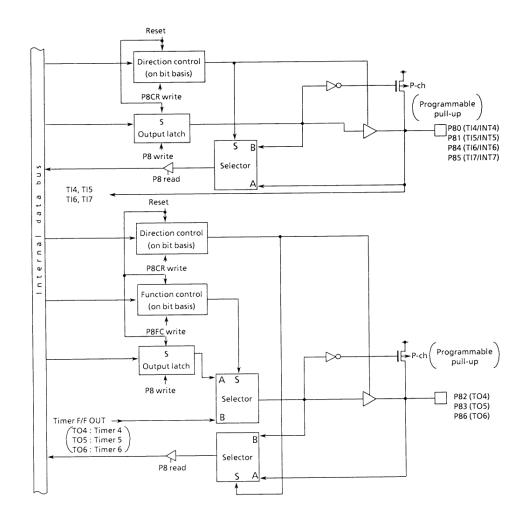


Figure 3.5 (17). Port 8 (P80 - P86)

(2) P87 (INTO)

an INTO pin for external interrupt request input.

Port 87 is a general-purpose I/O port, and also used as

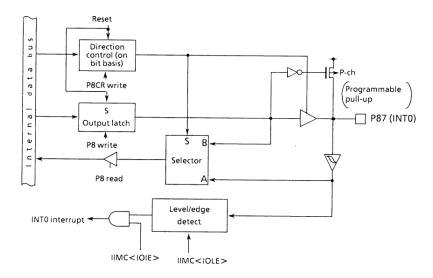
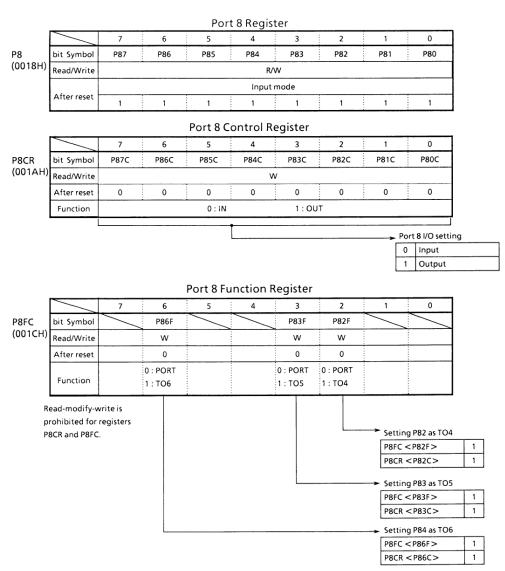



Figure 3.5 (18). Port 87

Note: P80/TI4, P81/T15, P84/TI6, P85/TI7 pins do not have a register changing PORT/FUNCTION. Therefore this is the same as P70/TIO pin.
When P87/INTO pin is used as an INTO pin, set P8CR < P87C > to "0" and IIMC < IOIE > to "1".

Figure 3.5 (19). Registers for Port 8

3.5.10 Port 9 (P90 - P95)

Port 9 is a 6-bit general-purpose I/O port. I/Os can be set on a bit basis. Resetting sets Port 9 to an input port and connects a pull-up resistor. It also sets all bits of the output latch register to 1

In addition to functioning as a general-purpose I/O port, Port 9 can also function as an I/O for serial channels 0 and 1. Writing 1 in the corresponding bit of the port 9 function register (P9FC) enables this function.

Resetting resets the function register value to 0 and sets all bits to ports.

(1) Port 90 and 93 (TXD0/TXD1)

Ports 90 and 93 also function as serial channel TXD output pins in addition to I/O ports.

They have a programmable open drain function.

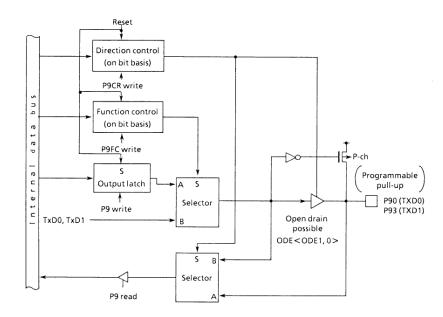


Figure 3.5 (20). Ports 90 and 93

(2) Ports 91 and 94 (RXD0, 1)

input pins for serial channels.

Ports 91 and 94 are I/O ports, and also used as RXD

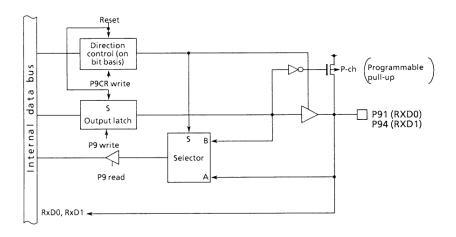


Figure 3.5 (21). Ports 91 and 94

(3) Port 92 (CTS/SCKL0)

for serial channel0; additionally, the CTS0 pin, and also as a SCKL0 I/O pin.

Port 92 is an I/O port. It is also used as a CTS input pin

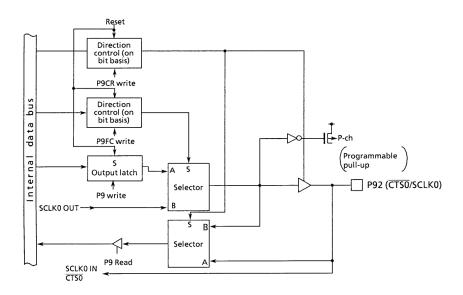


Figure 3.5 (22). Port 92

(4) Port 95 (SCLK)

an SCLK I/O pin for serial channel 1.

Port 95 is a general-purpose I/O port. It is also used as

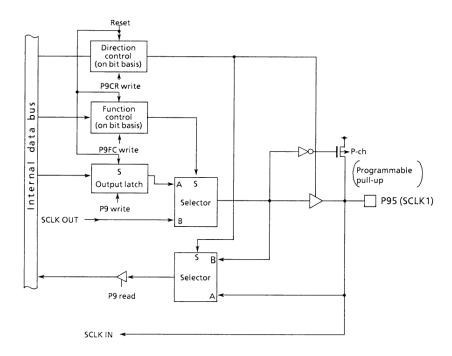
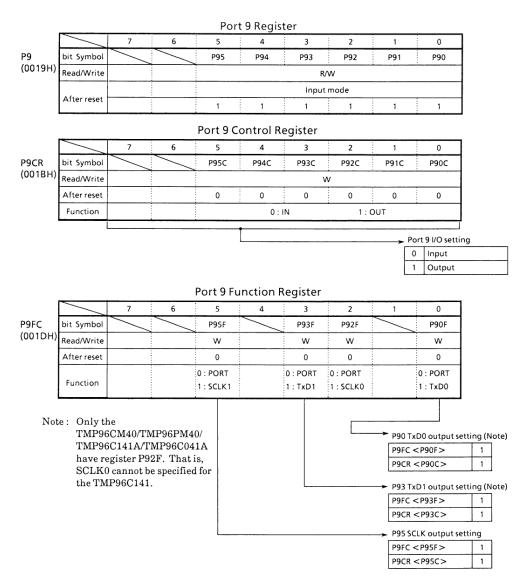



Figure 3.5 (23). Port 95

Note: To set the TxD pin to open drain, write 1 in bit 0 (for TxD0 pin) or bit 1 (for TxD1 pin) of the ODE register.

P91/RXD0, P94/RXD1 pins do not have a register changing PORT/FUNCTION.

Therefore this is the same as P70/TI0 pin.

Figure 3.5 (24). Registers for Port 9

3.6 Chip Select/Wait Control

TMP96C141AF has a built-in chip select/wait controller used to control chip select (CSO - CS2 pins), wait (WAIT pin), and data bus size (8 or 16 bits) for any of the three block address areas.

3.6.1 Control Registers

Table 3.6 (1) shows control registers

One block address areas are controlled by 1-byte CS/WAIT control registers (B0CS, B1CS, and B2CS). Registers can be written to only when the CPU is in system mode. (There are two CPU modes: system and normal.) The reason is that the settings of these registers have an important effect on the system.

(1) Enable

Control register bit 7 (B0E, B1E, and B2E) is a master bit used to specify enable (1)/disable (0) of the setting. Resetting B0E and B1E to disable (0) and B2E to enable (1).

(2) System only specification

Control register bit 6 (B0SYS, B1SYS, and B2SYS) is used to specify enable/disable of the setting depending on the CPU operating mode (system or normal). Setting this bit to 0 enables setting (Address space for CS, Wait state, Bus size, etc.) regardless of the CPU operating mode; setting it to 1 enables setting in system mode but disables setting in normal mode. Resetting clears bit 6 to 0.

Bit 6 is mainly used when external memory data should not be accessed in normal mode (i.e., for system mode only memory data for the operating system).

(3) CS/CAS Waveform select

Control register bit 5 (B0CAS, B1CAS, and B2CAS) is used to specify waveform mode output from the chip select pin (CSO/CASO - CS2/CAS2). Setting this bit to 0 specifies CSO to CS2 waveforms; setting it to 1 specifies CASO to CAS2 waveforms.

Resetting clears bit 5 to 0.

(4) Data bus size select

Bit 4 (B0BUS, B1BUS, and B2BUS) of the control reg-

ister is used to specify data bus size. Setting this bit to 0 accesses the memory in 16-bit data bus mode; setting it to 1 accesses the memory in 8-bit data bus mode.

Changing data bus size depending on the access address is called dynamic bus sizing. Table 3.6 (2) shows the details of the bus operation.

(5) Wait control

Control register bits 3 and 2 (B0W1, 0; B1W1, 0; B2W1, 0) are used to specify the number of waits. Setting these bits to 00 inserts a 2-state wait regardless of the WAIT pin status. Setting them to 01 inserts a 1-state wait regardless of the WAIT status. Setting them to 10 inserts a 1-state wait and samples the WAIT pin status. If the pin is low, inserting the wait maintains the bus cycle until the pin goes high. Setting them to 11 completes the bus cycle without a wait regardless of the WAIT pin status.

Resetting sets these bits to 00 (2-state wait mode).

(6) Address area specification

Control register bits 1 and 0 (B0C1, 0; B1C1, 0; B2C1, 0) are used to specify the target address area. Setting these bits to 00 enables settings (CS output, Wait state, Bus size, etc.) as follows:

- * CS0 setting enabled when 7F00H to 7FFFH is accessed.
- * CS1 setting enabled when 480H to 7FFFH is accessed.
- * CS2 setting enabled when 8000H to 3FFFFFH is accessed, for the TMP96C141, which does not have a built-in ROM.

CS2 setting enabled when 10000H to 3FFFFFH is accessed for the TMP96CM40/TMP96PM40, which has built-in

ROM/PROM

Setting bits to 01 enables setting for all CS's blocks and outputs a low strobe signal (CSO/CASO ~ CS2/CAS2) from chip select pins when 400000H to 7FFFFFH is accessed. Setting bits to 10 enables them 800000H to BFFFFFH is accessed. Setting bits to 11 enables them when C00000H to FFFFFFH is accessed.

48

Table 3.6 (1) Chip Select/Wait Control Register

Code	Name	Address	7	6	5	4	3	2	1	0
			B0E	BOSYS	BOCAS	BOBUS	B0W1	B0W0	B0C1	B0C0
	Block0		W	W	W	W	W	W	W	W
BOCS	CS/WAIT	0068H	0	0	0	0	0	0	0	0
D003	control register	0068H	1 : CS/CAS Enable	1 : SYSTEM only	0 : <u>CSO</u> 1 : CASO	0 : 16-bit Bus 1 : 8-bit Bus	00 : 2 01 : 1 10 : 1 11 : 0	WAIT WAIT + n	01 : 400 10 : 800	1
			B1E	B1SYS	B1CAS	B1BUS	B1W1	B1W0	B1C1	B1C0
	Block1 CS/WAIT	0069H	W	W	W	W	W	W	W	W
B1CS			0	0	0	0	0	0	0	0
БІСЗ	control register	000911	1 : CS/CAS Enable	1 : SYSTEM only	0 : <u>CS1</u> 1 : <u>CAS1</u>	0 : 16-bit Bus 1 : 8-bit Bus	00 : 2 01 : 1 10 : 1 11 : 0	WAIT WAIT + n	01 : 400 10 : 800	0H ~ 7FFFH 0000H ~ 0000H ~ 0000H ~
			B2E	B2SYS	B2CAS	B2BUS	B2W1	B2W0	B2C1	B2C0
	Block2		W	W	W	W	W	W	W	W
B2CS	CCAMAIT	006AH	1	0	0	0	0	0	0	0
B200	control register	OUUAIT	1 : CS/CAS Enable	1 : SYSTEM only	0 : <u>CS2</u> 1 : <u>CAS2</u>	0 : 16-bit Bus 1 : 8-bit Bus	00 : 2 01 : 1 10 : 1 11 : 0	WAIT WAIT +n	00 : 800 01 : 400 10 : 800 11 : C00	0000H ~

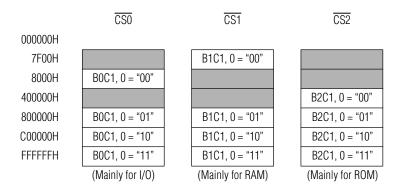
Note: With only block 2, enable (16-bit data bus, 2-wait mode) after reset.

Table 3.6 (2) Dynamic Bus Sizing

Operand	Operand	Memory	ODU Address	CPU	Data
Data Size	Start Address	Data Size	CPU Address	D15 - D8	D7 - D0
	2n + 0	8 bits	2n + 0	XXXXX	b7 - b0
8 bits	(even number)	16 bits	2n + 0	XXXXX	b7 - b0
	2n + 1	8 bits	2n + 1	XXXXX	b7 - b0
	(odd number)	16 bits	2n + 1	b7 - b0	XXXXX
	2n + 0	8 bits	2n + 0 2n + 1	XXXXX XXXXX	b7 - b0 b15 - b8
	(even number)	16 bits	2n + 0	b15 - b8	b7 - b0
16 bits	2n + 1	8 bits	2n + 1 2n + 2	XXXXX XXXXX	b7 - b0 b15 - b8
	(odd number)	16 bits	2n + 1 2n + 2	b7 - b0 xxxxx	xxxxx b15 - b8
	2n + 0 (even number)	8 bits	2n + 0 2n + 1 2n + 2 2n + 3	XXXXX XXXXX XXXXX	b7 - b0 b15 - b8 b23 - b16 b31 - b24
00 k#-	(even number)	16 bits	2n + 0 2n + 2	b15 - b8 b31 - b24	b7 - b0 b23 - b16
32 bits	2n + 1 (odd number)	8 bits	2n + 1 2n + 2 2n + 3 2n + 4	XXXXX XXXXX XXXXX	b7 - b0 b15 - b8 b23 - b16 b31 - b24
	(odd Humber)	16 bits	2n + 1 2n + 2 2n + 4	b7 - b0 b23 - b16 xxxxx	xxxxx b15 - b8 b31 - b24

xxxxx: During a read, data input to the bus is ignored. At write, the bus is at high impedance and the write strobe signal remains non-active.

3.6.2 Chip Select Image


An image of the actual chip select is shown below. Out of the whole memory area, address areas that can be specified are divided into four parts. Addresses from 000000H to 3FFFFH are divided differently: 7F00H to 7FFFH is specified for CS0; 480H to 7FFFH, for CS1; and 8000H to 3FFFFFH, for CS2. The reason is that a device other than ROM (i.e., RAM or I/O) might be connected externally.

The addresses 7F00 to 7FFFH (256 bytes) for CS0 are mapped mainly for possible expansions to external I/O.

The addresses 480H to 7FFFH (approximately 31K

bytes) for CS1 are mapped there mainly for possible extensions to external RAM.

The addresses 8000H to 3FFFFFH (approximately 4Mbytes) for CS2 are mapped mainly for possible extensions to external ROM. After reset, CS2 is enabled in 16-bit bus and 2-wait. With the TMP96C141AF, which does not have a built-in ROM, the program is externally read at address 8000H in this setting (16-bit bus, 2-wait). With the TMP96CM40F/TMP96PM40F, which has a built-in ROM, addresses from 8000H to FFFFFH are used as the internal ROM area; CS2 is disabled in this area. After reset, the CPU reads the program from the built-in ROM in 16-bit bus, 0-wait mode.

Supplement 1: Access priority is highest for built-in I/O, then built-in memory, and lowest for the chip select/wait controller.

Supplement 2: External areas other than $\overline{\text{CSO}}$ to $\overline{\text{CS2}}$ are accessed in 16-bit data bus (0 wait) mode.

When using the chip select/wait controller, do not specify the same address area more than once. (However, when addresses 7F00H - 7FFFH for CS0 and 480H - 7FFFH for CS1 are specified, in other words, specifications overlap, only the CS0 setting/pin is active.)

3.6.3 Example of Usage

Figure 3.6 (1) is an example in which an external memory is con-

nected to the TMP96C141AF. In this example, a ROM is connected using 16-bit Bus; a RAM is connected using 8-bit Bus.

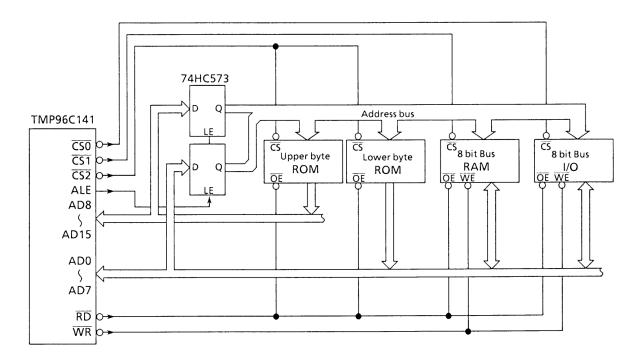


Figure 3.6 (1). Example of External Memory Connection (ROM = 16 bits, RAM and I/O = 8 bits)

Resetting sets pins $\overline{\text{CS0}}$ to $\overline{\text{CS2}}$ to input port mode. $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$ are set high due to an internal pull-up resistor; $\overline{\text{CS2}}$,

low due to an internal pull-down resistor. The program used to set these pins is as follows:

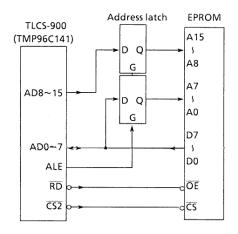
```
P4CR
        EQU
                 0EH
P4FC
        EQU
                 10H
BOCS
        EQU
                 68H
B1CS
        EQU
                 69H
B2CS
        EQU
                 6AH
LD
        (BOCS), 90H
                          ; CS0 = 8 bits, 2WAIT, 7F00H ~ 7FFFH
LD
        (B1CS), 9CH
                          ; CS1 = 8 bits, 0WAIT, 480H ~ 7EFFH
LD
         (B2CS), 84H
                          ; CS2 = 16 bits, 1WAIT, 8000H ~ 3FFFFFH
LD
         (P4CR), 07H
                         \overline{CSO}, \overline{CS1}, \overline{CS2} output mode setting
LD
         (P4FC), 07H
```

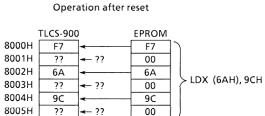
3.6.4 How to Start with an 8-Bit Data Bus

Resetting sets the $\overline{\text{CS2}}$ pin low due to an internal pull-down resistor; memory access starts in 16-bit data bus (2-wait)

mode. To start in 8-bit data bus mode, a special operation is required. Operation is as described in the example below:

B2CS EQU 6AH ; CS2 register address


ORG 8000H ; RESET address


<u>LDX</u> (B2CS), 9CH ; CS2 8-bit, 0WAIT, 8000H ~

After reset, the program reads the LDX (B2CS), 9CH instruction in 16-bit data bus mode. LDX is a 6-byte instruction: the 2nd, 4th and 6th bytes are handled as dummies (i.e., only codes in the 1st, 3rd and 5th bytes are actually used). Even if starting in 8-bit data bus mode, it is possible to program so that the LDX instruction is executed and the block 2

area (8000H - 3FFFFFH) is accessed in 8-bit data bus mode without any problem.

The above program does not include setting the P42/ CS2 pin to output; add a program to set the P4CR and P4FC registers as required.

?? : don't care

3.7 8-bit Timers

The TMP96C141AF contains two 8-bit timers (timers 0 and 1), each of which can be operated independently. The cascade connection allows these timers to be used as 16-bit timer. The following four operating modes are provided for the 8-bit timers.

- 8-bit interval timer mode (2 timers)
- 16-bit interval timer mode (1 timer)
- 8-bit programmable square wave pulse generation (PPG: variable duty with variable cycle) output mode (1 timer)
- 8-bit pulse width modulation (PWM: variable duty with con-

stant cycle) output mode (1 timer)

Figure 3.7 (1) shows the block diagram of 8-bit timer (timer 0 and timer 1).

Each interval timer consists of an 8-bit up-counter, 8-bit comparator, and 8-bit timer register. Besides, one timer flip-flop (TFF1) is provided for pair of timer 0 and timer 1.

Among the input clock sources for the interval timers, the internal clocks of ϕ T1, ϕ T4, ϕ T16, and ϕ T256 are obtained from the 9-bit prescaler shown in Figure 3.7 (2).

The operation modes and timer flip-flops of the 8-bit timer are controlled by three control registers TMOD, TFFCR, and TRUN.

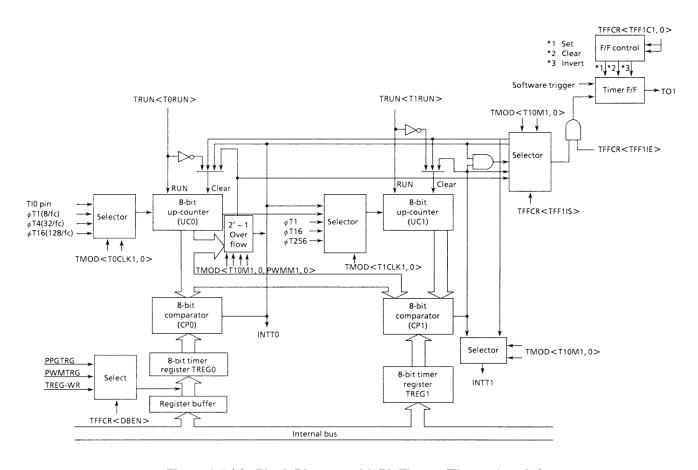


Figure 3.7 (1). Block Diagram of 8-Bit Timers (Timers 0 and 1)

Prescaler

This 9-bit prescaler generates the clock input to the 8-bit timers, 16-bit timer/event counters, and baud rate generators by further dividing the fundamental clock (fc) after it has been divided by 4 (fc/4).

Among them, 8-bit timer uses four types of clock:

 ϕ T1, ϕ T4, ϕ T16, and ϕ T256.

This prescaler can be run or stopped by the timer operation control register TRUN <PRRUN>. Counting starts when <PRRUN> is set to "1", while the prescaler is cleared to zero, and stops operation when <PRRUN> is set to "0". Resetting clears <PRRUN> to "0", which clears and stops the prescaler.

Cycle							
Input fc clock	16MHz	20MHz					
φT1 (8/fc)	0.5μs	0.4µs					
φ T4 (32/fc)	2.0µs	1.6 <i>μ</i> s					
φT16 (128/fc)	8.0µs	6.4µs					
φT256 (2048/fc)	128µs	102 µs					

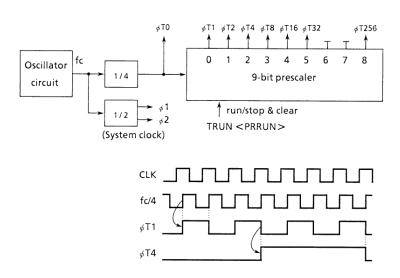


Figure 3.7 (2). Prescaler

② Up-counter

This is an 8-bit binary counter which counts up by the input clock pulse specified by TMOD.

The input clock of timer 0 is selected from the external clock from T10 pin and the three internal clocks ϕ T1 (8/fc), ϕ T4 (32/fc), and ϕ T16 (128/fc), according to the set value of TMOD register.

The input clock of timer 1 differs depending on the operation mode. When set to 16-bit timer mode, the overflow output of timer 0 is used as the input clock. When set to any other mode than 16-bit timer mode, the input clock is selected from the internal clocks ϕ T1 (8/fc), ϕ T16 (128/fc), and ϕ T256 (2048/fc) as well as the comparator output (match detection signal) of timer 0 according to the set value of TMOD register.

Example: When TMOD <T10M1, 0> = 01, the over flow output of timer 0 becomes the input clock of timer 1 (16 bit timer mode). When TMOD <T10M1, 0> = 00 and TMOD <T1CLK1, 0> = 01, ϕ T1 (8/fc) becomes the input of timer 1 (8 bit timer mode).

Operation mode is also set by TMOD register. When reset, it is initialized to TMOD <T01M1, 0> = 00 whereby the up-counter is placed in the 8-bit timer mode.

The counting and stop and clear of up-counter can be controlled for each interval timer by the timer operation control register TRUN. When reset, all up-counters will be cleared to stop the timers.

56

3 Timer register

This is an 8-bit register for setting an interval time. When the set value of timer registers TREGO, TREG1, matches the value of up-counter, the comparator match detect signal becomes active. If the set value is 00H, this signal becomes active when the up-counter overflows.

Timer register TREG0 is of double buffer structure, each of which makes a pair with register buffer.

The timer flip-flop control register TFFCR <DBEN> bit controls whether the double buffer structure in the

TREGO should be enabled or disabled. It is disabled when <DBEN> = 0 and enabled when they are set to 1.

In the condition of double buffer enable state, the data is transferred from the register buffer to the timer register when the 2ⁿ-1 overflow occurs in PWM mode, or at the PPG cycle in PPG mode. Therefore, during timer mode, the double buffer cannot be used.

When reset, it will be initialized to <DBEN> = 0 to disable the double buffer. To use the double buffer, write data in the timer register, set <DBEN> to 1, and write the following data in the register buffer.

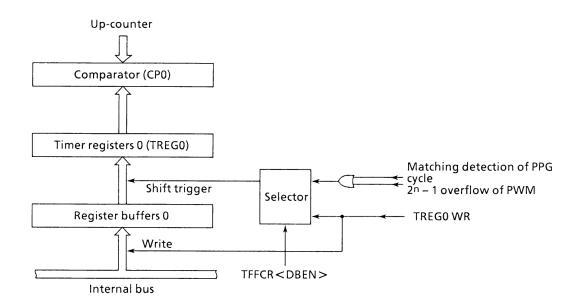


Figure 3.7 (3). Configuration of Timer Register 0

Note: Timer register and the register buffer are allocated to the same memory address. When <DBEN> = 0, the same value is written in

the register buffer as well as the timer register, while when <DBEN> = 1 only the register buffer is written.

The memory address of each timer register is as follows.

TREG0: 000022H TREG1: 000023H

All registers are write-only and cannot be read.

Comparator

A comparator compares the value in the up-counter with the values to which the timer register is set. When they match, the up-counter is cleared to zero and an interrupt signal (INTT0, INTT1) is generated. If the timer

flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

5 Timer flip-flop (timer F/F: TFF1)

The status of the timer flip-flop is inverted by the match detect signal (comparator output) of each interval timer and the value can be output to the timer output pins TO1 (also used as P71).

A timer F/F is provided for a pair of timer 0 and timer 1 and is called TFF1. TFF1 is output to TO1 pin.

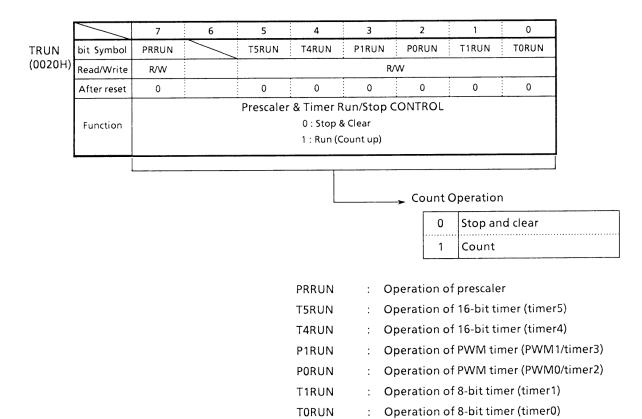


Figure 3.7 (4). Timer Operation Control Register (TRUN)

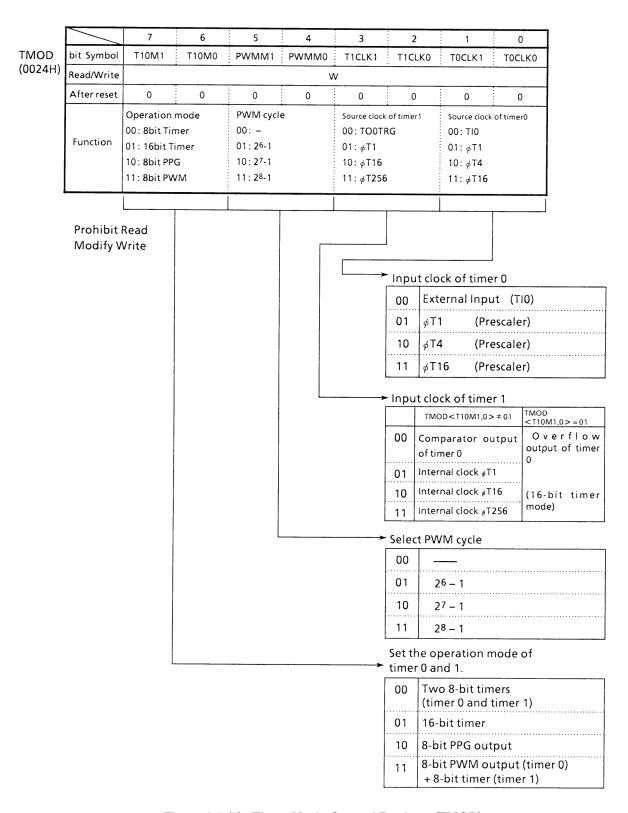


Figure 3.7 (5). Timer Mode Control Register (TMOD)

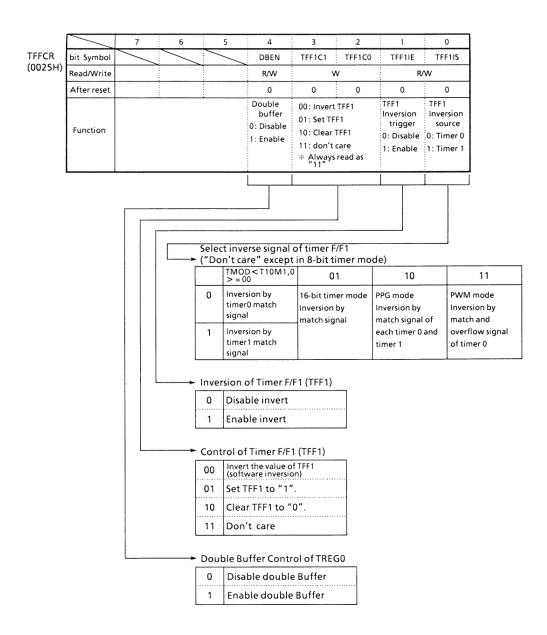


Figure 3.7 (6). Timer Flip-Flop Control Register (TFFCR)

The operation of 8-bit timers will be described below:

(1) 8-bit timer mode

Two interval timers 0, 1, can be used independently as 8-bit interval timer. All interval timers operate in the same manner, and thus only the operation of timer 1 will be explained below.

① Generating interrupts in a fixed cycle

To generate timer 1 interrupt at constant intervals using timer 1 (INTT1), first stop timer 1 then set the operation mode, input clock, and a cycle to TMOD and TREG1 register, respectively. Then, enable interrupt INTT1 and start the counting of timer 1.

Example: To generate timer 1 interrupt every 40 microseconds at fc = 16 MHz, set each register in the following manner.

		MSI	3						LSB	
		7	6	5	4	3	2	1	0	
TRUN	\leftarrow	-	Χ	-	_	-	-	0	-	Stop timer 1, and clear it to "0".
TMOD	\leftarrow	0	0	Χ	Χ	0	1	-	-	Set the 8-bit timer mode, and select ϕ T1 (0.5 μ s @ fc = 16MHz) as the input clock.
TREG1	\leftarrow	0	1	0	1	0	0	0	0	Set the timer register at 40 μ s ϕ T1 = 50H.
INTET10	\leftarrow	1	1	0	1	_	_	_	_	Enable INTT1, and set it to "Level 5".
TRUN	\leftarrow	1	Χ	_	_	_	_	1	_	Start timer 1 counting.

Note: x; don't care -; no change

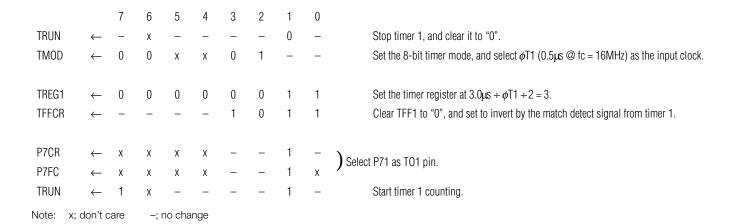
Use the following table for selecting the input clock.

Table 3.7 (1) 8-Bit Timer Interrupt Cycle and Input Clock

Input Clock	Interrupt Cycle (at fc = 16MHz)	Resolution	Interrupt Cycle (at fc = 20MHz)	Resolution
φT1 (8/fc)	0.5µs ~ 128µs	0.5µs	0.4µs ~ 102.4µs	0.4µs
φT4 (32/fc)	2µs ~ 512µs	2µs	1.6µs ~ 409.6µs	1.6µs
φT16 (128/fc)	8µs ~ 2.048ms	8µs	6.4µs ~ 1.638ms	6.4µs
φT256 (2048/fc)	128µs ~ 32.708ms	128µs	102.4μs ~ 2.621ms	128µs

Note: The input clock of timer 0 and timer 1 are different from as follows:

Timer 0: T10 input, ϕ T1, ϕ T4, ϕ T16


Timer 1: Match Output of Timer 0, ϕ T1, ϕ T16, ϕ T256

2 Generating a 50% duty square wave pulse

The timer flip-flop (TFF1) is inverted at constant intervals, and its status is output to timer output pin (TO1).

Example: To output a 3.0µs square wave pulse from

TO1 pin at fc = 16MHz, set each register in the following procedures. Either timer 0 or timer 1 may be used, but this example uses timer 1.

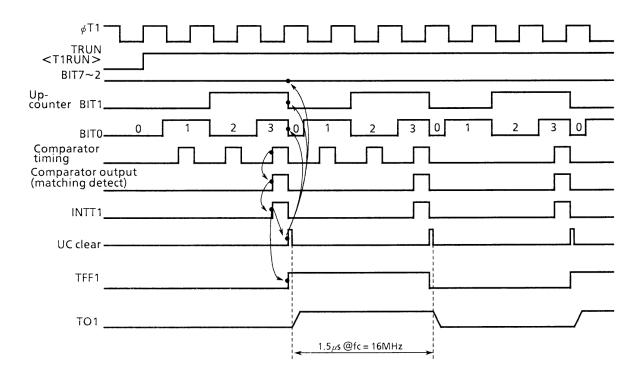


Figure 3.7 (7). Square Wave (50% Duty) Output Timing Chart

Making timer 1 count up by match signal from timer 0 comparator

Set the 8-bit timer mode, and set the comparator output of timer 0 as the input clock to timer 1.

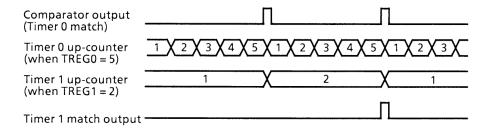


Figure 3.7 (8). Timer 1 Count Up by Timer 0

Output inversion with software

The value of timer flip-flop (TFF1) can be inverted, independent of timer operation.

Writing "00" into TFFCR <TFF1C1, 0> (memory address: 000025h of bit 3 and bit 2) inverts the value of TFF1.

⑤ Initial setting of timer flip-flop (TFF1)

The value of TFF1 can be initialized to "0" or "1", independent of timer operation.

For example, write "10" in TFFCR <TFF1C1, 0> to clear TFF1 to "0", while write "01" in TFFCR <TFF1C1, 0> to set TFF1 to "1".

Note: The value of timer register cannot be read.

(2) 16-bit timer mode

A 16-bit interval timer is configured by using the pair of timer 0 and timer 1.

To make a 16-bit interval timer by cascade connecting timer 0 and timer 1, set timer 0/timer 1 mode register TMOD <T10M1, 0> to "0, 1".

When set in 16-bit timer mode, the overflow output of timer 0 will become the input clock of timer 1, regardless of the set value of TMOD <T1CLK1, 0>. Table 3.7 (2) shows the relation between the cycle of timer (interrupt) and the selection of input clock.

Table 3.7 (2) 16-Bit Timer (Interrupt) and Input Clock

Input Clock	Interrupt Cycle (at fc = 16MHz)	Resolution	Interrupt Cycle (at fc = 20MHz)	Resolution
φT1 (8/fc)	0.5µs ~ 32.786ms	0.5µs	0.4µs ~ 26.214ms	0.4µs
φT4 (32/fc)	2µs ~ 131.072ms	2µs	1.6µs ~ 104.857ms	1.6µs
φT16 (128/fc)	8µs ~ 524.288ms	8µs	6.4μs ~ 419.430ms	6.4µs

The lower 8 bits of the timer (interrupt) cycle are set by the timer register TREGO, and the upper 8 bits are set by TREG1. Note that TREGO always must be set first. (Writing data into TREGO disables the comparator temporarily, and the comparator is restarted by writing data into TREG1.)

Setting example:

To generate an interrupt INTT1 every 0.5 seconds at fc = 16MHz, set the following values for timer registers TREGO and TREG:

When counting with input clock of ϕ T16 (8 μ s @ 16MHz)

 $0.5 \sec \div 8 \mu s = 62500 = F424H$

Therefore, set TREG1 = F4H and TREG0 = 24H, respectively.

The comparator match signal is output from timer 0 each time the up-counter UC0 matches TREG0, where the up-counter UC0 is not to be cleared.

With the timer 1 comparator, the match detect signal is output at each comparator timing when up-counter UC1 and TREG1 values match. When the match detect signal is output simultaneously from both comparators of timer 0 and timer 1, the up-counters UC0 and UC1 are cleared to "0", and the interrupt INTT1 is generated. If inversion is enabled, the value of the timer flip-flop TFF1 is inverted.

Example: When TREG1 = 04H and TREG0 = 80H

Figure 3.7 (9). Output Timer by 16-Bit Timer Mode

(3) 8-bit PPG (Programmable Pulse Generation) Output mode

Square wave pulse can be generated at any frequency and duty by timer 0 and timer 1. The output pulse may be either low-active or high-active. In this mode, timer 1 cannot be used.

Timer 0 outputs pulse to TO1 pin (also used as P70). In this mode, a programmable square wave is generated by inverting timer output each time the 8-bit up-

counter (UC0) matches the timer registers TREG0 and TREG1.

However, it is required that the set value of TREG0 is smaller than that of TREG1.

Though the up-counter (UC1) of timer 1 is not used in this mode, UC1 should be set for counting by setting TRUN <T1RUN> to 1.

Figure 3.7 (11) shows the block diagram for this mode.

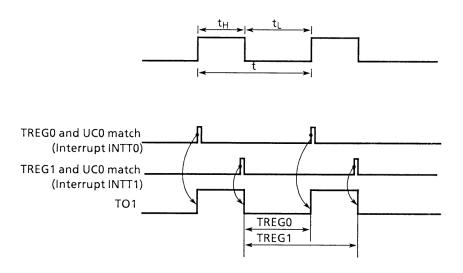


Figure 3.7 (10). 8-Bit PPG Output Waveforms

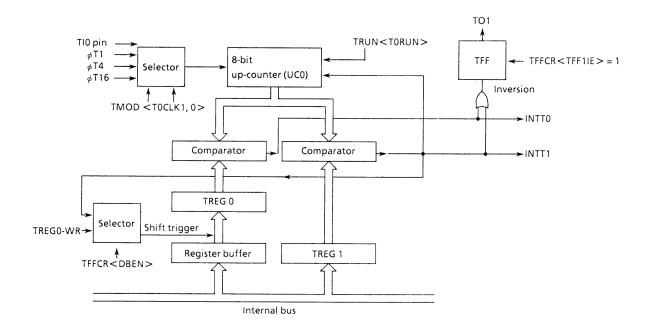


Figure 3.7 (11). Block Diagram of 8-Bit PPG Output Mode

When the double buffer of TREG0 is enabled in this mode, the value of register buffer will be shifted in TREG0 each time TREG1 matches UC0.

Use of the double buffer makes easy handling of low duty waves (when duty is varied).

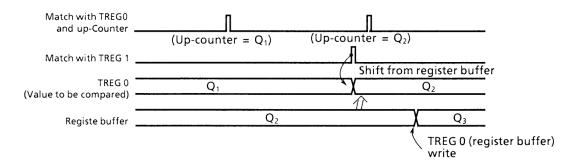
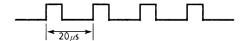



Figure 3.7 (12). Operation of Register Buffer

Example: Generating 1/4 duty 50KHz pulse @ fc = 16MHz)

• Calculate the value to be set for timer register.

To obtain the frequency 50KHz, the pulse cycle t should be: t = 1/50KHz = 20µs.

Given $\phi T1 = 0.5 \mu s @ 16MHz$),

Note: x; don't care

 $20\mu s \div 0.5\mu s = 40$

-; no change

Consequently, to set the timer register 1 (TREG1) to

TREG1 = 40 = 28H and then duty to 1/4, t x 1/4 = $20\mu s$ x 1/4 = $5\mu s$

 $5\mu s \div 0.5\mu s = 10$

Therefore, set timer register 0 (TREG0) to TREG0 = 10 = 0AH.

		7	6	5	4	3	2	1	0	
TRUN	\leftarrow	-	Χ	_	_	_	-	0	0	Stop timer 0, and clear it to "0".
TMOD	\leftarrow	1	0	Χ	Χ	Χ	Χ	0	1	Set the 8-bit PPG mode, and select ϕ T1 as input clock.
TREG0	\leftarrow	0	0	0	0	1	0	1	0	Write "OAH".
TREG1	\leftarrow	0	0	1	0	1	0	0	0	Write "28H".
TFFCR	\leftarrow	-	-	-	1	0	1	1	Χ	Sets TFF1 and enables the inversion and double buffer enable.
										→ Writing "10" provides negative logic pulse.
P7CR	\leftarrow	Χ	Χ	Χ	Χ	-	-	1	-	Set P71 as T01 pin.
P7FC	\leftarrow	Χ	Χ	Χ	Χ	_	-	1	Χ) sst as . o . p
TRUN	\leftarrow	1	Χ	_	_	_	-	1	1	Start timer 0 and timer 1 counting.

(4) 8-bit PWM Output mode

This mode is valid only for timer 0. In this mode, maximum 8-bit resolution of PWM pulse can be output. PWM pulse is output to TO1 pin (also used as P71) when using timer 0. Timer 1 can also be used as 8-bit timer.

Timer output is inverted when up-counter (UCO) matches the set value of timer register TREGO or when 2n - 1 (n = 6, 7, or 8; specified by T01MOD < PWM01,

0>) counter overflow occurs. Up-counter UC0 is cleared when 2n - 1 counter overflow occurs. For example, when n = 6, 6-bit PWM will be output, while when n = 7, 7-bit PWM will be output.

To use this PWM mode, the following conditions must be satisfied.

(Set value of timer register) <(Set value of 2ⁿ - 1

counter overflow)

(Set value of timer register ≠ 0)

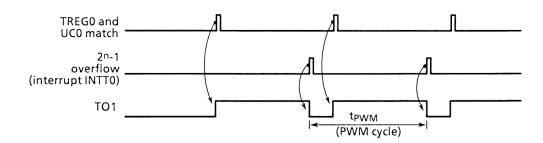


Figure 3.7 (13). 8-Bit PWM Waveforms

Figure 3.7 (14) shows the block diagram of this mode.

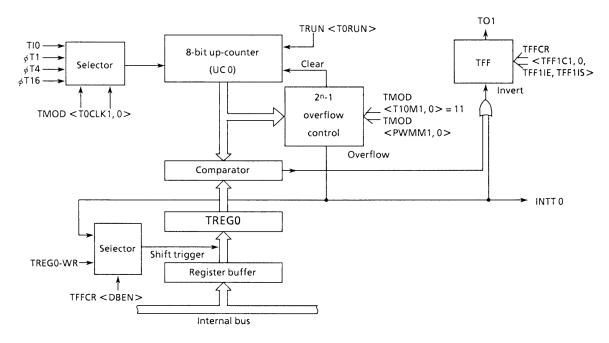


Figure 3.7 (14). Block Diagram of 8-Bit PWM Mode

In this mode, the value of register buffer will be shifted in TREG0 if 2^n - 1 overflow is detected when the double buffer of TREG0 is enabled.

Use of the double buffer makes the handling of small duty waves easy.

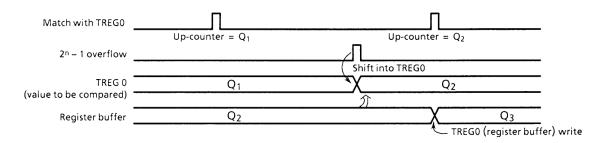
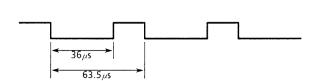



Figure 3.7 (15). Operation of Register Buffer

Example: To output the following PWM waves to TO1 pin at fc = 16MHz.

To realize 63.5 μ s of PWM cycle by ϕ T1 = 0.5 μ s (@ fc = 16MHz),

$$63.5\mu s \div 0.5\mu s = 127 = 2^7 - 1$$

Consequently, n should be set to 7. As the period of low level is 36 μ s, for ϕ T1 = 0.5 μ s, set the following value for TREG0:

 $36\mu s \div 0.5\mu s - 72 - 48H$

		MSI	3						LSB	
		7	6	5	4	3	2	1	0	
TRUN	\leftarrow	-	Χ	_	_	_	-	_	0	Stop timer 0, and clear it to "0".
TMOD	\leftarrow	1	1	1	0	-	-	0	1	Set 8-bit PWM mode (cycle: 2^7 - 1) and select ϕ T1 as the input clock.
TREG0	\leftarrow	0	1	0	0	1	0	0	0	Write "48H".
TFFCR	\leftarrow	Χ	Χ	Χ	Χ	1	0	1	Χ	Clears TFF1, enables the inversion and double buffer.
P7CR	\leftarrow	Χ	Χ	Χ	Χ	-	_	1	_	Set P71 as the T01 pin.
P7FC	\leftarrow	Χ	Χ	Χ	Χ	_	-	1	Χ) Set 171 as tile 101 pill.
TRUN	\leftarrow	1	Χ	-	-	-	-	_	1	Start timer 0 counting.

Note: x; don't care -; no change

Table 3.7 (3) PWM Cycle and the Setting of 2ⁿ -1 Counter

	P	WM Cycle (@ fc =16l	VIHz)	PWM Cycle (@ fc = 20 MHz)					
	φ T1	φ T4	φ T16	φ T1	φ T4	φ T16			
2 ⁶ -1	31.5µsec (31.7kHz)	126msec (7.9kHz)	0.50µsec (1.9kHz)	25.2µsec (39.0kHz)	100µsec (10.0kHz)	0.40msec (2.4kHz)			
2 ⁷ -1	63.5µsec (15.7kHz)	254msec (3.9kHz)	1.01µsec (0.98kHz)	50.8µsec (19.7kHz)	203µsec (4.9kHz)	0.81msec (1.2kHz)			
2 ⁸ -1	127µsec (7.8kHz)	510msec (1.9kHz)	2.04µsec (0.49kHz)	102µsec (9.80kHz)	408µsec (2.4kHz)	1.63msec (0.61kHz)			

(5) Table 3.7 (4) shows the list of 8-bit timer modes.

Table 3.7 (4) Timer Mode Setting Registers

Register Name		TM	IOD		TFFCR
Name of Function in	T10M	PWMM	T1CLK	TOCLK	TFF1IS
Function	Timer Mode	PWM0 Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
16-bit timer mode	01	-	-	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	-
8-bit timer x 2 channels	00	-	Lower timer match : φT1, φT16, φT256 (00, 01, 10, 11)	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	0 : Lower timer output 1 : Upper timer output
8-bit PPG x 1 channel	10	-	_	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	-
8-bit PWM x 1 channel	11	2 ⁶ - 1, 2 ⁷ - 1, 2 ⁸ - 1 (01, 10, 11)	-	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	-
8-bit timer x 1 channel	11	-	φΤ1, φΤ16, φΤ256 (01, 10, 11)	-	Output disabled

Note: -: don't care

3.8 8-Bit PWM Timer

The TMP96C141AF/TMP96CM40F/TMP96PM40F has two built-in 8-bit PWM timers (timers 2 and 3).

They have two operating modes.

- 8-bit PWM (pulse width modulation: variable duty at fixed interval) output mode
- 8-bit interval timer mode

Figure 3.8 (1) is a block diagram of 8-bit PWM timer (timers 2 and 3).

PWM timers consist of an 8-bit up-counter, 8-bit comparator, and 8-bit timer register. Two timer flip-flops (TFF2 for timer 2 and TFF3 for timer 3) are provided.

Input clocks ϕ P1, ϕ P4, and ϕ P16 for the PWM timers can be obtained using the built-in prescaler.

PWM timer operating mode and timer flip-flops are controlled by four control registers (P0MOD, P1MOD, PFFCR, and TRUN).

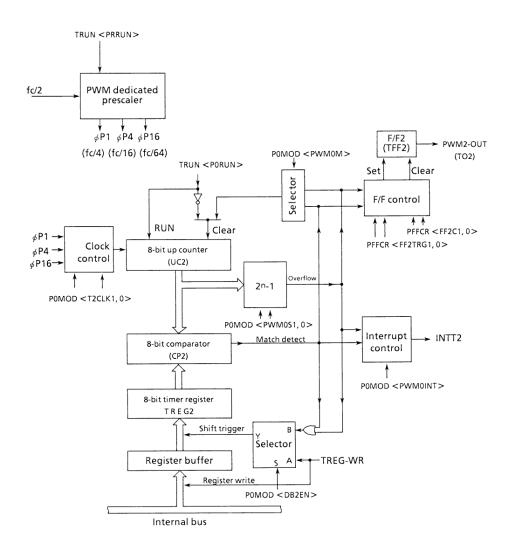


Figure 3.8 (1). Block Diagram of 8-Bit PWM Timer 0 (Timer 2)

Note: Block diagram for 8-bit PWM timer 1 (timer 3) is the same as the above diagram.

Prescaler

Generates input clocks dedicated to PWM timers by further dividing the fundamental clock (fc) after it has been divided by 2 (fc/2). Since the register used to control the prescaler is the same as the one for other timers, the prescaler cannot be operated independently.

The PWM timer uses three input clocks: ϕ /P1, ϕ /P4, and ϕ /P16.

Like the 9-bit prescaler described in the 8-bit timer section, this prescaler can be counted/stopped using bit 7 <PRRUN> of the timer operation control register TRUN. Setting <PRRUN> to 1 starts counting; setting it to 0 zero-clears and stops counting. Resetting clears <PRRUN> to 0, which clears and stops the prescaler.

Dedicated Prescaler Cycle

	16MHz	20MHz
φP1 (4/fc)	250ns	200ns
<i>φ</i> P4 (16/fc)	1µs	800ns
φP16 (64/fc)	4µs	3.2µsc

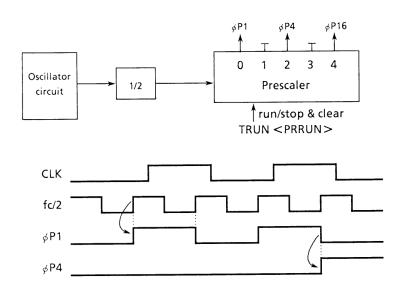


Figure 3.8 (2). Prescaler

② Up-counter

An 8-bit binary counter which counts up using the input clock specified by PWM mode register (P0MOD or P1MOD).

The input clock for the PWM0/PWM1 is selected from the internal clocks ϕ P1, ϕ P4, and ϕ P16 (PWM dedicated prescaler output) depending on the value set in the P0M0D/P1M0D register.

Operating mode is also set by P0MOD and P1MOD registers. At reset, they are initialized to P0MOD <PWM0M> = 0 and P1MOD <PWM1M> = 0, thus, the up-counter is in PWM mode. In PWM mode, the up-counter is cleared when a 2^n - 1 overflow occurs; in timer mode, the up-counter is cleared at compare and

match.

Count/stop and clear of the up-counter can be controlled for each PWM timer using the timer operation control register TRUN. Resetting clears all up-counters and stops timers.

3 Timer registers

Two 8-bit registers used for setting an interval time. When the value set in the timer registers (TREG 2 and 3) matches the value in the up-counter, the match detect signal of the comparator becomes active. Timer registers TREG2 and TREG3 are each paired with register buffer to make a double buffer structure.

72

TREG2 and TREG3 are controlled double buffer enable/disable by P0MOD <DB2EN> and P1MOD <DB3EN>: disabled when <DB2EN>/<DB3EN> = 0, enabled when <DB2EN>/<DB3EN> = 1.

Data is transferred from register buffer to timer when a 2^n - 1 overflow occurs in the PWM mode, or when compare and match occurs in 8-bit timer mode. That is, with a PWM timer, the timer mode can be operated

in double buffer enable state, unlike timer mode for timers 0 and 1.

At reset, <DB2EN>/<DB3EN> is initialized to 0 to disable double buffer. To use double buffer, write the data in the timer register at first, then set <DB2EN>/<DB3EN> to 1, and write the following data in the register buffer.

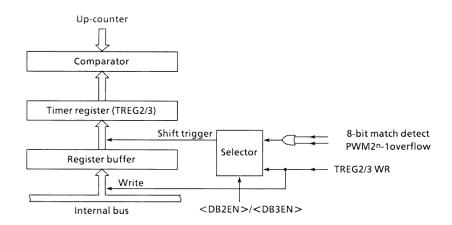


Figure 3.8 (3). Structure of Timer Registers 2 and 3

Note: The timer register and register buffer are allocated to the same memory address. When <DB2EN>/<DB3EN> = 0, the same value is written to both register buffer and timer register. When <DB2EN>/<DB3EN> = 1, the value is written to the register buffer only.

Memory addresses of the timer registers are as follows:

TREG2: 000026H

TREG3: 000027H

Both timer registers are write only; however, register buffer values can be read when reading the above addresses.

4 Comparator

Compares the value in the up-counter with the value in the timer register (TREG2/TREG3). When they match,

the comparator outputs the match detect signal. A timer interrupt (INTT2/INTT3) is generated at compare and match if the interrupt select bit <PWM01NT>/ <PWM1NT> of the mode register (P0M0D/P1M0D) is set to 1. In timer mode, the comparator clears the upcounter to 0 at compare and match. It also inverts the value of the timer flip-flop if timer flip-flop invert is enabled.

⑤ Timer flip-flop

The value of the timer flip-flop is inverted by the match detect signal (comparator output) of each interval timer or 2^n - 1 overflow. The value can be output to the timer output pin TO2/TO3 (also used as P72/P73).

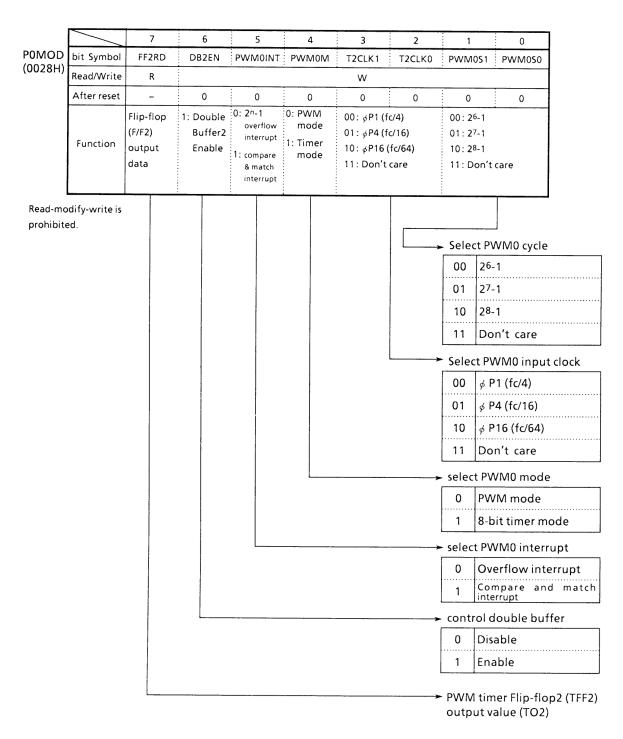


Figure 3.8 (4). 8-Bit PWM0 Mode Control Register

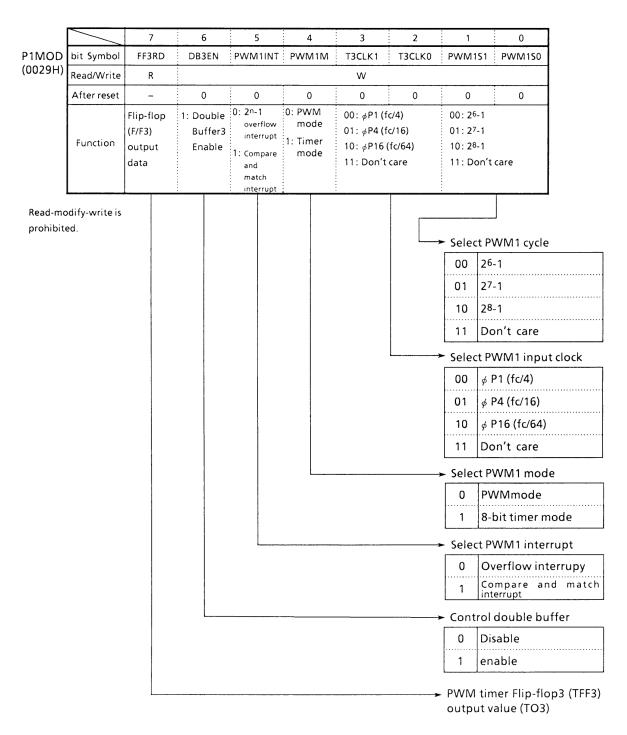


Figure 3.8 (5). 8-Bit PWM1 Mode Control Register

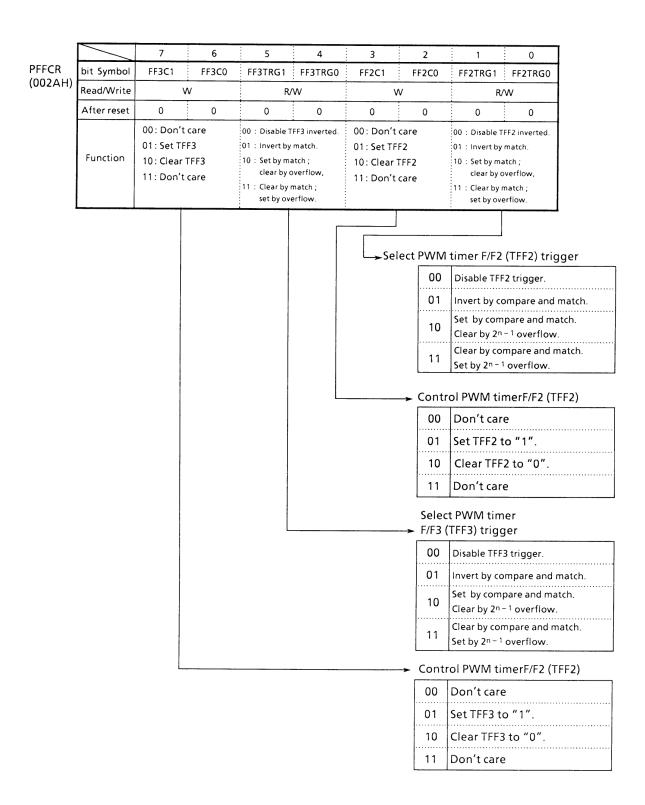


Figure 3.8 (6). 8-Bit PWM F/F Control Register

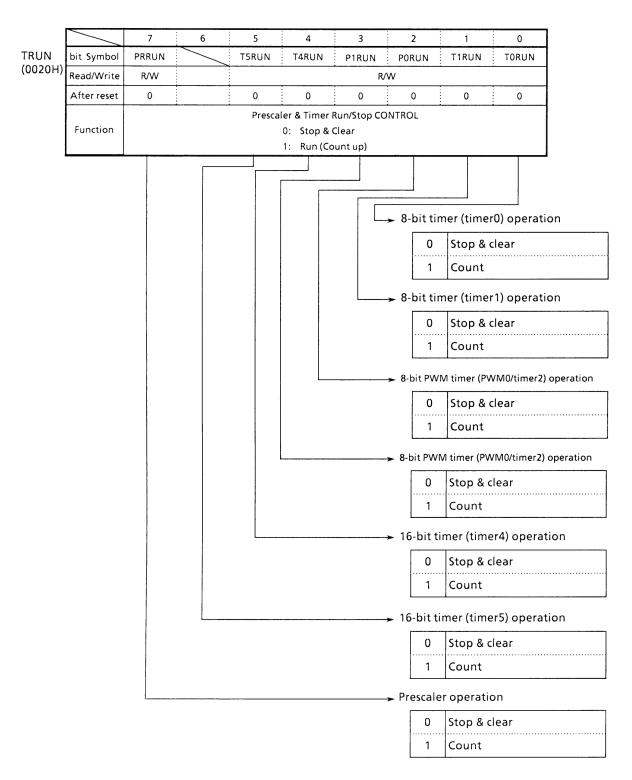


Figure 3.8 (7). Timer Operation Control Register (TRUN)

The following explains PWM timer operations.

(1) PWM timer mode

Both PWM timers can output 8-bit resolution PWM independently. Since both timers operate in exactly the same way, PWM0 is used for purposes of explanation. PWM output changes under the following two conditions.

Condition 1:

- TFF2 is cleared to 0 when the value in the upcounter (UC2) and the value set in the TREG2 match.
- TFF2 is set to 1 when a 2^n 1 counter overflow (n = 6, 7, or 8) occurs.

Condition 2:

- TFF2 is set to 1 when the value in the up-counter (UC2) and the value set in TREG2 match.
- TFF2 is cleared to 0 when a 2ⁿ 1 counter over flow (n = 6, 7, or 8) occurs.

The up-counter (UC2) is cleared by a 2ⁿ - 1 counter overflow.

The PWM timer can output 0% - 100% duty pulses because a 2^n - 1 counter overflow has a higher priority. That is, to obtain 0% output (always low), the mode used to set TFF2 to 0 due to overflow (PFFCR <FF2TRG1, 0> = 1, 0) must be set and 2^n - 1 (value for overflow) must be set in TREG2. To obtain 100% output (always high), the mode must be changed: PFFCR <FF2TRG1, 0> = 1,1 then the same operation is required.

PWM timing

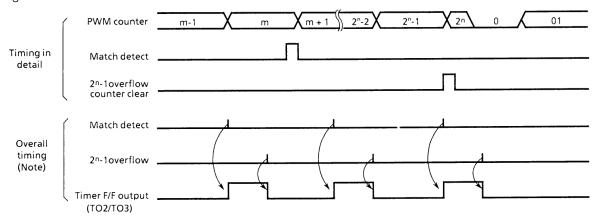


Figure 3.8 (8). Output Waves in PWM Timer Mode

Note: The above waves are obtained in a mode where the F/F is set by a match with the timer register (TREG) and reset by an overflow.

Figure 3.8 (9) is a block diagram of this mode.

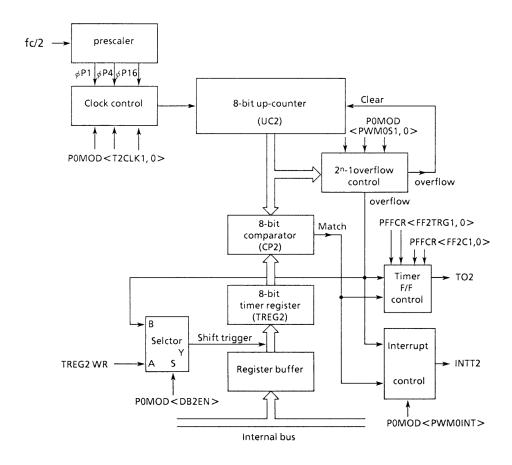


Figure 3.8 (9). Block Diagram of PWM Timer Mode (PWM0)

In this mode, enabling double buffer is very useful. The register buffer value shifts into TREG2 when a 2ⁿ -1 overflow is detected, when double buffer is enabled.

Using double buffer makes handling small duty waves easy.

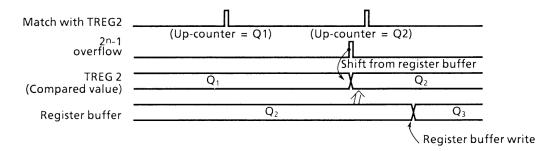
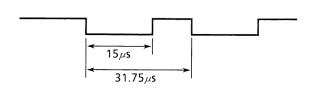



Figure 3.8 (10). Register Buffer Operation

Example: To output the following PWM waves to TO2 pin

using PWM0 at fc = 16MHz.

To implement 31.75 μs PWM cycle by ϕ P1 = 0.25 μs (@ fc = 16MHz)

$$31.75\mu s \div 0.25\mu s = 127 = 2^7 -1.$$

Consequently, set n to 7.

Since the low level cycle = $15\mu s$; for $\phi P1 = 0.25\mu s$

$$15\mu s \div 0.25 = 60 = 3CH$$

set the 3CH in TREG2.

TRUN POMOD	← ←	7 - -	6 x 0	5 - 0	4 - 0	3 - 0	2 0 0	1 - 0	0 - 1	Stops PWM0 and clears it to 0. Sets PWM (2^7 - 1) mode, input clock ϕ P1, overflow interrupt, and disables double buffer.
TREG2 POMOD PFFCR	← ← ←	0 - -	0 1 -	1 0 -	1 0 -	1 0 0	1 0 1	0 0 1	0 1 1	Writes 3CH. Enables double buffer. Sets TFF2 and a mode where TFF2 is set by compare and match, and cleared by overflow.
P7CR P7FC TRUN Note:	← ← ← x; don't	X X 1	X X X	x x - -; n	X X - o char	_ _ _ nge	1 1 1	- - -	_ x _	Sets P72 as the T02 pin. Starts PWM0 counting.

Table 3.8 (1) PWM Cycle and 2ⁿ -1 Counter Setting

	Formula		16MHz			20MHz	
	FUIIIIIII	<i>φ</i> P1	φ P4	φ P16	φ P1	φP4	φ P16
2 ⁶ -1	2 ⁶ -1 - <i>φ</i> Pn	15.8µsec (63kHz)	63.0µsec (16kHz)	252µsec (3.9kHz)	12.6µsec (79kHz)	50.4µsec (20kHz)	201µsec (4.9kHz)
2 ⁷ -1	2 ⁷ -1 - <i>φ</i> Pn	31.8µsec (31kHz)	127.0µsec (7.9kHz)	508µsec (1.9kHz)	25.4µsec (39kHz)	101.6µsec (9.8kHz)	406µsec (2.5kHz)
2 ⁸ -1	2 ⁸ -1 - <i>φ</i> Pn	63.8µsec (16kHz)	255.0µsec (3.9kHz)	1020µsec (0.98kHz)	51.0 µs ec (20kHz)	204.0µsec (4.9kHz)	816µsec (1.2kHz)

(2) 8-bit timer mode

Both PWM timers can be used independently as 8-bit interval timers. Since both timers operate in exactly the same way, PWM0 (timer 2) is used for the purposes of explanation.

① Generating interrupts at a fixed interval

To generate timer 2 interrupt (INTT2) at a fixed interval using PWM0 timer, first stop PWM0, then set the operating mode, input clock, and interval in the P0MOD and TREG2 registers. Next, enable INTT2 and start counting PWM0.

Example: To generate a timer 2 interrupt every $40\mu s$ at fc = 16MHz, set registers as follows:

		7	6	5	4	3	2	1	0	
TRUN	\leftarrow	-	Χ	-	_	_	0	_	-	Stops PWM0 and clears it to 0.
POMOD	\leftarrow	Χ	0	1	1	0	0	Χ	Χ	Sets 8-bit timer mode and selects ϕ P1 (0.25 μ s) and compare interrupt.
TREG2	\leftarrow	1	0	1	0	0	0	0	0	Sets $40\mu s/0.25\mu s = A0H$ in timer register.
INTEPW10	\leftarrow	-	-	-	-	1	1	0	0	Enables INTT2 and sets interrupt level 4.
TRUN	\leftarrow	1	Χ	_	_	_	1	_	-	Starts PWM0 counting.

Note: x; don't care -; no change

Select an input clock using the table below.

Table 3.8 (2) Interrupt Cycle and Input Clock Selection using 8-Bit Timer Mode

Input Clock	Interrupt Cycle (at fc = 16MHz)	Resolution	Interrupt Cycle (at fc = 20MHz)	Resolution
φP1 (4/fc)	0.25µs ~ 64µs	0.25µs	0.2µs ~ 51.2µs	0.2µs
φP4 (16/fc)	1µs ~ 256µs	1µs	0.8µs ~ 204.8µs	0.8µs
φP16 (64/fc)	4µs ~ 1024µs	4µs	3.2µs ~ 819.2µs	3.2µs

Note: To generate interrupts in 8-bit timer mode, bit 5 (interrupt control bit <PWM01NT>/<PWM1NT> of P0M0D/P1M0D) must be set to 1.

lows:

Note: x; don't care

2 Generating a 50% square wave

value to the timer output pin (TO2).

To generate a 50% square wave, invert the timer flip-flop at a fixed interval and output the timer flip-flop

-; no change

Example: To output a 3.0 \(\mu \) square wave at fc = 16MHz from TO2 pin, set register as fol-

3 2 TRUN 0 Stops PWM0 and clears it to 0. POMOD 0 0 Sets 8-bit timer mode and selects ϕ P1 (0.25 μ s) as the input clock. 0 1 TREG2 0 Sets $3.0\mu s/0.25\mu s/2=6$ in the timer register. 0 0 0 0 0 1 **PFFCR** 0 0 Clears TFF2 to 0 and inverts using comparator output. Sets P72 as the T02 pin. P7CR P7FC **TRUN**

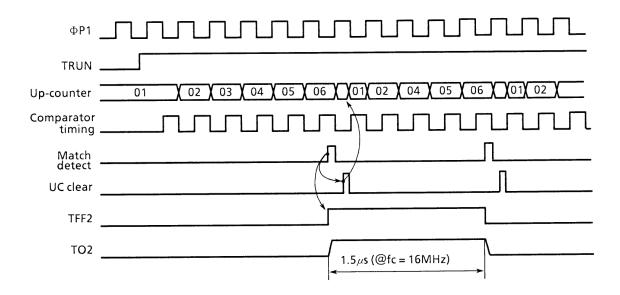


Figure 3.8 (11). Square Wave (50% Duty) Output Timing Chart

This mode is as shown in Figure 3.8 (12) below.

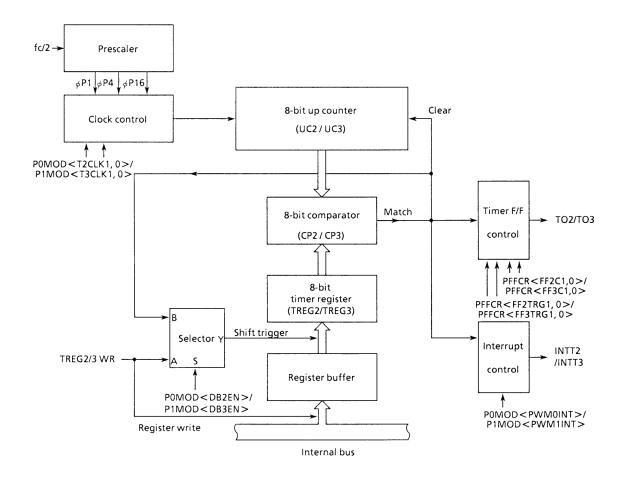


Figure 3.8 (12). Block Diagram of 8-Bit Timer Mode

3.9 16-Bit Timer

The TMP96C141AF has two (timer 4 and timer 5) multifunctional 16-bit timer/event counter with the following operation modes.

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable pulse generation (PPG) mode
- Frequency measurement mode
- Pulse width measurement mode
- Time differential measurement mode

Timer/event counter consists of 16-bit up-counter, two 16-bit timer registers, two 16-bit capture registers (one of them applies double-buffer), two comparators, capture input controller, and timer flip-flop and the control circuit.

Timer/event counter is controlled by four control registers: T4MOD/T5MOD, T4FFCR/T5FFCR, TRUN and T45CR.

Figure 3.9 (1) and (2) show the block diagram of 16-bit timer/event counter (timer 4 and timer 5).

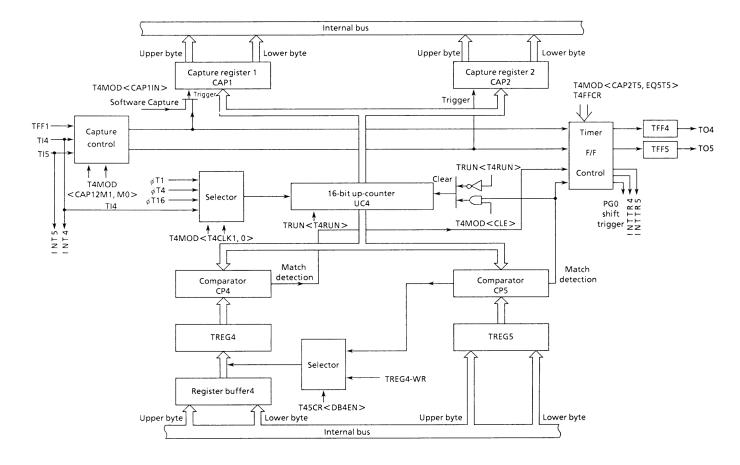


Figure 3.9 (1). Block Diagram of 16-Bit Timer (Timer 4)

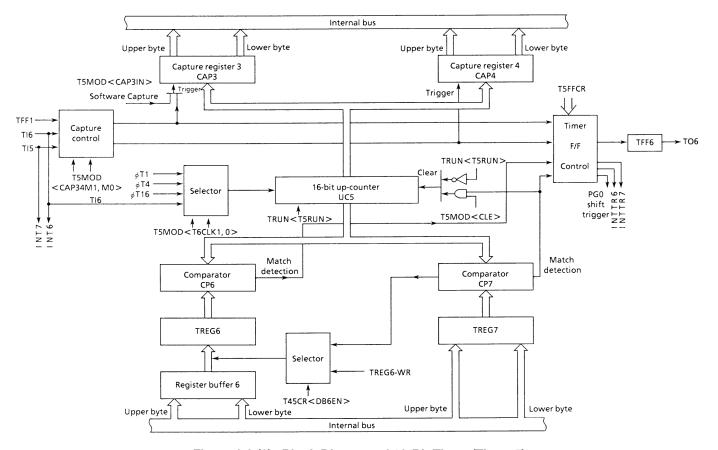


Figure 3.9 (2). Block Diagram of 16-Bit Timer (Timer 5)

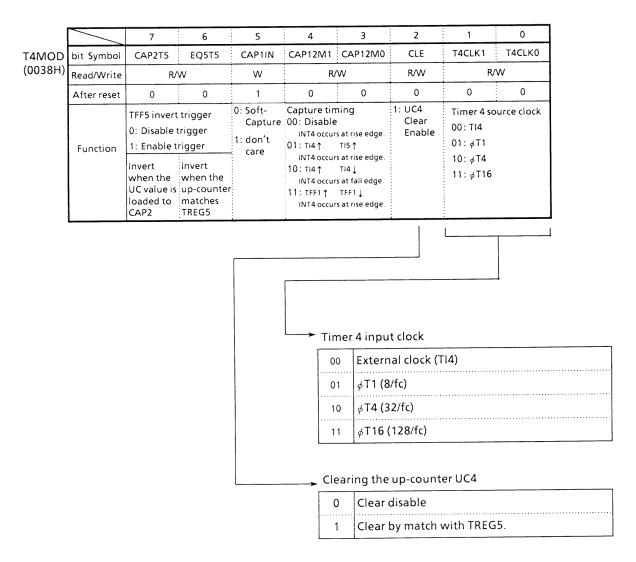
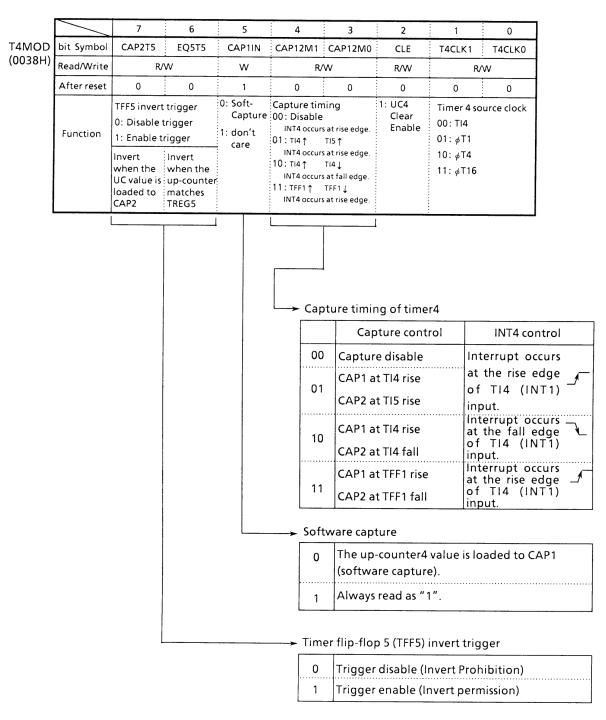



Figure 3.9 (3). 16-Bit Timer Mode Controller Register (T4MOD) (1/2)

CAP2T5: Invert when the up-counter value is loaded to CAP2 EQ5T5: Invert when the up-counter matches TREG5

Figure 3.9 (4). 16-Bit Controller Register (T4MOD) (2/2)

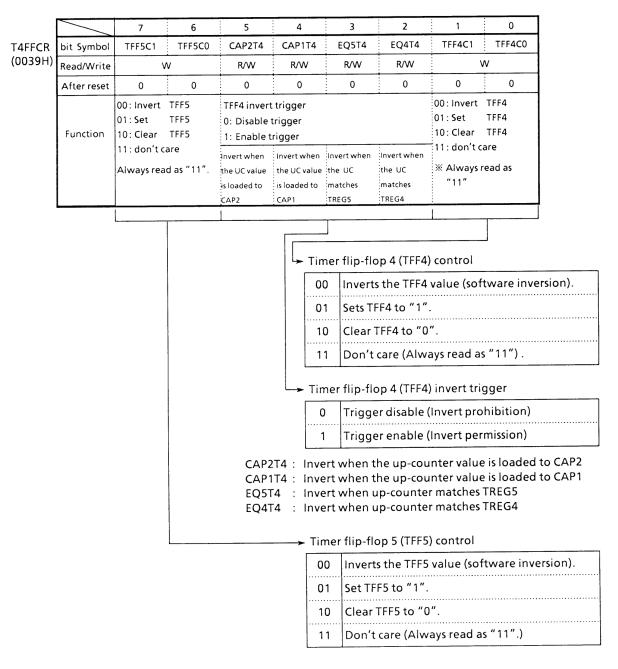


Figure 3.9 (5). 16-Bit Timer 4 F/F Control (T4FFCR)

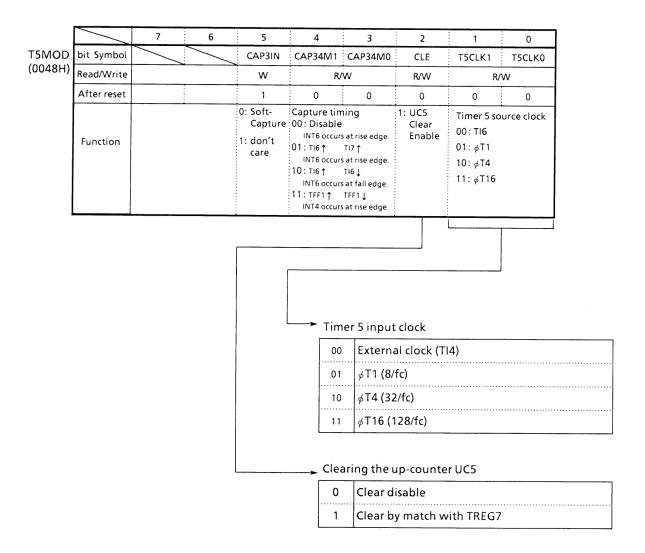


Figure 3.9 (6). 16-Bit Timer Mode Control Register (T5MOD) (1/2)

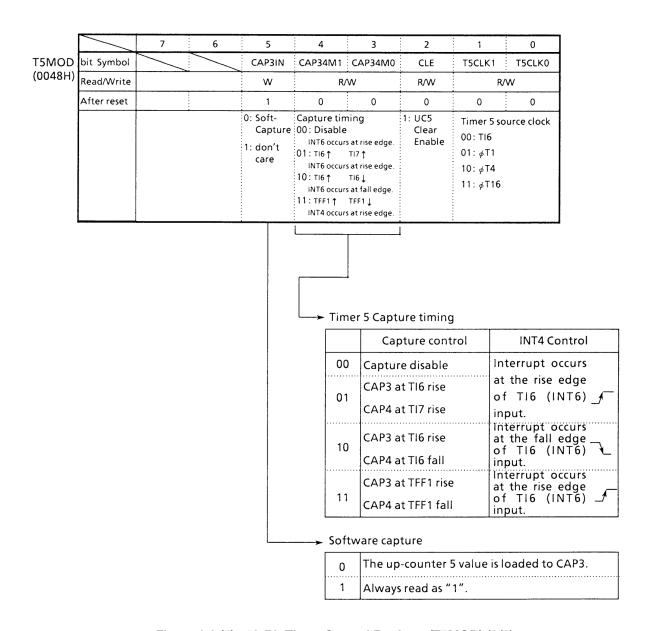
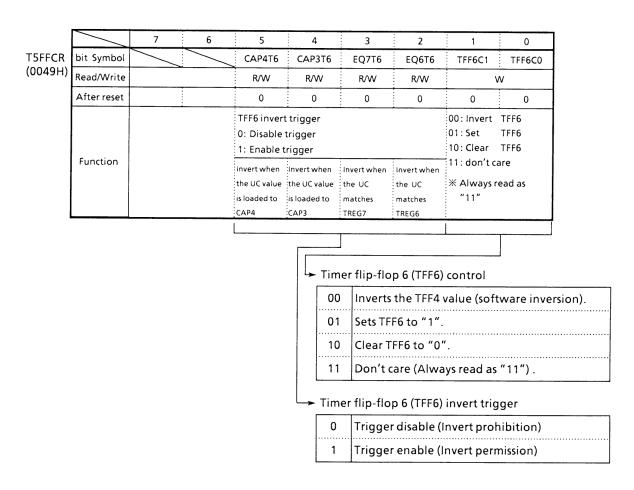



Figure 3.9 (7). 16-Bit Timer Control Register (T5MOD) (2/2)

CAP4T6 : Invert when the up-counter value is loaded to CAP4
CAP3T6 : Invert when the up-counter value is loaded to CAP3

EQ7T6 : Invert when up-counter matches TREG7
EQ6T6 : Invert when up-counter matches TREG6

Figure 3.9 (8). 16-Bit Timer 5 F/F Control (T5FFCR)

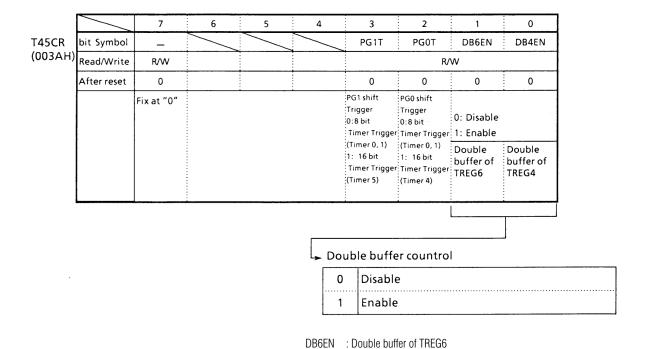


Figure 3.9 (9). 16-Bit Timer (Timer 4, 5) Control Register (T45CR)

DB4EN : Double buffer of TREG4

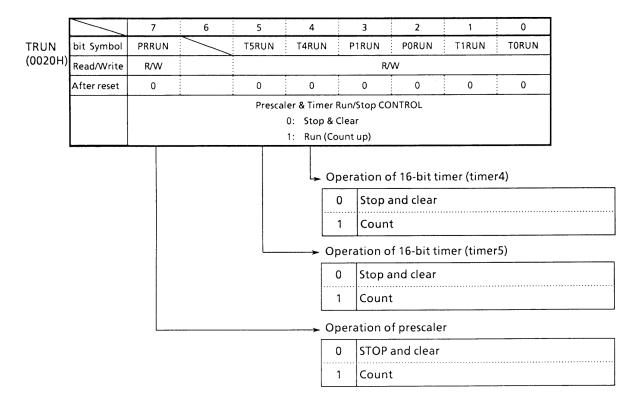


Figure 3.9 (10). Timer Operation Control Register (TRUN)

① Up-counter (UC4/UC5)

UC4/UC5 is a 16-bit binary counter which counts up according to the input clock specified by T4MOD <T4CLK1, 0> or T5MOD <T5CLK1, 0> register.

As the input clock, one of the internal clocks ϕ T1 (8/fc), ϕ T4 (32/fc), and ϕ T16 (128/fc) from 9-bit prescaler (also used for 8-bit timer), and external clock from TI4 pin (also used as P80/INT4 pin) or TI6 (also used as P84/INT6 pin) can be selected. When reset, it will be initialized to <T4CLK1, 0>/<T5CLK1, 0> = 00 to select TI4/TI6 input mode. Counting or stop and clear of the counter is controlled by timer operation control register TRUN <T4RUN, T5RUN>.

When clearing is enabled, up-counter UC4/UC5 will be cleared to zero each time it coincides matches the

② Timer Registers

running counter.

These two 16-bit registers are used to set the interval time. When the value of up-counter UC4/UC5 matches the set value of this timer register, the comparator match detect signal will be active.

timer register TREG5, TREG7. The "clear enable/disable"

If clearing is disabled, the counter operates as a free-

is set by T4MOD <CLE> and T5MOD <CLE>.

Setting data for timer register (TREG4, TREG5, TREG6 and TREG7) is executed using 2 byte date transfer instruction or using 1 byte date transfer instruction twice for lower 8 bits and upper 1 bits in order.

rre(G4
------	----

Upper 8 bits	Lower 8 bits
000031H	000030H

TREG5

Upper 8 bits	Lower 8 bits
000033H	000032H

TREG6

Upper 8 bits	Lower 8 bits
000041H	000040H

TREG7

Upper 8 bits	Lower 8 bits
000043H	000042H

TREG4 and TREG6 timer register is of double buffer structure, which is paired with register buffer. The timer control register T45CR <DB4EN, DB6EN> controls whether the double buffer structure should be enabled or disabled. : disabled when <DB4EN, DB6EN> = 0, while enabled when <DB4EN, DB6EN> = 1.

When the double buffer is enabled, the timing to transfer data from the register buffer to the timer register is at the match between the up-counter (UC4/UC5) and timer register TREG5/TREG7.

When reset, it will be initialized to <DB4EN, DB6EN> = 0, whereby the double buffer is disabled. To use the double buffer, write data in the timer register, set <DB4EN, DB6EN> = 1, and then write the following data in the register buffer.

TREG4, TREG6 and register buffer are allocated to

the same memory addresses 000030H/000031H/0000400H/000041H. When <DB4EN, DB6EN> = 0, same value will be written in both the timer register and register buffer. When <DB4EN, DB6EN> = 1, the value is written into only the register buffer.

3 Capture Register

These 16-bit registers are used to hold the values of the up-counter.

Data in the capture registers should be read by a 2-byte data load instruction or two 1-byte data load instruction, from the lower 8 bits followed by the upper 8 bits.

CAP 1

Upper 8 bits	Lower 8 bits
000035H	000034H

CAP 2

Upper 8 bits	Lower 8 bits
000037H	000036H

CAP 3

· · · ·	. •
Upper 8 bits	Lower 8 bits
000045H	000044H

CAP 4

Upper 8 bits	Lower 8 bits
000047H	000046H

This circuit controls the timing to latch the value of up-counter UC4/UC5 into (CAP1, CAP2)/(CAP3, CAP4).

The latch timing of capture register is controlled by register T4MOD < CAP12M1, 0>/T5MOD < CAP34M1, 0>.

When T4MOD <CAP12M1, 0>/T5MOD
 <CAP34M1. 0> = 00

Capture function is disabled. Disable is the efault on reset

When T4MOD < CAP12M1, 0>/T5MOD < CAP34M1, 0> = 01

Data is loaded to CAP1, CAP3 at the rise edge of TI4 pin (also used as P80/INT4) and TI6 pin (also used as P84/INT6) input, while data is loaded to CAP2, CAP4 at the rise edge of TI5 pin (also used as P81/INT5 and TI7 pin (also used as P85/INT7) input. (Time difference measurement)

When T4MOD <CAP12M1, 0>/T5MOD <CAP34M1, 0> = 10

Data is loaded to CAP1 at the rise edge of TI4 pin input and to CAP3 at the rise edge of TI6, while to CAP2, CAP4 at the fall edge. Only in this setting, interrupt INT4/INT6 occurs at fall edge. (Pulse width measurement)

When T4MOD < CAP12M1, 0>/T5MOD < CAP34M1, 0> = 11

Data is loaded to CAP1, CAP3 at the rise edge of timer flip-flop TFF1, while to CAP2, CAP4 at the fall edge.

Besides, the value of up-counter can be loaded to capture registers by software. Whenever "0" is written in T4MOD <CAPIN>, T5MOD <CAP31N> the current value of up-counter will be loaded to capture register CAP1/CAP3. It is necessary to keep the prescaler in RUN mode (TRUN <PRRUN> to be "1").

⑤ Comparator

These are 16-bit comparators which compare the up-counter UC4/UC5 value with the set value of (TREG4, TREG5)/(TREG6, TREG7) to detect the match. When a match is detected, the comparators generate an interrupt (INTT4, INTT5)/(INTT6, INTT7) respectively. The up-counter UC4/UC5 is cleared only when UC4/UC5

matches TREG5/TREG7. (The clearing of up-counter UC4/UC5 can be disabled by setting T4MOD <CLE>/ T5MOD <CLE> = 0.)

© Timer Flip-Flop (TFF4/TFF6)

This flip-flop is inverted by the match detect signal from the comparators and the latch signals to the capture registers. Disable/enable of inversion can be set for each element by T4FFCR <CAP2T4, CAP1T4, EQ5T4, EQ4T4>/T6FFCR <CAP4T6, CAP3T6, EQ7T6, EQ6T6>. TFF4/TFF6 will be inverted when "00" is written in T4FFCR <TFF4C1, 0>/T6FFCR <TFF6C1, 0>. Also it is set to "1" when "10" is written, and cleared to "0" when "10" is written. The value of TFF4/TFF6 can be output to the timer output pin TO4 (also used as P82) and TO6 (also used as P86).

Timer Flip-Flop (TFF5)

This flip-flop is inverted by the match detect signal from the comparator and the latch signal to the capture register CAP2. TFF5 will be inverted when "00" is written in T4FFCR <TFF5C1, 0>/T6FFCR <TFF6C1, 0>. Also it is set to "1" when "10" is written, and cleared to "0" when "10" is written. The value of TFF5 can be output to the timer output pin TO5 (also used as P82).

Note: This flip-flop (TFF5) is contained only in the 16-bit timer 4.

(1) 16-bit Timer Mode

Timer 4 and 5 operate independently.

Since both timers operate in exactly the same way, timer 4 is used for the purposes of explanation.

Generating interrupts at fixed intervals:

In this example, the interval time is set in the timer register TREG5 to generate the interrupt INTTR5.

			7	6	5	4	3	2	1	0
TF	RUN	\leftarrow	-	Χ	_	0	-	_	-	-
IN	TET54	\leftarrow	1	1	0	0	1	0	0	0
ŢΖ	IFFCR	\leftarrow	1	1	0	0	0	0	1	1
ŢΖ	IMOD	\leftarrow	0	0	1	0	0	1	*	*
						(**	= 01, 1	0, 11)		
TF	REG5	\leftarrow	*	*	*	*	*	*	*	*
			*	*	*	*	*	*	*	*
TF	RUN	\leftarrow	1	Χ	-	1	-	-	-	-
Note: x; don't care -; no change										

Stop timer 4.

Enable INTTR5 and sets interrupt level 4. Disables

INTTR4.

Disable trigger.

Select internal clock for input and disable the capture function.

Set the interval timer (16 bits).

Start timer 4.

(2) 16-bit Event Counter Mode

In 16-bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TI4/TI6 pin input) as the input clock. To read the value of the

counter, first perform "software capture" once and read the captured value.

The counter counts at the rise edge of TI4/TI6 pin input. TI4/TI6 pin can also be used as P80/INT4 and P84/INT6. Since both timers operate in exactly the same way, timer 4 is used for the purposes of explanation.

		7	6	5	4	3	2	1	0	
TRUN	\leftarrow	-	Χ	_	0	_	_	_	-	Stop timer 4.
P8CR	\leftarrow	-	_	_	_	_	_	_	0	Set P80 to input mode.
INTET54	\leftarrow	1	1	0	0	1	0	0	0	Enable INTTR5 and sets interrupt level 4, while
										disables INTTR4.
T4FFCR	\leftarrow	1	1	0	0	0	0	1	1	Disable trigger.
T4M0D	\leftarrow	0	0	1	0	0	1	0	0	Select TI4 as the input clock.
TREG5	\leftarrow	*	*	*	*	*	*	*	*	Set the number of counts (16 bits).
TRUN	\leftarrow	1	Х	_	1	_	_	_	_	Start timer 4.

Note: When used as an event counter, set the prescaler in RUN mode.

(3) 16-bit Programmable Pulse Generation (PPG) Output Mode

Since both timers operate in exactly the same way, timer 4 is used for the purposes of explanation.

The PPG mode is obtained by inversion of the timer

flip-flop TFF4 that is to be enabled by the match of the up-counter UC4 with the timer register TREG4 or 5 and to be output to TO4 (also used as P82). In this mode, the following conditions must be satisfied.

(Set value of TREG4) < (Set value of TREG5)

		7	6	5	4	3	2	1	0	
TRUN	\leftarrow	-	Χ	_	0	-	_	-	_	Stop timer 4.
TREG4	\leftarrow	*	*	*	*	*	*	*	*	Set the duty (16 bits).
TREG5	\leftarrow	*	*	*	*	*	*	*	*	Set the cycle (16 bits).
T45CR	\leftarrow	0	Χ	Х	Χ	-	_	-	1	Double buffer of TREG4 enable.
										(Changes the duty and cycle at the interrupt INTTR5)
T4FFCR	\leftarrow	1	1	0	0	1	1	0	0	Set the mode to invert TFF4 at the match with
										TREG4/TREG5, and also sets TFF4 to "0".
T4M0D	\leftarrow	0	0	1	0	0	1	*	*	Select internal clock for input and disables the capture function.
					(**:	= 01, 1	0, 11)			
P8CR	\leftarrow	-	-	_	_	-	1	-	_	Assign P82 as T04.
P8FC	\leftarrow	Χ	-	Х	Χ	-	1	Χ	Χ)g
TRUN	\leftarrow	1	Χ	_	1	-	_	-	_	Start timer 4.
Note: x;	Note: x; don't care -; no change									

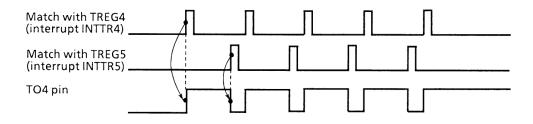


Figure 3.9 (11). Programmable Pulse Generation (PPG) Output Waveforms

When the double buffer of TREG4 is enabled in this mode, the value of register buffer 4 will be shifted in TREG4

at match with TREG5. This feature makes easy the handling of low duty waves.

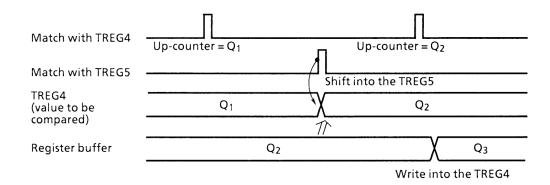


Figure 3.9 (12). Operation of Register Buffer

Shows the block diagram of this mode.

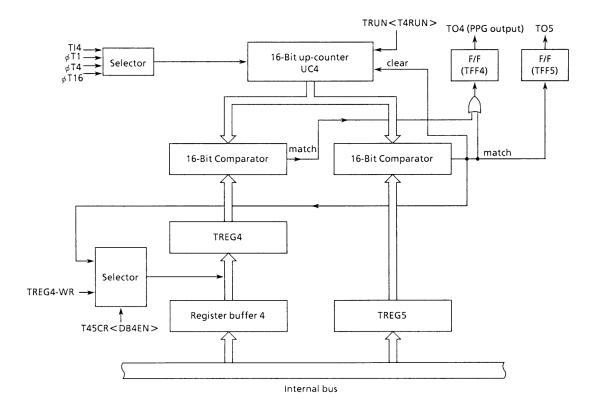


Figure 3.9 (13). Block Diagram of 16-Bit PPG Mode

(4) Application Examples of Capture Function

The loading of up-counter (UC4) values into the capture registers CAP1 and CAP2, the timer flip-flop TFF4 inversion due to the match detection by comparators CP4 and CP5, and the output of TFF4 status to TO4 pin can be enabled or disabled. Combined with interrupt function, they can be applied in many ways, for example:

- ① One-shot pulse output from external trigger pulse
- ② Frequency measurement
- 3 Pulse width measurement
- 4 Time difference measurement

① One-Shot Pulse Output from External Trigger Pulse

Set the up-counter UC4 in free-running mode with the internal input clock, input the external trigger pulse from TI4 pin, and load the value of up-counter into capture register CAP1 at the rise edge of the TI4 pin. Then set to T4MOD <CAP12M1, 0> = 01.

When the interrupt INT4 is generated at the rise edge of TI4 input, set the CAP1 value (c) plus a delay time (d) to TREG4 (= c + d), and set the above set value (c + d) plus a one-shot pulse width (p) to TREG5 (= c + d + p). When the interrupt INT4 occurs the T4FFCR <EQ5T4, EQ4T4> register should be set that the TFF4 inversion is enabled only when the up-counter value matches TREG4 or TREG5. When interrupt INTTR5 occurs, this inversion will be disabled.

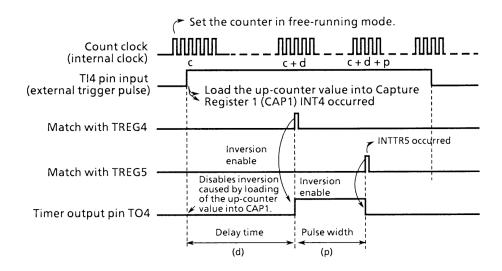
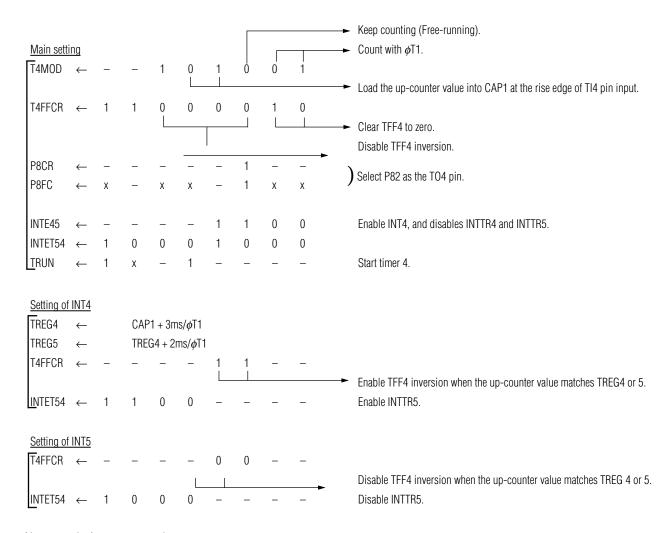



Figure 3.9 (14). One-Shot Pulse Output (with Delay)

Setting Example: To output 2ms one-shot pulse with 3ms delay to the external trigger pulse to Tl4 pin.

Note: x; don't care -; no change

When delay time is unnecessary, invert timer flip-flop TFF4 when the up-counter value is loaded into capture register 1 (CAP1), and set the CAP1 value (c) plus the one-shot pulse width (p) to TREG5 when the interrupt INT4 occurs. The TFF4

inversion should be enabled when the up-counter (UC4) value matches TREG5, and disabled when generating the interrupt INTTR5.

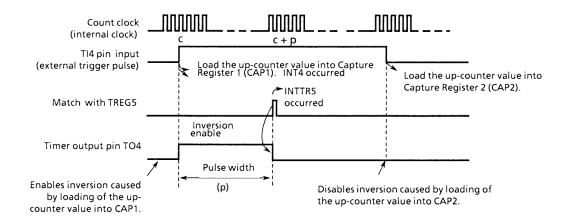


Figure 3.9 (15). One-Shot Pulse Output (without Delay)

② Frequency Measurement

The frequency of the external clock can be measured in this mode. The clock is input through the TI4 pin, and its frequency is measured by the 8-bit timers (Timer 0 and Timer 1) and the 16-bit timer/event counter (Timer 4).

The TI4 pin input should be selected for the input clock of Timer 4. The value of the up-counter is loaded

into the capture register CAP1 at the rise edge of the timer flip-flop TFF1 of 8-bit timers (Timer 0 and Timer 1), and into CAP2 at its fall edge.

The frequency is calculated by the difference between the loaded values in CAP1 and CAP2 when the interrupt (INTT0 or INTT1) is generated by either 8-bit timer.

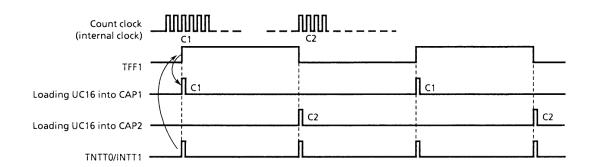


Figure 3.9 (16). Frequency Measurement

For example, if the value for the level "1" width of TFF1 of the 8-bit timer is set to 0.5 sec. and the differ-

ence between CAP1 and CAP2 is 100, the frequency will be 100/0.5 [sec.] = 200 [Hz].

③ Pulse Width Measurement

This mode allows measuring the "H" level width of an external pulse. While keeping the 16-bit timer/event counter counting (free-running) with the internal clock input, the external pulse is input through the TI4 pin. Then the capture function is used to load the UC4 values into CAP1 and CAP2 at the rising edge and falling edge of the

external trigger pulse respectively. The interrupt INT4 occurs at the falling edge of TI4.

The pulse width is obtained from the difference between the values of CAP1 and CAP2 and the internal clock cycle.

For example, if the internal clock is 0.8 microseconds and the difference between CAP1 and CAP2 is 100, the pulse width will be $100 \times 0.8 = 80$ microseconds.

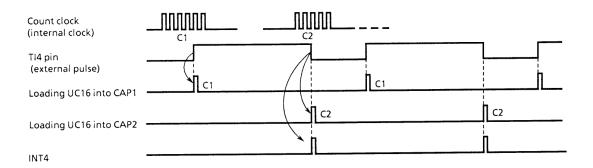


Figure 3.9 (17). Pulse Width Measurement

Note: Only in this pulse width measuring mode (T4MOD <CAP12M1, 0> = 10), external interrupt INT4 occurs at the falling edge of TI4 pin input. In other modes, it occurs at the rising edge.

The width of "L" level can be measured from the difference between the first C2 and the second C1 at the second INT4 interrupt.

4 Time Difference Measurement

This mode is used to measure the difference in time between the rising edges of external pulses input through TI4 and TI5.

Keep the 16-bit timer/event counter (Timer 4) counting (free-running) with the internal clock, and load the UC4 value into CAP1 at the rising edge of the input pulse to TI4. Then the interrupt INT4 is generated.

Similarly, the UC4 value is loaded into CAP2 at the rising edge of the input pulse to TI5, generating the interrupt INT5.

The time difference between these pulses can be obtained from the difference between the time counts at which loading the up-counter value into CAP1 and CAP2 has been done.

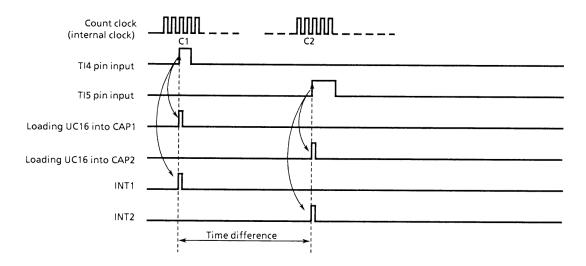


Figure 3.9 (18). Time Difference Measurement

(5) Different Phased Pulses Output Mode

In this output mode, signals with any different phase can be outputted by free-running up-counter UC4.

When the value in up-counter UC4 and the value in TREG4 (TREG5) match, the value in TFF4 (TFF5) is inverted and output to TO4 (TO5).

This mode can only be used by 16-bit timer 4.

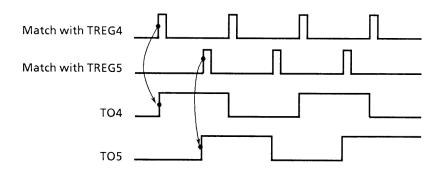


Figure 3.9 (19). Phase Output

Cycles (counter overflow time) of the above output waves are listed below.

	16MHz	20MHz
φT1	1.024msec	0.819msec
<i>φ</i> T4	4.096msec	3.277msec
φ T16	16.38 msec	13.11 msec

3.10 Stepping Motor Control/Pattern Generation Port

The TMP96C141AF has two channels (PG0 and PG1) of 4-bit hardware stepping motor control/pattern generation (herein after called PG) which actuate in synchronization with the (8-bit/16-bit) timers. The PG (PG0 and PG1) are shared in 8-bit I/O ports P6.

Channel 0 (PG0) is synchronous with 8-bit timer 0 or timer 1, 16-bit timer 5, to update the output.

The PG ports are controlled by control registers (PG01CR) and can select either stepping motor control mode or pattern generation mode. Each bit of the P6 can be used as

the PG port.

PGO and PG1 can be used independently.

All PG operate in the same manner except the following points, and thus only the operation of PG0 will be explained below.

Differences between PG0 and PG1

	PG0	PG1
Trigger Signal	from Timer 4	from Timer 5

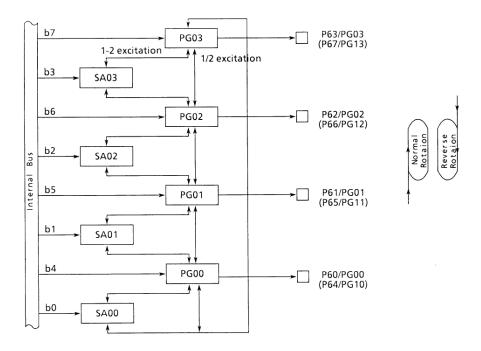


Figure 3.10 (1). Port 6/PG Circuit

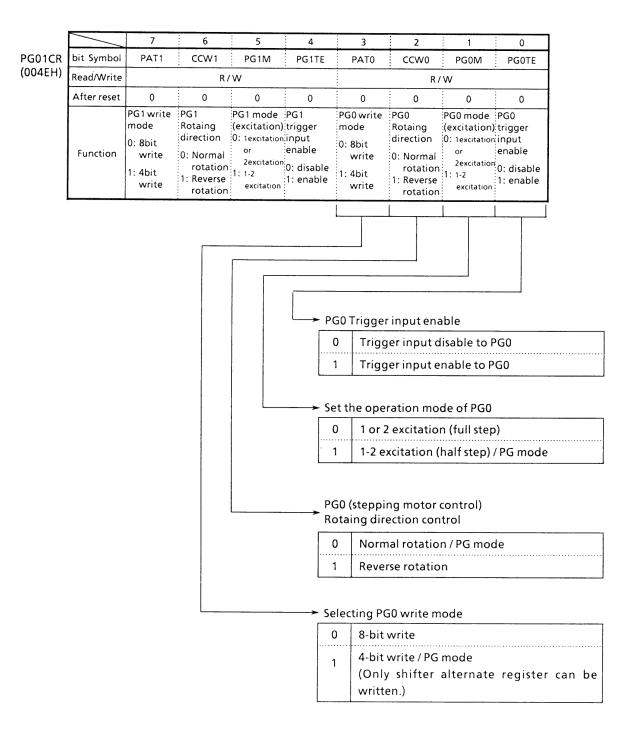


Figure 3.10 (2a). Pattern Generation Control Register (PG01CR)

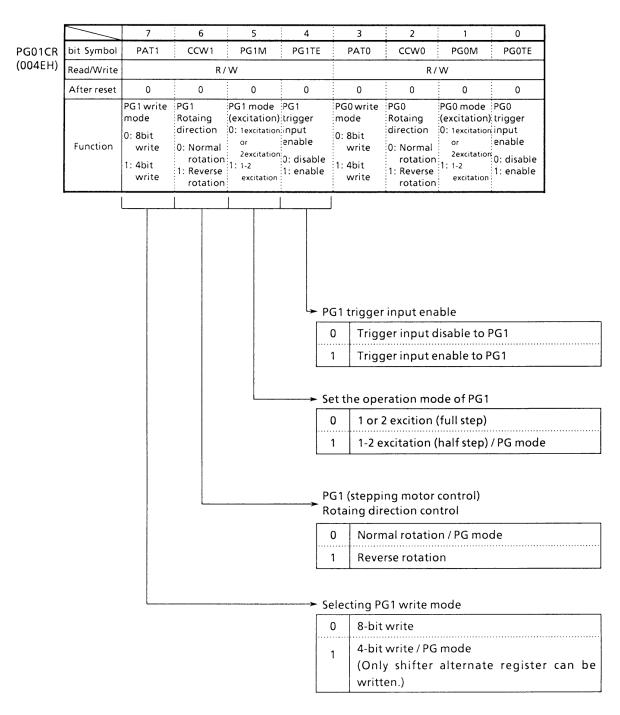


Figure 3.10 (2b). Pattern Generation Control Register (PG01CR)

		7	6	5	4	3	2	1	0
PGOREG (004CH)	bit Symbol	PG03	PG02	PG01	PG00	SA03	SA02	SA01	SA00
	Read/Write		,	W		R/W			
	After reset	0	0	0	0	Undefined			
	Function			PG0) output latch r the PG port allows		Shift alternate register 0 For the PG mode (4-bit write) register			

Prohibit Read modify write

Figure 3.10 (3). Pattern Generation 0 Register (PG0REG)

PG1REG (004DH)

		7	6	5	4	3	2	1	0
bit S	Symbol	PG13	PG12	PG11	PG10	SA13	SA12	SA11	SA10
Rea	d/Write			W		R/W			
Afte	r reset	0 0 0 Undefined							
Fun	ction			PG1) output latch r the PG port allows		Shift alternate register 1 For the PG mode (4-bit write) register			

Prohibit Read modify write

Figure 3.10 (4). Pattern Generation 1 Register (PG1REG)

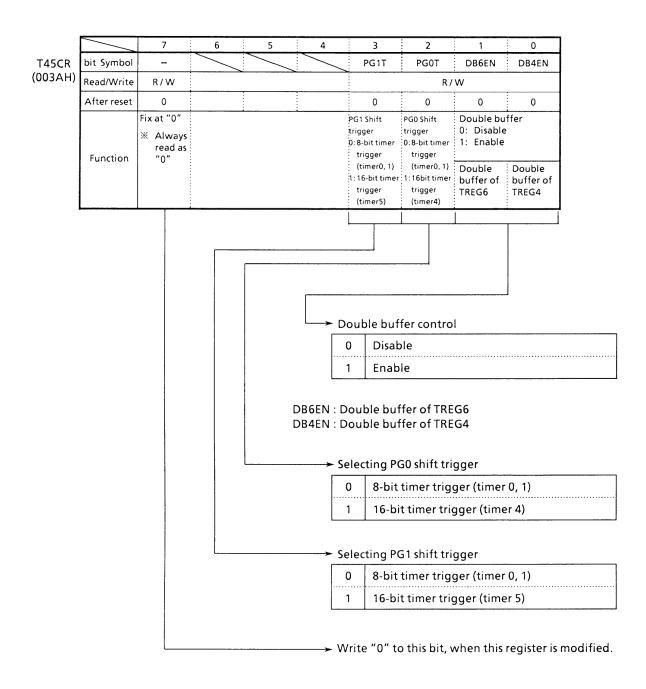


Figure 3.10 (5). 16-bit Timer Trigger Control Register (T45CR)

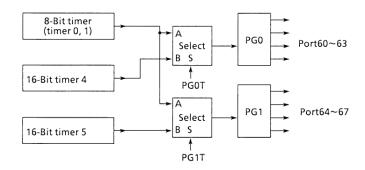
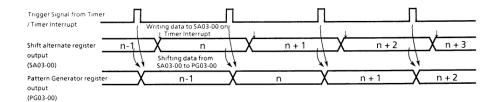


Figure 3.10 (6). Connection of Timer and Pattern Generator


(1) Pattern Generation Mode

PG functions as a pattern generation according to the setting of PG01CR <PAT1>/PAT0>. In this mode, writing from CPU is executed only on the shifter alternate register. Writing a new data should be done during the interrupt operation of the timer for shift trigger, and a pattern can be output synchronous with the timer.

In this mode, set PG01CR <PG0M> and <PG1M> to 1, and PG01CR <CCW0> and <CCW1> to 0.

The output of this pattern generator is output to port 6; since port and functions can be switched on a bit basis using port function control register P6FC, any port pin can be assigned to pattern generator output.

Figure 3.10 (7) shows the block diagram of this mode.

Example of pattern generation mode

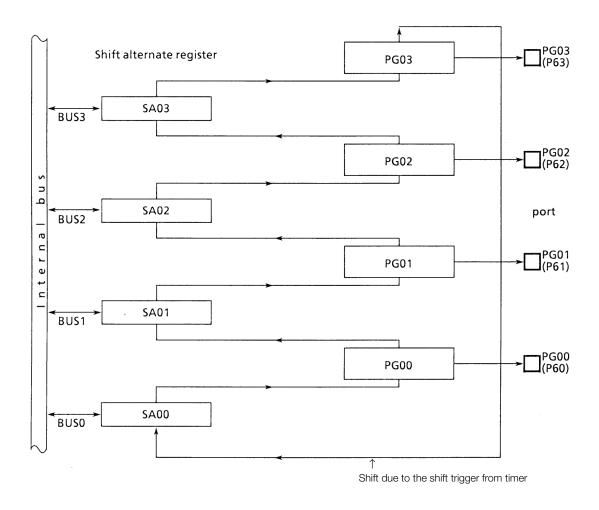
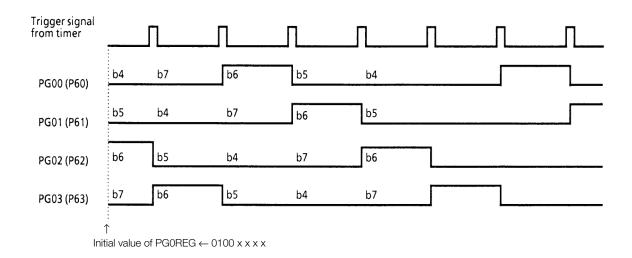


Figure 3.10 (7). Pattern Generation Mode Block Diagram (PG0)


In this pattern generation mode, only writing the output latch is disabled by hardware, but other functions do the same operation as 1-2 excitation in stepping motor control port

mode. Accordingly, the data shifted by trigger signal from a timer must be written before the next trigger signal is output.

(2) Stepping Motor Control Mode

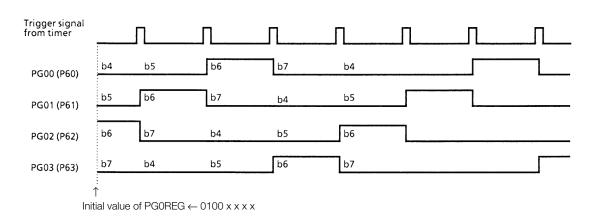

① 4-phase 1-Step/2-Step Excitation

Figure 3.10 (8) and Figure 3.10 (9) show the output waveforms of 4-phase 1 excitation and 4-phase 2 excitation, respectively when channel 0 (PG0) is selected.

Note: bn indicates the initial value of PG0REG \leftarrow b7 b6 b5 b4 x x x x

1 Normal Rotation

2 Reverse Rotation

Figure 3.10 (8). Output Waveforms of 4-Phase 1-Step Excitation (Normal Rotation and Reverse Rotation)

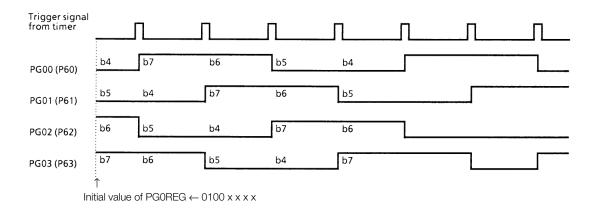


Figure 3.10 (9). Output Waveforms of 4-Phase 2-Step Excitation (Normal Rotation)

The operation when channel 0 is selected is explained below.

The output latch of PG0 (also used as P6) is shifted at the rising edge of the trigger signal from the timer to be output to the port.

The direction of shift is specified by PG01CR <CCW0>: Normal rotation (PG00 \rightarrow PG01 \rightarrow PG02 \rightarrow PG03) when <CCW0> is set to "0"; reverse rotation (PG00 \leftarrow PG01 \leftarrow PG02 \leftarrow PG03) when "1". Four-phase

1-step excitation will be selected when only one bit is set to "1" during the initialization of PG, while 4-phase 2-step excitation will be selected when two consecutive bits are set to "1".

The value in the shift alternate registers are ignored when the 4-phase 1-step/2-step excitation mode is selected.

Figure 3.10 (10) shows the block diagram.

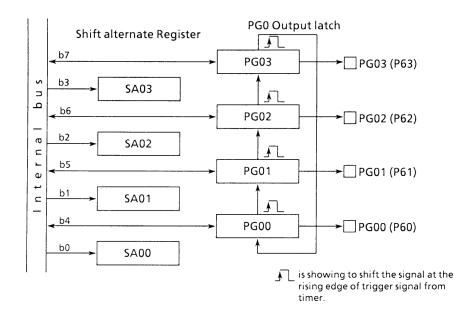
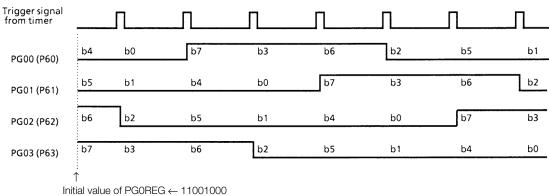



Figure 3.10 (10). Block Diagram of 4-Phase 1-Step Excitation/2-Step Excitation (Normal Rotation)

② 4-Phase 1-2 Step Excitation

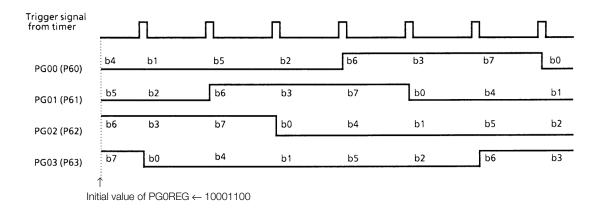

phase 1 -2 step excitation when channel 0 is selected.

Figure 3.10 (11) shows the output waveforms of 4-

Note: bn denotes the initial value of PG0REG ← b7 b6 b5 b4 b3 b2 b1 b0

1 Normal Rotation

2 Reverse Rotation

Figure 3.10 (11). Output Waveforms of 4-Phase 1-2 Step Excitation (Normal Rotation and Reverse Rotation)

The initialization for 4-phase 1-2 step excitation is as follows:

By rearranging the initial value "b7 b6 b5 b4 b3 b2 b1 b0" to "b7 b3 b6 b2 b5 b1 b4 b0", the consecutive 3 bits are set to "1" and other bits are set to "0" (positive logic).

For example, if b7, b3, and b6 are set to "1", the initial value becomes "11001000", obtaining the output waveforms as shown in Figure 3.10 (11).

To get an output waveform of negative logic, set values 1s and 0's of the initial value should be inverted. For example, to change the output waveform shown in Figure 3.10 (11) into negative logic, change the initial value to "00110111".

The operation will be explained below for channel 0. The output latch of PG0 (shared by P6) and the shifter alternate register (SA0) for Pattern Generation are shifted at the rising edge of trigger signal from the timer

to be output to the port. The direction of shift is set by PG01CR <CCW0>.

Figure 3.10 (12) shows the block diagram.

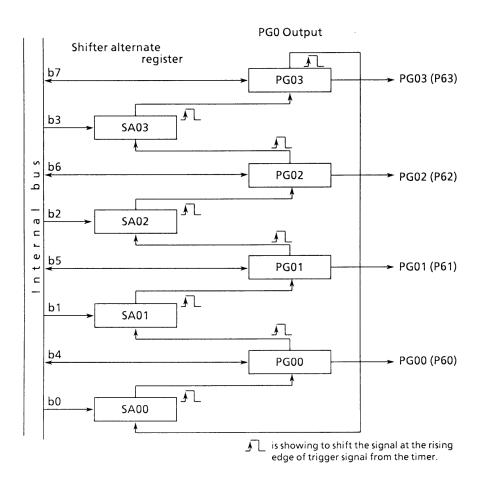


Figure 3.10 (12). Block Diagram of 4-Phase 1-2 Step Excitation (Normal Rotation)

Setting example: To drive channel 0 (PG0) by 4-phase 1-2 step excitation (normal rotation) when

timer 0 is selected, set each register as follows:

		7	6	5	4	3	2	1	0
TRUN	\leftarrow	_	Χ	_	_	_	_	_	0
TMOD	\leftarrow	0	0	Χ	Χ	_	_	0	1
TFFCR	\leftarrow	Χ	Χ	Χ	0	1	0	1	0
TREG0	\leftarrow	*	*	*	*	*	*	*	*
P6CR	\leftarrow	_	_	_	_	1	1	1	1
P6FC	\leftarrow	_	_	_	_	1	1	1	1
PG01CR	\leftarrow	_	_	-	_	0	0	1	1
PG0REG	\leftarrow	1	1	0	0	1	0	0	0
TRUN	\leftarrow	1	_	-	-	-	-	_	1

Note: x; don't care -; no change

Stop timer 0, and clears it to zero.

Set 8-bit timer mode and selects ϕ T1 as the input clock of timer 0.

Clear TFF1 to zero and enables the inversion trigger by timer 0.

Set the cycle in timer register.

Set P60 ~ P63 bits to the output mode.

Set P60 ~ P63 bits to the PG output.

Select PG0 4-phase 1 - 2 step excitation mode and normal rotation.

Set an initial value.

Start timer 0.

(3) Trigger Signal From Timer

The trigger signal from the timer which is used by PG is not

equal to the trigger signal of timer flip-flop (TFF1, TFF4, TFF5, and TFF6) and differs as shown in Table 3.10 (1) depending on the operation mode of the timer.

Table 3.10 (1) Select of Trigger Signal

	TFF1 Inversion	PG Shift
8-bit timer mode	Selected by TFFCR <tff1is> when the up-counter value matches TREGO or TREG1 value.</tff1is>	4
16-bit timer mode	When the up-counter value matches with both TREG0 and TREG1 values. (The value of up-counter = TREG1*2 ⁸ + TREG0)	
PPG output mode	When the up-counter value matches with both TREGO and TREG1.	When the up-counter value matches TREG1 value (PPG cycle).
PWM output mode	When the up-counter value matches TREGO value and PWM cycle.	Trigger signal for PG is not generated.

Note: To shift PG, TFFCR <TFF1IE> must be set to "1" to enable TFF1 inversion.

Channel 1 of PG can be synchronized with the 16-bit timer Timer 4/Timer 5. In this case, the PG shift trigger signal from the 16-bit timer is output only when the up-counter UC4/UC5 value matches TREG5/TREG7.

When using a trigger signal from Timer 4, set either

T4FFCR <EQ5T4> or T4MOD <EQ5T5> to "1" and a trigger is generated when the value in UC4 and the value in TREG5 match. When using a trigger signal from Timer 5, set T5FFCR <EQ7T6> to 1. Generates a trigger when the value in UC5 and the value in TREG7 match.

(4) Application of PG and Timer Output

As explained in "Trigger signal from timer", the timing to shift PG and invert TFF differs depending on the mode of timer. An application to operate PG while operating an 8-bit timer in

PPG mode will be explained below.

To drive a stepping motor, in addition to the value of each phase (PG output), synchronizing signal is often required at the timing when excitation is changed over. In this application, port 6 is used as a stepping motor control port to output a synchronizing signal to the TO1 pin (shared by P71).

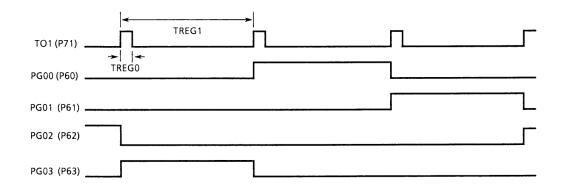
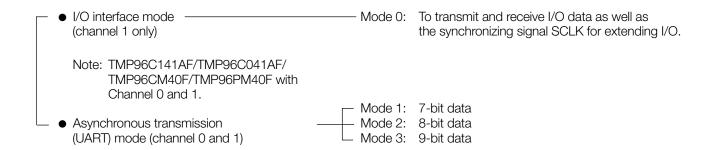


Figure 3.10 (13). Output Waveforms of 4-Phase 1-Step Excitation

Setting example:


		7	6	5	4	3	2	1	0			
TRUN	\leftarrow	_	_	_	_	_	_	0	0	Stop timer 0, and clears it to zero.		
TMOD	\leftarrow	1	0	Χ	Χ	Х	Х	0	1	Set timer 0 and timer 1 in PPG output mode and selects ϕ T1 as the input clock.		
TFFCR	\leftarrow	Χ	Χ	Х	0	0	1	1	Х	Enable TFF1 inversion and sets TFF1 to "1".		
TREG0	\leftarrow	*	*	*	*	*	*	*	*	Set the duty of TO1 to TREGO.		
TREG1	\leftarrow	*	*	*	*	*	*	*	*	Set the cycle of TO1 to TREG1.		
P7CR	\leftarrow	Χ	Χ	Х	Х	_	_	1	_	Assign P74 on T04		
P7FC	\leftarrow	Χ	Χ	Х	Х	_	_	1	Х	Assign P71 as T01.		
P6CR	\leftarrow	_	-	_	_	1	1	1	1	Assign P60 - 63 as PG0.		
P6FC	\leftarrow	_	_	_	_	1	1	1	1	Assign rou - 03 as rou.		
PG01CR	\leftarrow	_	_	_	_	0	0	0	1	Set PG0 in 4-phase 1-step excitation mode.		
PGOREG	\leftarrow	*	*	*	*	*	*	*	*	Set an initial value.		
TRUN	\leftarrow	1	Χ	_	_	_	_	1	1	Start timer 0 and timer 1.		
Note: x; don't care			–; r	no cha	nge							

3.11 Serial Channel

as well as for I/O extension.

The TMP96C141AF contains two serial I/O channels for full duplex asynchronous transmission (UART)

The serial channel has the following operation modes:

In mode 1 and mode 2, a parity bit can be added. Mode 3 has wake-up function for making the master controller start slave controllers in serial link (multi-controller system).

Figure 3.11 (1) shows the data format (for one frame) in each mode.

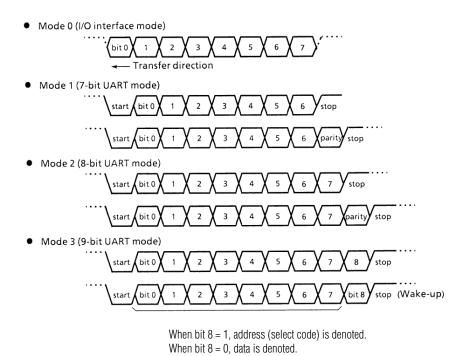


Figure 3.11 (1). Data Formats

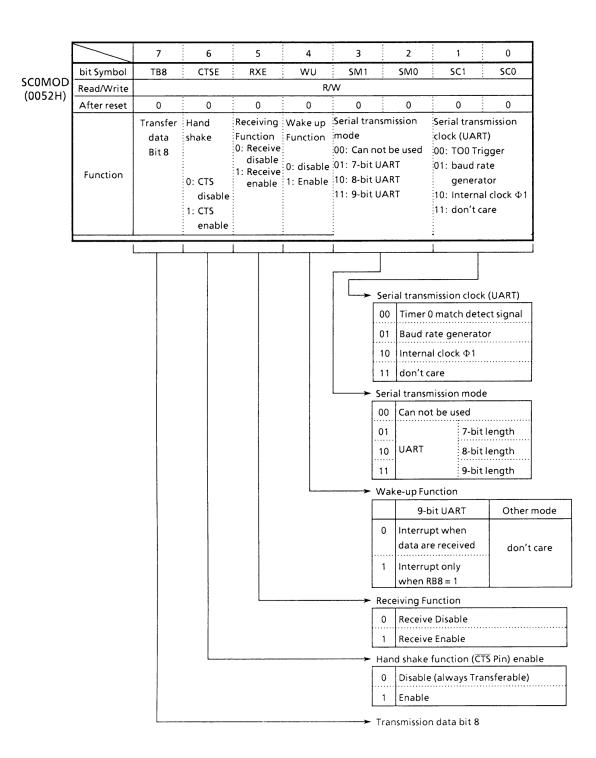
The serial channel has a buffer register for transmitting and receiving operations, in order to temporarily store transmitted or received data, so that transmitting and receiving operations can be done independently (full duplex).

However, in I/O interface mode, SCLK (serial clock) pin is used for both transmission and receiving, the channel becomes half-duplex.

The receiving data register is of a double buffer structure to prevent the occurrence of overrun error and provides one frame of margin before CPU reads the received data. The receiving data register stores the already received data while the buffer register receives the next frame data.

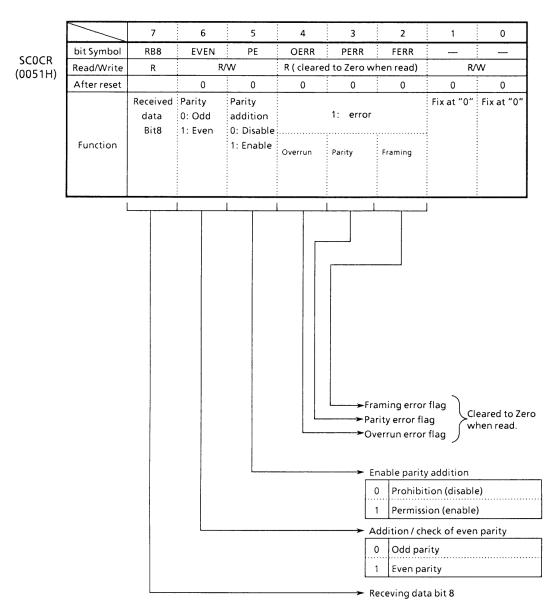
By using CTS and RTS (there is no RTS pin, so any one port must be controlled by software), it is possible to halt data send until CPU finishes reading receive data every time a frame is received (Handshake function).

In the UART mode, a check function is added not to start the receiving operation by error start bits due to noise. The channel starts receiving data only when the start bit is detected to be normal at least twice in three samplings.


When the transmission buffer becomes empty and requests the CPU to send the next transmission data, or when data is stored in the receiving data register and the CPU is requested to read the data, INTTX or INTRX interrupt occurs. Besides, if an overrun error, parity error, or framing error occurs during receiving operation, flag SCOCR/SC1CR <OERR, PERR, FERR> will be set.

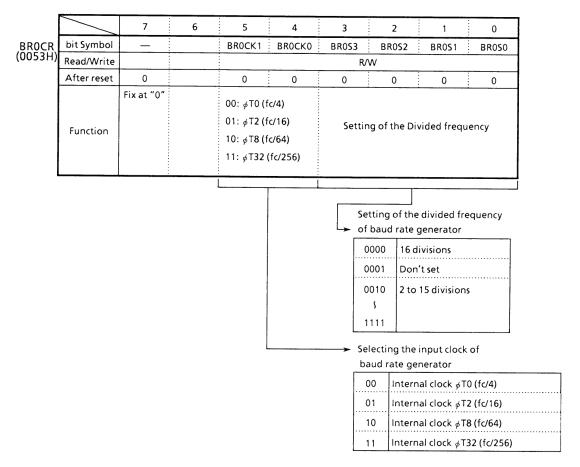
The serial channel 0/1 includes a special baud rate generator, which can set any baud rate by dividing the frequency of four clocks (ϕ T0, ϕ T2, ϕ T8, and ϕ T32) from the internal prescaler (shared by 8-bit/16-bit timer) by the value 2 to 16.

In I/O interface mode, it is possible to input synchronous signals as well as to transmit or receive data by external clock.


3.11.1 Control Registers

The serial channel is controlled by three control registers SCOCR, SCOMOD, and BROCR. Transmitted and received data is stored in register SCOBUF.

Note: There is SC1MOD (56H) in Channel 1


Figure 3.11 (2). Serial Mode Control Register (Channel 0, SC0MOD)

Note: Serial control register for channel 1 is SC1CR (55H).

As all error flags are cleared after reading, do not test only a single bit with a bit-testing instruction.

Figure 3.11 (3). Serial Control Register (Channel, SC0CR)

Note: As all error flags are cleared after reading, do not test only a single bit with a bit-testing instruction.

Figure 3.11 (4). Serial Channel Control (Channel 0, BR0CR)

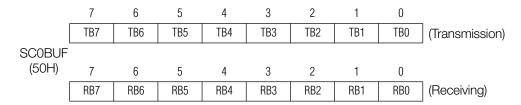
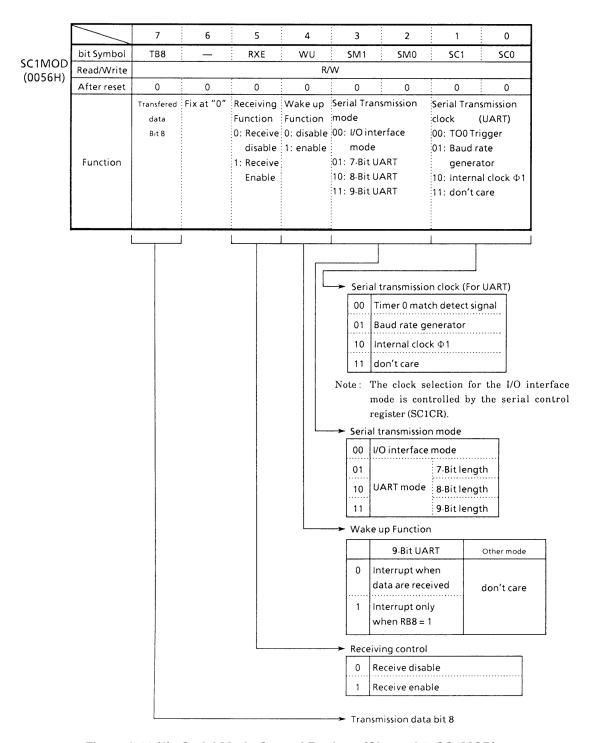
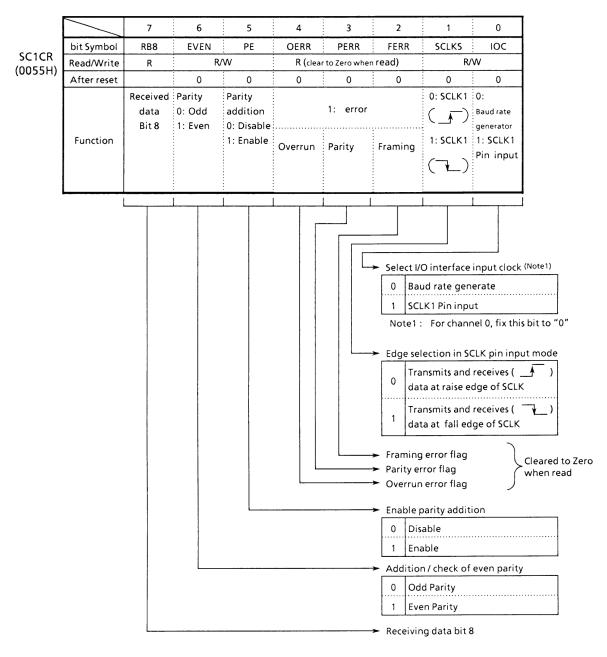
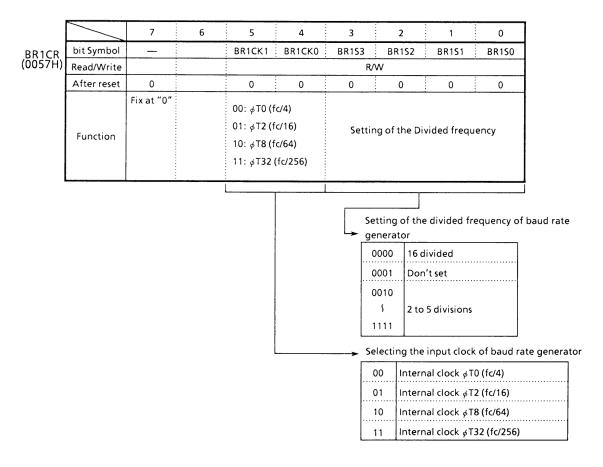


Figure 3.11 (5). Serial Transmission/Receiving Buffer Registers (Channel 0, SC0BUF)


Figure 3.11 (6). Serial Mode Control Register (Channel 1, SC1MOD)

Note: As all error flags are cleared after reading, do not test only a single bit with a bit-testing instruction.

Figure 3.11 (7). Serial Control Register (Channel 1, SC1CR)

122

Note: To use baud rate generator, set TRUN < PRRUN> to "1", putting the prescaler in RUN mode.

Figure 3.11 (8). Baud Rate Generator Control Register (Channel 0, BR0CR)

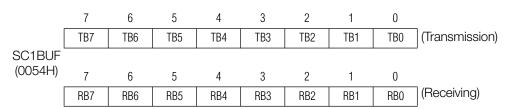


Figure 3.11 (9). Serial Transmission/Receiving Buffer Registers (Channel 1, SC1BUF)

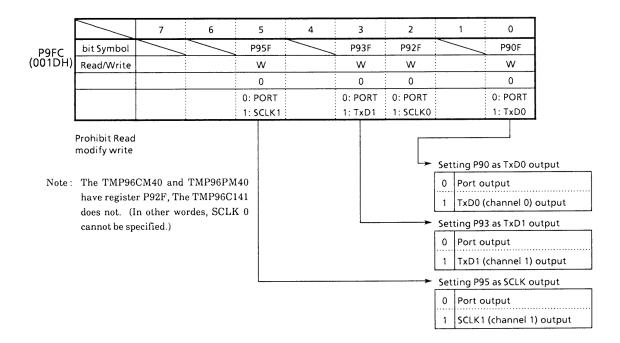
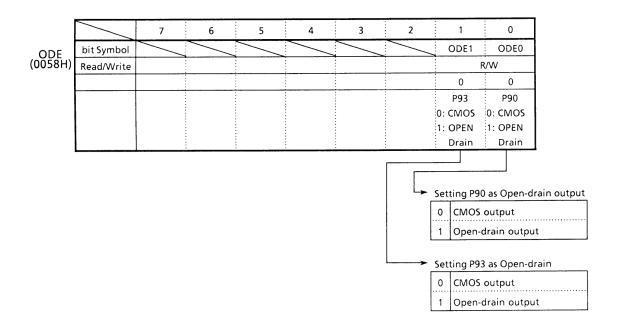



Figure 3.11 (10). Port 9 Function Register (P9FC)

Port 3.11 (11). Port 9 Open Drain Enable Register (ODE)

3.11.2 Configuration

Figure 3.11 (12) shows the block diagram of the serial channel 0.

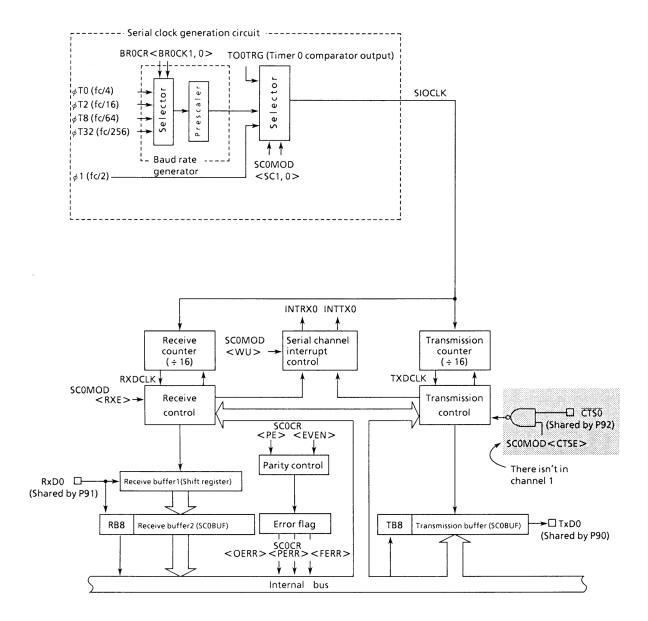


Figure 3.11 (12). Block Diagram of the Serial Channel 0

Figure 3.11 (13) shows the block diagram of the serial channel 1.

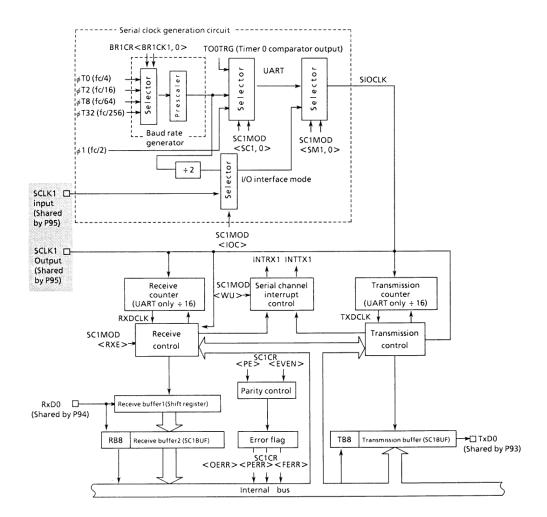


Figure 3.11 (13). Block Diagram of the Serial Channel 1

126

① Baud Rate Generator

Baud rate generator comprises a circuit that generates transmission and receiving clocks to determine the transfer rate of the serial channel.

The input clock to the baud rate generator, ϕ T0 (fc/4), ϕ T2 (fc/16), ϕ T8 (fc/64), or ϕ T32 (fc/256) is generated by the 9-bit prescaler which is shared by the timers. One

of these input clocks is selected by the baud rate generator control register BR0CR/BR1CR <BR0CK1, 0/BR1CK1, 0>.

The baud rate generator includes a 4-bit frequency divider, which divides frequency by 2 to 16 values to determine the transfer rate.

How to calculate a transfer rate when the baud rate generator is used is explained below.

UART mode

Transfer rate = Input clock of baud rate generator
Frequency divisor of baud rate generator ÷ 16

• I/O interface mode

Transfer rate = $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divisor of baud rate generator}} \div 2$

The relation between the input clock and the source clock (fc) is as follows:

 ϕ T0 = fc/4

 ϕ T2 = fc/16

 ϕ T8 = fc/64

 ϕ T32 = fc/256

Accordingly, when source clock fc is 12.288 MHz, input clock is ϕ T2 (fc/16), and frequency divisor is 5, the transfer rate in UART mode becomes as follows:

Transfer rate =
$$\frac{\text{fc/16}}{5} \div 16$$

= 12.288 x 10⁶/16/5/16 = 9600 (bps)

Table 3.11 (1) shows an example of the transfer rate in UART mode.

Also with 8-bit timer 0, the serial channel can get a transfer rate. Table 3.11 (2) shows an example of baud rate using timer 0.

Table 3.11 (1) Selection of Transfer Rate (1) (When Baud Rate Generator is Used)

Unit (kbps)

fc [Mhz]	Input Clock Frequency Divisor	φT0 (fc/4)	φT2 (fc/16)	φT8 (fc/64)	φT32 (fc/256)
9.830400	2	76.800	19.200	4.800	1.200
1	4	38.400	9.600	2.400	0.600
1	8	19.200	4.800	1.200	0.300
1	0	9.600	2.400	0.600	0.150
12.288000	5	38.400	9.600	2.400	0.600
1	A	19.200	4.800	1.200	0.300
14.745600	3	76.800	19.200	4.800	1.200
1	6	38.400	9.600	2.400	0.600
1	С	19.200	4.800	1.200	0.300

Note: Transfer rate in I/O interface mode is 8 times as fast as the values given in the above table.

Table 3.11 (2) Selection of Transfer Rate (1) (When Timer 0 (Input Clock ϕ T1) is Used)

Unit (Kbps)

TREGO fc	12.288MHz	12MHz	9.8304MHz	8MHz	6.144MHz
1H	96		76.8	62.5	48
2H	48		38.4	31.25	24
3H	32	31.25			16
4H	24		19.2		12
5H	19.2				9.6
8H	12		9.6		6
AH	9.6				4.8
10H	6		4.8		3
14H	4.8				2.4

How to calculate the transfer rate (when timer 0 is used):

Note: Timer 0 match detect signal cannot be used as the transfer clock in I/O interface mode.

② Serial Clock Generation Circuit

 ϕ T16 = fc/128

This circuit generates the basic clock for transmitting and receiving data.

1) I/O interface mode (channel 1 only)

When in SCLK output mode with the setting of SC1CR <IOC> = "0", the basic clock will be generated by dividing by 2 the output of the baud rate generator as described before. When in SCLK input mode with the setting of SC1CR <IOC> = "1", the rising edge or falling edge will be detected according to the setting of SC1CR <SCLKC> register to generate the basic clock.

2) Asynchronous Communication (UART) mode

According to the setting of SC0CR and SC1CR <SC1, 0>, the above baud rate generator clock, internal clock ϕ 1 (500 Kbps @ fc = 16 MHz), or the match detect signal from timer 0 will be selected to generate the basic clock SIOCLK.

3 Receiving Counter

The receiving counter is a 4-bit binary counter used in asynchronous communication (UART) mode and counts up by SIOCLK clock. Sixteen pulses of SIOCLK are used for receiving one bit of data, and the data bit is sampled three times at 7th, 8th and 9th clock.

With the three samples, the received data is evaluated by the rule of majority.

For example, if the sampled data bit is "1", "0" and "1" at 7th, 8th and 9th clock respectively, the received data is evaluated as "1". The sampled data "0", "0" and "1" is evaluated that the received data is "0".

Receiving Control

1) I/O interface mode (channel 1 only)

When in SCLK1 output mode with the setting of SC1CR <IOC> = "0", RxD1 signal will be sampled at the rising edge of shift clock which is output to SCLK pin.

When in SCLK input mode with the setting SC1CR <IOC> = "1", RxD1 signal will be sampled at the rising edge or falling edge of SCLK input according to the setting of SC1CR <SCLKS> register.

128

2) Asynchronous Communication (UART) mode

The receiving control has a circuit for detecting the start bit by the rule of majority. When two or more "0" are detected during 3 samples, it is recognized as start bit and the receiving operation is started.

Data being received is also evaluated by the rule of majority.

⑤ Receiving Buffer

To prevent overrun error, the receiving buffer has a double buffer structure.

Received data is stored one bit by one bit in the receiving buffer 1 (shift register type). When 7 bits or 8 bits of data are stored in the receiving buffer 1, the stored data is transferred to another receiving buffer 2 (SC0BUF/SC1BUF), generating an interrupt INTRX0/INTRX1. The CPU reads only receiving buffer 2 (SC0BUF/SC1BUF). Even before the CPU reads the receiving buffer 2 (SC0BUF/SC1BUF), the received data can be stored in

the receiving buffer 1. However, unless the receiving buffer 2 (SC0BUF/SC1BUF) is read before all bits of the next data are received by the receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of the receiving buffer 1 will be lost, although the contents of the receiving buffer 2 and SC0CR <RB8> SC1CR <RB8> are still preserved.

The parity bit added in 8-bit UART mode and the most significant bit (MSB) in 9-bit UART mode are stored in SCOCR <RB8>/SC1CR <RB8>.

When in 9-bit UART mode, the wake-up function of the slave controllers is enabled by setting SC0MOD <WU>/SC1MOD <WU> to "1", and interrupt INTRX0/ INTRX1 occurs only when SC0CR <RB8>/SC1CR <RB8> is set to "1".

Transmission Counter

Transmission counter is a 4-bit binary counter which is used in asynchronous communication (UART) mode and, like a receiving counter, counts by SIOCLK clock, generating TxDCLK every 16 clock pulses.

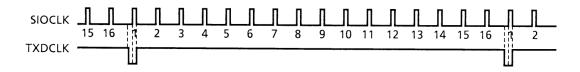


Figure 3.11 (14). Generation of Transmission Clock

Transmission Controller

1) I/O interface mode (channel 1 only)

In SCLK output mode with the setting of SC1CR <IOC> = "0", the data in the transmission buffer are output bit by bit to TxD1 pin at the rising edge of shift clock which is output from SCLK1 pin.

In SCLK input mode with the setting SC1CR < IOC > = "1", the data in the transmission buffer are output bit by bit to TxD1

pin at the rising edge or falling edge of SCLK input according to the setting of SC1CR <SCLKC> register.

2) Asynchronous Communication (UART) mode

When transmission data is written in the transmission buffer sent from the CPU, transmission starts at the rising edge of the next TxDCLK, generating a transmission shift clock TxDSFT.

Handshake function

Serial channel 0 has a $\overline{\text{CTSO}}$ pin. Using this pin, data can be sent in units of one frame; thus, overrun errors can be avoided. The handshake function is enabled/disabled by SCOMOD <CTSE>.

When the CTSO pin goes high, after completion of the current data send, data send is halted until the CTSO pin goes low

again. The INTTX0 Interrupts are generated, requests the next send data to the CPU.

Though there is no $\overline{\text{RTS}}$ pin, a hand-shake function can be easily configured by setting any port assigned to the $\overline{\text{RTS}}$ function. The $\overline{\text{RTS}}$ should be output "High" to request data send halt after data receive is completed by a software in the RXD interrupt routine.

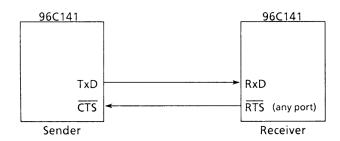
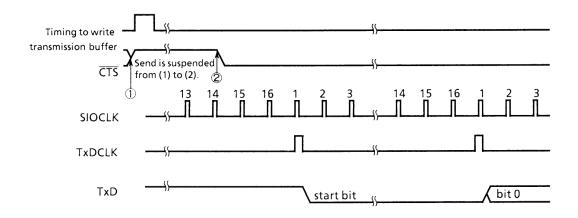



Figure 3.11 (15). Handshake Function

Note 1: If the $\overline{\text{CTS}}$ signal falls during transmission, the next data is $\underline{\text{not}}$ sent after the completion of the current transmission.

Note 2: Transmission starts at the first TxDCLK clock fall after the $\overline{\text{CTS}}$ signal falls.

Figure 3.11 (16). Timing of CTS (Clear to Send)

130

® Transmission Buffer

Transmission buffer (SC0BUF/SC1BUF) shifts to and sends the transmission data written from the CPU from the least significant bit (LSB) in order, using transmission shift clock TxDSFT which is generated by the transmission control. When all bits are shifted out, the transmission buffer becomes empty and generates INTTX0/INTTX1 interrupt.

Parity Control Circuit

When serial channel control register SCOCR <PE>/ SC1CR <PE> is set to "1", it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART or 8-bit UART mode. With SCOCR <EVEN>/SC1CR <EVEN> register, even (odd) parity can be selected.

For transmission, parity is automatically generated according to the data written in the transmission buffer SCBUF, and data are transmitted after being stored in SC0BUF <TB7>/SC1BUF <TB7> when in 7-bit UART mode while in SCMOD <TB8>/SCMOD <TB8> when in 8-bit UART mode. <PE> and <EVEN> must be set before transmission data are written in the transmission buffer.

For receiving, data is shifted in the receiving buffer 1, and parity is added after the data is transferred in the receiving buffer 2 (SC0BUF/SC1BUF), and then compared with SC0BUF <RB7>/SC1BUF <RB7> when in 7-

bit UART mode and with SC0MOD <RB8>/SC1MOD <RB8> when in 8-bit UART mode. If they are not equal, a parity error occurs, and SC0CR <PERR>/SC1CR <PERR> flag is set

Error Flag

Three error flags are provided to increase the reliability of receiving data.

1. Overrun error <OERR>

If all bits of the next data are received in receiving buffer 1 while valid data is stored in receiving buffer 2 (SCBUF), an overrun error will occur.

2. Parity error <PERR>

The parity generated for the data shifted in receiving buffer 2 (SCBUF) is compared with the parity bit received from RxD pin. If they are not equal, a parity error occurs.

3. Framing error <FERR>

The stop bit of received data is sampled three times around the center. If the majority is "0", a framing error occurs.

Generating Timing

1) UART mode

Receiving

Mode	9-Bit	8-Bit + Parity	8-Bit, 7-Bit + Parity, 7-Bit
Interrupt timing	Center of last bit (Bit 8)	Center of last bit (parity bit)	Center of stop bit
Framing error timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error timing	Center of last bit (Bit 8)	Center of last bit (parity bit)	Center of stop bit
Overrun error timing	Center of last bit (Bit 8)	Center of last bit (parity bit)	Center of stop bit

Note: Framing error occurs after an interrupt has occurred. Therefore, to check for framing error during interrupt operation, it is necessary to wait for 1 bit period of transfer rate.

Transmitting

Mode	9-Bit	8-Bit + Parity	8-Bit, 7-Bit + Parity, 7-Bit
Interrupt timing	Just before last bit is transmitted.	←	←

2) I/O Interface mode

	SCLK output mode	Immediately after rise of last SCLK signal (See Figure 3.11 (19)).
Transmission interrupt timing	SCLK input mode	Immediately after rise of last SCLK signal (rising mode), or immediately after fall in falling mode (See Figure 3.11 (20)).
Receiving interrupt timing	SCLK output mode	Timing used to transfer received data to data receive buffer 2 (SC1BUF); that is, immediately after last SCLK (See Figure 3.11 (21)).
neceiving interrupt tilling	SCLK input mode	Timing used to transfer received data to data receive buffer 2 (SC1BUF); that is, immediately after SCLK (See Figure 3.11 (22)).

3.11.3 Operational Description

(1) Mode 0 (I/O interface mode)

This mode is used to increase the number of I/O pins for transmitting or receiving data to or from the external shifter register.

This mode includes SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.

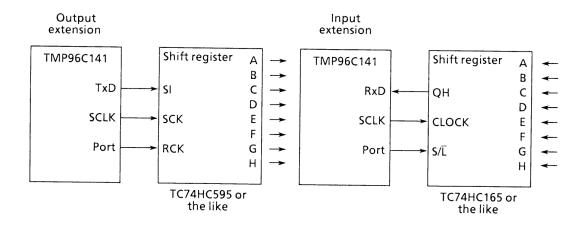


Figure 3.11 (17). Example of SCLK Output Mode Connection

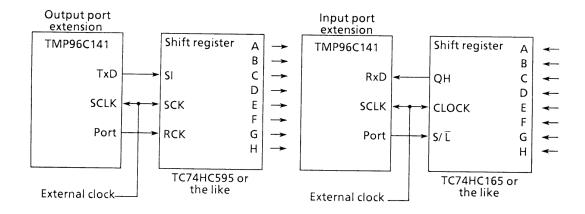


Figure 3.11 (18). Example of SCLK Input Mode Connection

① Transmission

In SCLK output mode, 8-bit data and synchronous clock are output from TxD pin and SCLK pin, respectively, each

time the CPU writes data in the transmission buffer. When all data is output, INTES1 <ITX1C> will be set to generate INTTX1 interrupt.

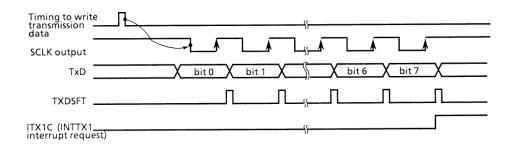


Figure 3.11 (19) Transmitting Operation in I/O Interface Mode (SCLK Output Mode)

In SCLK output mode, 8-bit data are output from TxD1 pin when SCLK input becomes active while data are written in the transmission buffer by CPU.

When all data are output, INTES1 <ITXIC> will be set to generate INTTX1 interrupt.

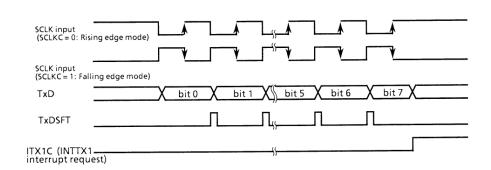


Figure 3.11 (20). Transmitting Operation in I/O Interface Mode (SCLK Input Mode)

② Receiving

In SCLK output mode, synchronous clock is output from SCLK pin and the data is shifted in the receiving buffer 1 whenever the receive interrupt flag INTES1

<IRX1C> is cleared by reading the received data. When 8-bit data are received, the data will be transferred in the receiving buffer 2 (SC1BUF) at the timing shown below, and INTES1 <IRX1C> will be set again to generate INTRX1 interrupt.

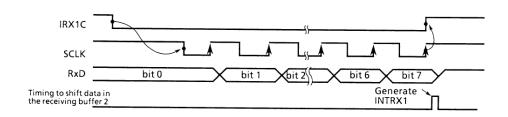


Figure 3.11 (21). Receiving Operation in I/O Interface Mode (SCLK Output Mode)

In SCLK input mode, the data is shifted in the receiving buffer 1 when SCLK input becomes active, while the receive interrupt flag INTES1 <IRX1C> is cleared by reading the received data. When 8-bit data is received, the

data will be shifted in the receiving buffer 2 (SC1BUF) at the timing shown below, and INTES1 <IRX1C> will be set again to generate INTRX interrupt.

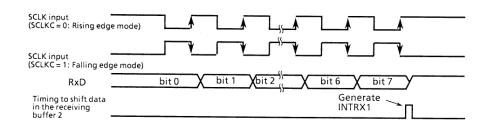
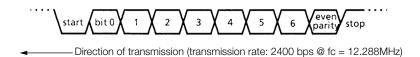


Figure 3.11 (22). Receiving Operation in I/O Interface Mode (SCLK Input Mode)

Note: For data receiving, the system must be placed in the receive enable state (SCMOD <RXE> = "1")

(2) Mode 1 (7-bit UART Mode)

The 7-bit mode can be set by setting serial channel mode register SC0MOD <SM1, 0> /SC1MOD <SM1, 0> to "01".


In this mode, a parity bit can be added, and the addition of a parity bit can be enabled or disabled by serial channel control register SCOCR <PE> /SC1CR <PE>,

and even parity or odd parity is selected by SC0CR <EVEN> /SC1CR <EVEN> when <PE> is set to "1" (enable).

Setting example: When transmitting data with the

following format, the control

registers should be set as described below. Channel 0 is explained here.

		7	6	5	4	3	2	1	0	
P9CR	\leftarrow	Χ	Χ	_	-	-	-	_	1	Select P90 as the TxD pin.
P9FC	\leftarrow	Χ	Χ	_	Χ	_	Χ	Χ	1	,
SCOMOD	\leftarrow	Χ	0	_	Χ	0	1	0	1	Set 7-bit UART mode.
SC0CR	\leftarrow	Χ	1	1	Χ	Χ	Χ	0	0	Add an even parity.
BROCR	\leftarrow	0	Χ	1	0	0	1	0	1	Set transfer rate at 2400 bps.
TRUN	\leftarrow	1	Χ	_	-	_	_	-	-	Start the prescaler for the baud rate generator.
INTES0	\leftarrow	1	1	0	0	_	_	_	-	Enable INTTX0 interrupt and sets interrupt level 4.
SC0BUF	\leftarrow	*	*	*	*	*	*	*	*	Set data for transmission.

Note: x; don't care -; no change

(3) Mode 2 (8-bit UART Mode)

The 8-bit UART mode can be specified by setting SC0MOD <SM1, 0> / SC1MOD <SM1, 0> to "10". In this mode, parity bit can be added, the addition of a parity bit is enabled or disabled by SC0CR <PE> /

SC1CR <PE>, and even parity or odd parity is selected by SC0CR <EVEN>/SC1CR <EVEN> when <PE> is set to "1" (enable).

Setting example: When receiving data with the

following format, the control register should be set as described below.

Main settin	ıg									
		7	6	5	4	3	2	1	0	
P9CR	\leftarrow	Χ	Χ	-	-	-	-	0	_	Select P91 (RxD) as the input pin.
SCOMOD	\leftarrow	-	0	1	Χ	1	0	0	1	Enable receiving in 8-bit UART mode.
SC0CR	\leftarrow	Χ	0	1	Χ	Χ	Χ	0	0	Add an odd parity.
BR0CR	\leftarrow	0	Х	0	1	0	1	0	1	Set transfer rate at 9600 bps.
TRUN	\leftarrow	1	Χ	-	-	-	-	_	_	Start the prescaler for the baud rate generator.
INTES0	\leftarrow	_	_	_	_	1	1	0	0	Enable INTTX0 interrupt and sets interrupt level 4
Interrunt no	ncessi	nα								

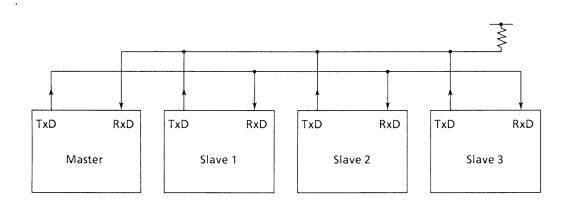
Interrupt processing

 $Acc \leftarrow SCOCR$ and 00011100) Check for error.

If Acc ≠ 0 then ERROR

 $Acc \leftarrow SCOBUF$ Read the received data.

Note: x; don't care -; no change

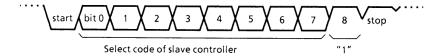

(4) Mode 3 (9-bit UART Mode)

The 9-bit UART mode can be specified by setting SC0MOD <SM1, 0> /SC1MOD <SM1, 0> to "11". In this mode, parity bit cannot be added For transmission, the MSB (9th bit) is written in SCM0D <TB8>, while in receiving it is stored in SCCR <RB8>. For writing and reading the buffer, the MSB is read or written first, then SC0BUF/SC1BUF.

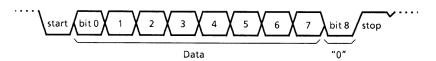
Wake-up function

In 9-bit UART mode, the wake-up function of slave controllers is enabled by setting SC0MOD <WU> / SC1MOD <WU> to "1". The interrupt INTRX1/INTRX0 occurs only when <RB8> = 1

4.



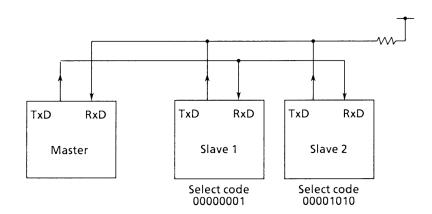
Note: TxD pin of the slave controllers must be in open drain output mode.


Figure 3.11 (23). Serial Link Using Wake-Up Function

Protocol

- ① Select the 9-bit UART mode for master and slave controllers.
- ② Set SCOMOD <WU>/SC1MOD <WU> bit of each slave controller to "1" to enable data receiving.
- ③ The master controller transmits one-frame data including the 8-bit select code for the slave controllers. The MSB (bit 8) <TB8> is set to "1".

- Each slave controller receives the above frame, and clears WU bit to "0" if the above select code matches its own select code.
- (5) The master controller transmits data to the specified slave controller whose SC0MOD <WU>/SC1MOD <WU> bit is cleared to "0." The MSB (bit 8) <TB8> is cleared to "0".



- The other slave controllers (with the <WU> bit remaining at "1") ignore the receiving data because their MSBs (bit 8 or <RB8>) are set to "0" to disable the interrupt INTRXO/INTRX1.
- The slave controllers (WU = 0) can transmit data to the master controller, and it is possible to indicate the end of data receiving to the master controller by this transmission.

Setting Example:

To link two slave controllers serially with the master controller, and use

the internal clock $\phi 1$ (fc/2) as the transfer clock.

Since serial channels 0 and 1 operate in exactly the same

way, channel 0 is used for the purposes of explanation.

• Setting the master controller

Main settin	g									
P9CR	\leftarrow	Χ	Χ	_	_	_	_	0	1	Select P90 as TxD pin and P91 as RxD pin.
P9FC	\leftarrow	Χ	Χ	_	Χ	_	Χ	Χ	1	Select P90 as 1xD pill and P91 as RxD pill.
INTES0	\leftarrow	1	1	0	0	1	1	0	1	Enable INTTX0 and sets the interrupt level 4.
										Enable INTRXO and sets the interrupt level 5.
SCOMOD	\leftarrow	1	0	1	0	1	1	1	0	Set ϕ 1 (fc/2) as the transmission clock in 9-bit UART mode.
SC0BUF	\leftarrow	0	0	0	0	0	0	0	1	Set the select code for slave controller 1.
INTTX0 into	orrunt									
IIVI I AU IIII	errupt									
SCOMOD	\leftarrow	-	0	_	_	_	_	_	-	Set TB8 to "0".
SC0BUF	\leftarrow	*	*	*	*	*	*	*	*	Set data for transmission.

• Setting the slave controller 2

-									
Main settin	ıg								
P9CR	\leftarrow	Χ	Χ	_	-	-	-	0	1 Calcut Dod as DuD air and Doo as TuD air (acceptation system)
P9FC	\leftarrow	Χ	Χ	_	Χ	_	Χ	Х	Select P91 as RxD pin and P90 as TxD pin (open drain output).
ODE	\leftarrow	Χ	Χ	Χ	Χ	Х	Χ	_	1
INTES0	\leftarrow	1	1	0	1	1	1	1	0 Enable INTRXO and INTTXO.
SCOMOD	\leftarrow	0	0	1	1	1	1	1	Set <wu> to "1" in the 9-bit UART transmission mode with transfer clock ϕ1 (fc/2).</wu>
INTRX0 into	errupt								
$Acc \leftarrow SC$	0BUF								
If Acc = Sel	lect Co	de							
Then SCON	ЛОD4			\leftarrow	_	_	_	0	Clear <wu> to "0".</wu>

3.12 Analog/Digital Converter

The TMP96C141AF contains a high-speed analog/digital converter (A/D converter) with 4-channel analog input that features 10-bit successive approximation.

Figure 3.12 (1) shows the block diagram of the A/D converter. The 4-channel analog input pins (AN3 to AN0) are shared by input-only P5 and so can be used as input port.

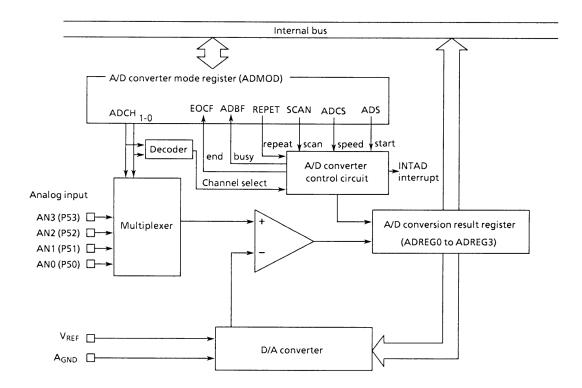


Figure 3.12 (1). Block Diagram of A/D Converter

Note: This A/D converter does not have a built-in sample and hold circuit. Therefore, when A/D converting high-frequency signals, connect a sample and hold circuit externally.

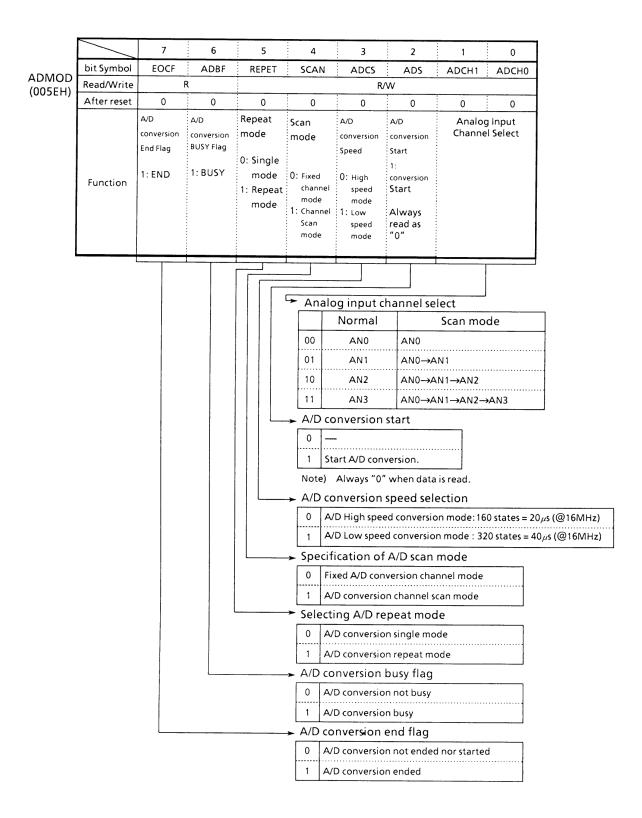


Figure 3.12 (2). A/D Control Register

7 6 5 4 3 2 0 1 ADREG0L ADR01 bit Symbol ADR00 (0060H) Read/Write R After reset Undefined 1 1 1 1 Lower 2 bits of A/D result for ANO are stored. Function 7 6 5 4 3 2 1 0 ADREG0H bit Symbol ADR09 ADR08 ADR07 ADR06 ADR05 ADR04 ADR03 ADR02 (0061H) Read/Write R After reset Undefined Function Upper 8 bits of A/D result for ANO are stored. 7 6 5 3 2 4 1 0 ADREG1L bit Symbol ADR11 ADR10 (0062H) Read/Write R After reset Undefined 1 1 1 1 Lower 2 bits of A/D result for AN1 are stored. Function 7 6 5 4 3 2 1 0 ADREG1H bit Symbol ADR19 ADR18 ADR17 ADR16 ADR15 ADR14 ADR13 ADR12 (0063H) Read/Write R After reset Undefined

Figure 3.12 (3-1). A/D Conversion Result Register (ADREGO, 1)

Upper 8 bits of A/D result for AN1 are stored.

Function

		7	6	5	4	3	2	1	0
ADREG2L (0064H)	bit Symbol	ADR21	ADR20						
	Read/Write	R							
	After reset	Undefined		1	1	1	1	1	1
	Function			Lowe	er 2 bits of A/D res	sult for AN2 are st	ored.		
		7	6	5	4	3	2	1	0
ADREG2H (0065H)	bit Symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
	Read/Write	R							
	After reset	Undefined							
		Upper 8 bits of A/D result for AN2 are stored.							
	Function			Uppe	er 8 bits of A/D res	sult for AN2 are st	ored.		
		7	6	О рре	er 8 bits of A/D res	sult for AN2 are st	ored.	1	0
		7 ADR31	6 ADR30					1	0
	Function					3		1	0
	Function bit Symbol	ADR31			4	3		1	0
	Function bit Symbol Read/Write	ADR31	ADR30	5	4	3	1		
ADREG3L (0066H)	bit Symbol Read/Write After reset	ADR31	ADR30	5	4 F	3	1		
	bit Symbol Read/Write After reset	ADR31 Unde	ADR30	5 1 Lowe	4 F 1 er 2 bits of A/D res	3 R 1 sult for AN3 are st	2 1 ored.	1	1
0066H)	bit Symbol Read/Write After reset Function	ADR31 Unde	ADR30 efined	5 1 Lowe	4 F 1 er 2 bits of A/D res	3 1 sult for AN3 are st	2 1 ored.	1	1
0066H) DREG3H	bit Symbol Read/Write After reset Function bit Symbol	ADR31 Unde	ADR30	5 1 Lowe	4 1 er 2 bits of A/D res 4 ADR36	3 1 sult for AN3 are st 3 ADR35	2 1 ored.	1	1
	bit Symbol Read/Write After reset Function	ADR31 Unde	ADR30 efined	5 1 Lowe	4 F 1 er 2 bits of A/D res	3 1 sult for AN3 are st	2 1 ored.	1	1

Figure 3.12 (3-2). A/D Conversion Result Register (ADREG2, 3)

3.12.1 Operation

(1) Analog Reference Voltage

High analog reference voltage is applied to the VREF pin, and low analog reference voltage is applied to AGND pin.

The reference voltage between VREG and AGND is divided by 1024 using ladder resistance, and compared with the analog input voltage for A/D conversion.

(2) Analog Input Channels

Analog input channel is selected by ADMOD < ADCH1, 0>. However, which channel to select depends on the operation mode of the A/D converter.

In fixed analog input mode, one channel is selected by ADMOD <ADCH1, 0> among four pins: AN0 to AN3. In analog input channel scan mode, the number of channels to be scanned from AN0 is specified by ADMOD <ADCH1, 0>, such as AN0 \rightarrow AN1, AN0 \rightarrow AN1 \rightarrow AN2, and AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3. When reset, A/D conversion channel register will be ini-

tialized to ADMOD <ADCH1, 0> = 00, so that AN0 pin will be selected.

The pins which are not used as analog input channel can be used as ordinary input port P5.

(3) Starting A/D Conversion

A/D conversion starts when A/D conversion register ADMOD <ADS> is written "1". When A/D conversion starts, A/D conversion busy flag ADMOD <ADBF> which indicates "A/D conversion is in progress" will be set to "1".

(4) A/D Conversion Mode

Both fixed A/D conversion channel mode and A/D conversion channel scan mode have two conversion modes, i.e., single and repeat conversion modes. In fixed channel repeat mode, conversion of specified one channel is executed repeatedly.

In scan repeat mode, scanning from AN0, $\cdots \rightarrow$ AN3 is executed repeatedly.

A/D conversion mode is selected by ADMOD <REPET, SCAN>.

(5) A/D Conversion Speed Selection

There are two A/D conversion speed modes: high speed mode and low speed mode. The selection is executed by ADMOD <ADCS> register.

When reset, ADMOD <ADCS> will be initialized to "0," so that high speed conversion mode will be selected.

(6) A/D Conversion End and Interrupt

• A/D conversion single mode

ADMOD <EOCF> for A/D conversion end will be set to "1," ADMOD <ADBF> flag will be reset to "0," and INTAD interrupt will be enabled when A/D conversion of specified channel ends in fixed conversion channel mode or when A/D conversion of the last channel ends in channel scan mode.

A/D conversion repeat mode

For both fixed conversion channel mode and conversion channel scan mode, INTAD should be disabled when in repeat mode. Always set the INTEOAD at "000," that disables the interrupt request.

Write "0" to ADMOD <REPET> to end the repeat mode. Then, the repeat mode will be exited as soon as the conversion in progress is completed.

(7) Storing the A/D Conversion Result

The results of A/D conversion are stored in ADREG0 to ADREG3 registers for each channel. In repeat mode, the registers are updated whenever conversion ends. ADREG0 to ADREG3 are read-only registers.

(8) Reading the A/D Conversion Result

The results of A/D conversion are stored in ADREG0 to ADREG3 registers. When the contents of one of ADREG0 to ADREG3 registers are read, ADMOD <EOCF> will be cleared to "0".

Setting example: When the analog input voltage of the

AN3 pin is A/D converted and the result is stored in the memory address FF10H by A/D interrupt

INTAD routine.

Main setting

 Enable INTAD and sets interrupt level 4.

Specify AN3 pin as an analog input channel and starts A/D conversion in high speed mode

INTAD routine

WA \leftarrow ADREG3 WA > > 6 (00FF10H) \leftarrow WA Read ADREG3L and ADREG3H values and writes to WA (16 bit).

Right-shifts WA six times and writes 0 in upper bits.

Writes contents of WA in memory at FF10H.

When the analog input voltage of ANO ~ AN2 pins is A/D converted in high speed conversion channel scan repeat mode.

 Disable INTAD.

Start the A/D conversion of analog input channels AN0 \sim AN2 in the high-speed scan repeat mode.

Note: x; don't care -; no change

3.13 Watchdog Timer (Runaway Detecting Timer)

The TMP96C141AF is containing watchdog timer of Runaway detecting.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt to notify the CPU of the malfunction, and outputs 0 externally from watchdog timer out pin WDTOUT to notify the peripheral devices of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset.

144

3.13.1 Configuration

Figure 3.13 (1) shows the block diagram of the watchdog timer (WDT).

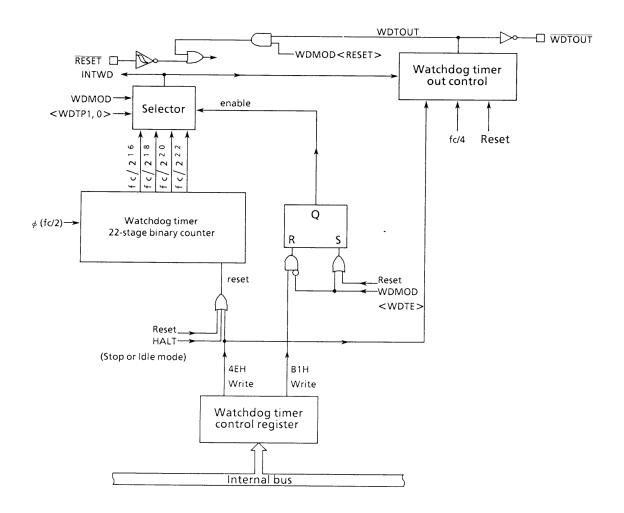


Figure 3.13 (1). Block Diagram of Watchdog Timer

The watchdog timer is a 22-stage binary counter which uses ϕ (fc/2) as the input clock. There are four outputs from the binary counter: 2^{16} /fc, 2^{18} /fc, 2^{20} /fc, and 2^{22} /fc. Selecting one of the outputs with the WDMOD register generates a watchdog interrupt, and outputs watchdog timer out when an overflow occurs.

Since the watchdog timer out pin (WDTOUT) outputs "0" due to a watchdog timer overflow, the peripheral devices can

be reset. The watchdog timer out pin is set to 1 by clearing the watchdog timer (by writing a clear code 4EH in the WDCR register). In other words, the WDTOUT keeps outputting "0" until the clear code is written.

The watchdog timer out pin can also be connected to the reset pin internally. In this case, the watchdog timer out pin (WDTOUT) outputs 0 at 8 to 20 states (800ns to 2µs @ 20MHz) and resets itself.

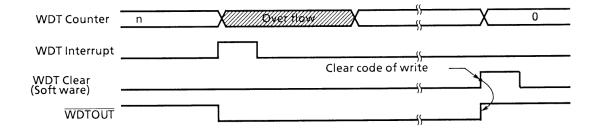


Figure 3.13 (2). Normal Mode

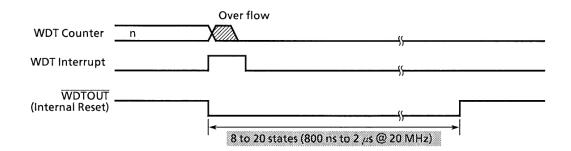


Figure 3.13 (3). Reset Mode

3.13.2 Control Registers

Watchdog timer WDT is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog Timer Mode Register (WDMOD)
 - Setting the detecting time of watchdog timer <WDTP>

This 2-bit register is used to set the watchdog timer interrupt time for detecting the runaway. This register is initialized to WDMOD <WDTP1, 0 > 00 when reset, and therefore 2^{16} /fc is set. (The number of states is approximately 32,768).

② Watchdog timer enable/disable control register < WDTF>

When reset, WDMOD <WDTE> is initialized to "1" enable the watchdog timer.

• Disable control

- Enable control Set WDMOD <WDTE> to "1".
- Watchdog timer clear control
 The binary counter can be cleared and resume

To disable, it is necessary to clear this bit to "0" and write the disable code (B1H) in the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway. However, it is possible to return from the disable state to enable state by merely setting <WDTE> to "1".

③ Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with $\overline{\text{RESET}}$ terminal, internally. Since WDMOD <RESCR> is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog Timer Control Register (WDCR)

This register is used to disable and clear the binary counter of the watchdog timer function.

Clear WDMOD <WDTE> to "0". Write the disable code (B1H).

counting by writing clear code (4EH) into the WDCR register.

WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).

TOSHIBA CORPORATION

147

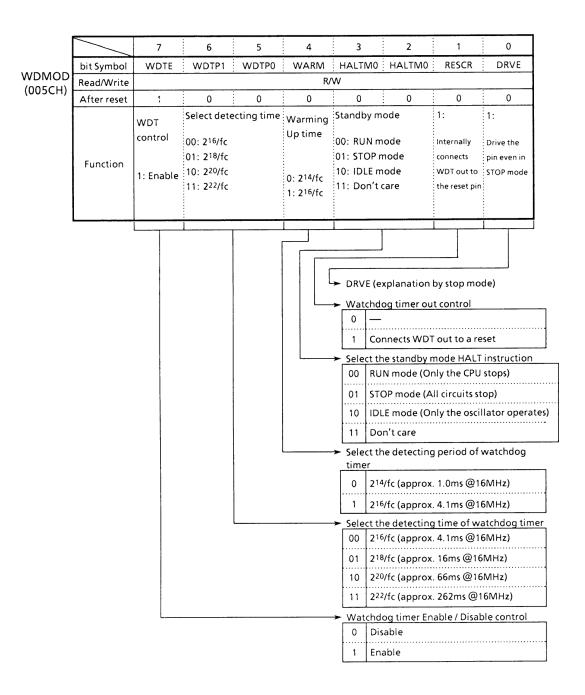


Figure 3.13 (4). Watchdog Timer Mode Register

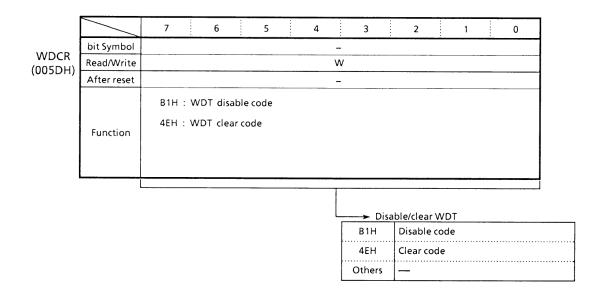


Figure 3.13 (5). Watchdog Timer Control Register

3.13.3 Operation

The watchdog timer generates interrupt INTWD after the detecting time set in the WDMOD <WDTP1, 0> register and outputs a low level signal. The watchdog timer must be zero-cleared by software before an INTWD interrupt is generated. If the CPU malfunctions (runaway) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter overflows and an INTWD interrupt is generated. The CPU detects malfunction (runaway) due to the INTWD Interrupt and it is possible to return to normal oper-

ation by an anti-malfunction program. By connecting the watchdog timer out pin to peripheral devices' resets, a CPU malfunction can also be acknowledged to other devices.

The watchdog timer restarts operation immediately after resetting is released.

The watchdog timer stops its operation in the IDLE and STOP modes. In the RUN mode, the watchdog timer is enabled.

However, the function can be disabled when entering the RUN mode.

Example:	1	Clear the	bina	ary c	coun	ter						
		WDCR	\leftarrow	0	1	0	0	1	1	1	0	Write clear code (4EH).
	2	Set the v	vatch	ndog	g tim	er d	etec	ting	time	to 2	. ¹⁸ /fc	
		WDMOD	\leftarrow	1	0	1	-	-	-	Х	Х	
	3	Disable t	he w	atch	ndog	ı tim	er					
		WDMOD	\leftarrow	0	-	_	_	_	_	Χ	Χ	Clear WDTE to "0".
		WDCR	\leftarrow	1	0	1	1	0	0	0	1	Write disable code (B1H).
	4	Set IDLE	mod	de								
		WDMOD	\leftarrow	0	_	_	_	1	0	Х	Χ	Disables WDT and sets IDLE mode.
		WDCR	\leftarrow	1	0	1	1	0	0	0	1	
		Executes H	HALT (comm	and							Set the standby mode
	(5)	Set the S	STOF	o mo	ode (warr	ming	up :	time	: 2 ¹⁶	/fc)	
		WDMOD	\leftarrow	_	_	_	1	0	1	Х	Χ	Set the STOP mode.
		Executes H	HALT (comm	and							Execute HALT instruction. Set the standby mode.

4. Electrical Characteristics

4.1 Absolute Maximum (TMP96C141AF)

Symbol	Parameter	Rating	Unit
V _{cc}	Power Supply Voltage	-0.5 ~ 6.5	V
VIN	Input Voltage	-0.5 ~ V _{CC} + 0.5	V
ΣΙΟΙ	Output Current (total)	100	mA
ΣΙΟΗ	Output Current (total)	-100	mA
PD	Power Dissipation (Ta = 70°C)	600	mW
T SOLDER	Soldering Temperature (10s)	260	°C
T STG	Storage Temperature	-65 ~ 150	°C
T OPR	Operating Temperature	-20 ~ 70	°C

4.2 DC Characteristics (TMP96C141AF) $V_{cc} = 5V \pm 10\%, \, Ta = -20 ~~70^{^{\circ}}\text{C (Typical values are for Ta} = 25^{^{\circ}}\text{C and V}_{cc} = 5\text{V})$

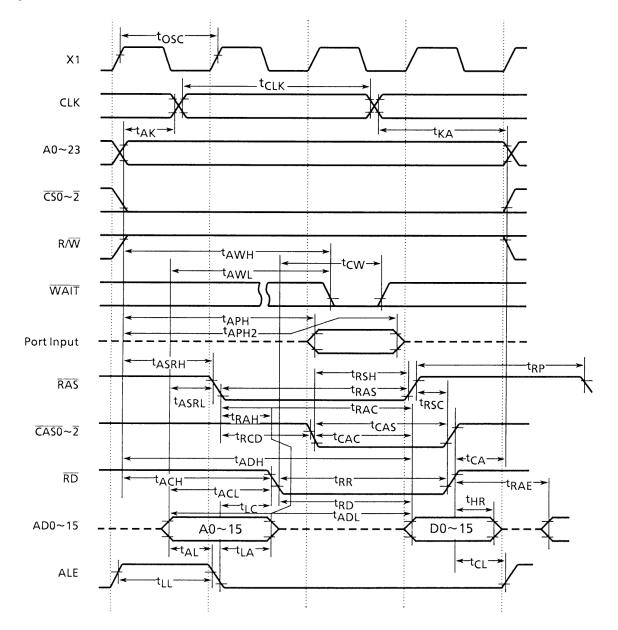
Symbol	Parameter	Min	Max	Unit	Test Condition
V IL	Input Low Voltage (AD0-15)	-0.3	0.8	V	
V IL1	P2, P3, P4, P5, P6, P7, P8, P9	-0.3	0.3V _{cc}	V	
V IL2	RESET, NMI, INTO (P87)	-0.3	0.25V _{cc}	V	
V IL3	EA	-0.3	0.3	V	
V IL4	X1	-0.3	0.2V _{cc}	V	
V IH	Input High Voltage (AD0-15)	2.2	V _{cc} + 0.3	٧	
V IH1	P2, P3, P4, P5, P6, P7, P8, P9	0.7V _{cc}	V _{cc} + 0.3	V	
V IH2	RESET, NMI, INTO (P87)	0.75V _{cc}	V _{cc} + 0.3	V	
V IH3	EA	V _{cc} - 0.3	V _{cc} + 0.3	V	
V IH4	X1	0.8V _{cc}	V _{cc} + 0.3	V	
V OL	Output Low Voltage		0.45	V	I OL = 1.6mA
V OH	Output High Voltage	2.4		V	I OH = -400μA
V 0H1		0.75V _{cc}		V	I OH = -100μA
V 0H2		0.9V _{cc}		V	I OH = -20μA
I DAR	Darlington Drive Current (8 Output Pins max.)	-1.0	-3.5	mA	V EXT - 1.5V R EXT = 1.1KΩ
I LI	Input Leakage Current	0.02 (Typ)	±5	μA	$0.0 \le V_{in} \le V_{CC}$
ILO	Output Leakage Current	0.05 (Typ)	±10	μA	$0.2 \le V_{in} \le V_{cc} - 0.2$
I _{cc}	Operating Current (RUN) IDLE STOP (Ta = -20 ~ 70°C) STOP (Ta = 0 ~ 50°C)	26 (Typ) 1.7 (Typ) 0.2 (Typ)	50 10 50 10	mA mA μA	$\begin{aligned} t_{OSC} &= 16 MHz \\ 0.2 &\leq V_{in} \leq V_{CC} - 0.2 \\ 0.2 &\leq V_{in} \leq V_{CC} - 0.2 \end{aligned}$
V STOP	Power Down Voltage (@STOP, RAM Back up)	2.0	6.0	V	$ V IL2 = 0.2V_{CC}, $ $V IH2 = 0.8V_{CC} $
R RST	RESET Pull Up Register	50	150	ΚΩ	
C 10	Pin Capacitance		10	pF	tosc = 1MHz
V TH	Schmitt Width RESET, NMI, INTO (P87)	0.4	1.0 (Typ)	V	
RK	Pull Down/Up Register	50	150	ΚΩ	

Note: I-DAR is guaranteed for a total of up to 8 ports.

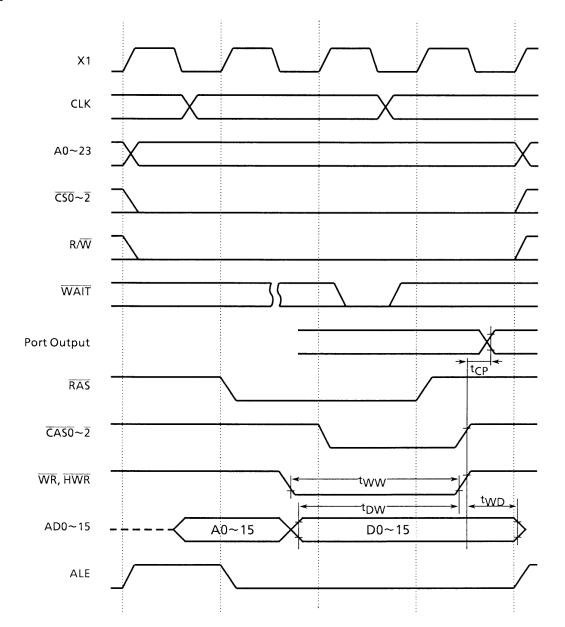
4.3 AC Electrical Characteristics (TMP96C141AF) V_{cc} = 5V±10%, Ta = -20 ~ 70 $^{\circ}$ C (4MHz ~ 20MHz)

	Oh a l	Paramatar.	Varial	ble	161	MHz	201	ИНz	Unit
No.	Symbol	Parameter -	Min	Max	Min	Max	Min	Max	Unit
1	t _{OSC}	Osc. Period (= x)	50	250	62.5		50		ns
2	t _{CLK}	CLK width	2x - 40		85		60		ns
3	t _{AK}	A0 - 23 Valid→CLK Hold	0.5x - 20		11		5		ns
4	t _{KA}	CLK Valid→A0 - 23 Hold	1.5x - 70		24		5		ns
5	t _{AL}	A0-15 Valid→ALE fall	0.5x - 15		16		10		ns
6	t _{LA}	ALE fall→A0 - 15 Hold	0.5x - 15		16		10		ns
7	t _{LL}	ALE High width	x - 40		23		10		ns
8	t _{LC}	ALE fall→RD/WR fall	0.5x - 30		1		-5		ns
9	t _{CL}	RD/WR rise→ALE rise	0.5x - 20		11		5		ns
10	t _{ACL}	A0 - 15 Valid→RD/WR fall	x - 25		38		25		ns
11	t _{ACH}	A0 - 23 Valid→RD/WR fall	1.5x - 50		44		25		ns
12	t _{CA}	RD/WR rise→A0 - 23 Hold	0.5x - 20		11		5		ns
13	t _{ADL}	A0 - 15 Valid→D0 - 15 input		3.0x - 45		143		105	ns
14	t _{ADH}	A0 - 23 Valid→D0 - 15 input		3.5x - 65		154		110	ns
15	t _{RD}	RD fall→D0 - 15 input		2.0x - 50		75		50	ns
16	t _{RR}	RD Low width	2.0x - 40		85		60		ns
17	t _{HR}	RD rise→D0 - 15 Hold	0		0		0		ns
18	t _{RAE}	RD rise→A0 - 15 output	x - 15		48		35		ns
19	t _{WW}	WR Low width	2.0x - 40		85		60		ns
20	t _{DW}	D0 - 15 Valid→WR rise	2.0x - 50		75		50		ns
21	t _{WD}	WR rise→D0 - 15 Hold	0.5x - 10		21		15		ns
22	t _{AEH}	A0 - 23 Valid→WAIT input (1WAIT + n mode)		3.5x - 90		129		85	ns
23	t _{AWL}	A0 - 15 Valid→WAIT input (1WAIT + n mode)		3.0x - 80		108		70	ns
24	t _{CW}	$\overline{RD}/\overline{WR}$ fall $\rightarrow \overline{WAIT}$ Hold (1WAIT + n mode)	2.0x + 0		125		100		ns
25	t _{APH}	A0 - 23 Valid→PORT input		2.5x - 120		80		36	ns
26	t _{APH2}	A0 - 23 Valid→PORT Hold	2.5x + 50		206		175		ns
27	t _{CP}	WR rise→PORT Valid		200		200		200	ns
28	t _{ASRH}	A0 - 23 Valid→RAS fall	1.0x - 40		23		10		ns
29	t _{ASRL}	A0 - 15 Valid→RAS fall	0.5x - 15		16		10		ns
30	t _{RAC}	RAS fall→D0 - 15 input		2.5x - 70		130		86	ns
31	t _{RAH}	RAS fall→A0 - 15 Hold	0.5x - 15		16		10		ns
32	t _{RAS}	RAS Low width	2.0x - 40		85		60		ns
33	t _{RP}	RAS High width	2.0x - 40		85		60		ns
34	t _{RSH}	CAS fall→RAS rise	1.0x - 35		28		15		ns
35	t _{RSC}	RAS rise→CAS rise	0.5x - 25		6		0		ns
36	t _{RCD}	RAS fall→CAS fall	1.0x - 40		23		10		ns
37	t _{CAC}	CAS fall→D0 - 15 input		1.5x - 65		29		10	ns
38	t _{CAS}	CAS Low width	1.5x - 30		64		40		ns

AC Measuring Conditions


 Output Level: High 2.2V /Low 0.8V, CL50pF

 $(However\ CL = 100pF\ for\ AD0\ \sim\ AD15,\ AD0\ \sim\ AD23,\ ALE,\ \overline{RD},\ \overline{WR},\ \overline{HWR},\ R/\overline{W},\ CLK,\ \overline{RAS},\ \overline{CAS0}\ \sim\ \overline{CAS2})$ $Input\ Level: \qquad High\ 2.4V \qquad /Low\ 0.45V \quad (AD0\ \sim\ AD15)$


• Input Level:

High 0.8Vcc /Low 0.2Vcc (Except for AD0 ~ AD15)

(1) Read Cycle

(2) Write Cycle

4.4 A/D Conversion Characteristics (TMP96C141AF)

$$V_{cc} = 5V \pm 10\% \text{ TA} = -20 \sim 70^{\circ}\text{C}$$

Symbol		Parameter	Min	Тур	Max	Unit
V _{REF}	Analog reference vo	tage	V _{cc} - 1.5	V _{cc}	V _{cc}	
A _{GND}	Analog reference vo	tage	V _{SS}	V _{SS}	V _{SS}	V
V _{AIN}	Analog input voltage	e range	V _{SS}		V_{cc}	
I _{REF}	Analog current for a	nalog reference voltage		0.5	1.5	mA
_		Low speed conversion mode		±1.5 (TBD)	±4.0	
Error (Quantize error of	4 ≤ fc ≤ 16MHz	High speed conversion mode		±3.0 (TBD)	±6.0	LSB
±0.5 LSB not included)		Low speed conversion mode		±1.5 (TBD)	±4.0	
	16 ≤ fc ≤ 20MHz	High speed conversion mode		±4.0 (TBD)	±8.0	

4.5 Serial Channel Timing - I/O Interface Mode

 $V_{cc} = 5V \pm 10\% \text{ TA} = -20 \sim 70^{\circ}\text{C}$

(1) SCLK Input Mode

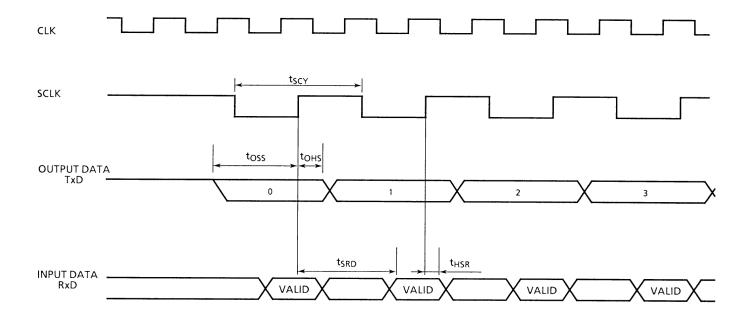
Symbol	Parameter	Vari	able	161	ЛНz	201	Unit	
Syllibul	Faranneter	Min	Max	Min	Max	Min	Max	UIIII
t _{SCY}	SCLK cycle	16x		1		0.8		μs
t _{OSS}	Output Data—rising edge of SCLK	t _{SCY} /2 - 5x - 50		137		100		ns
t _{OHS}	SCLK rising edge→output data hold	5x - 100		212		150		ns
t _{HSR}	SCLK rising edge→input data hold	0		0		0		ns
t _{SRD}	SCLK rising edge→effective data input		t _{SCY} - 5x - 100		587		450	ns

(2) SCLK Output Mode

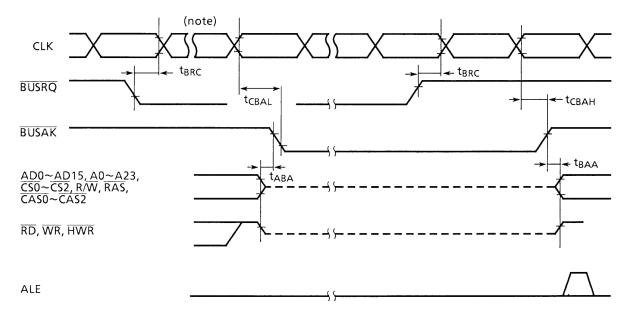
Symbol	Parameter	Vari	able	161	ЛHz	201	Unit	
Symbol	Faranneter	Min	Max	Min	Max	Min	Max	UIIIL
t _{SCY}	SCLK cycle (programmable)	16x	8192x	1	512	0.8	409.6	μs
t _{OSS}	Output Data→rising edge of SCLK	t _{SCY} - 2x - 150		725		550		ns
t _{OHS}	SCLK rising edge→output data hold	2x - 80		45		20		ns
t _{HSR}	SCLK rising edge→input data hold	0		0		0		ns
t _{SRD}	SCLK rising edge→effective data input		t _{SCY} - 2x - 150		725		550	ns

4.6 Timer/Counter Input Clock (TI0, TI4, TI5, TI6, TI7)

$$V_{cc} = 5V \pm 10\% \text{ TA} = -20 \sim 70^{\circ}\text{C}$$


Symbol	Parameter	Vari	able	161	ИHz	201	ИHz	Unit
Symbol	i arameter	Min	Max	Min	Max	Min	Max	Oiiit
t _{VCK}	Clock cycle	8x + 100		600		500		ns
t _{VCKL}	Low level clock pulse width	4x + 40		290		240		ns
t _{VCKH}	High level clock pulse width	4x + 40		290		240		ns

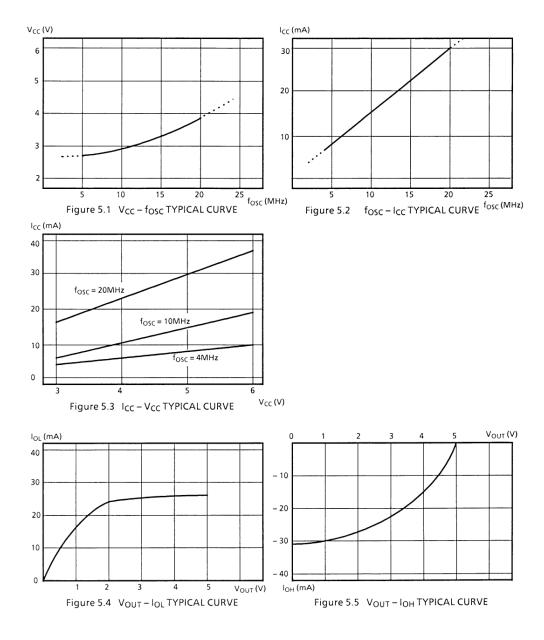
4.7 Interrupt Operation


$V_{cc} = 5V \pm 10\% \text{ Ta} = -20 \sim 70^{\circ}\text{C}$

Symbol	Parameter	Vari	able	161	ИHz	201	Unit	
Symbol	Farameter	Min	Max	Min	Max	Min	Max	Ullit
t _{INTAL}	NMI, INTO Low level pulse width	4x		250		200		ns
t _{INTAH}	NMI, INTO High level pulse width	4x		250		200		ns
t _{INTBL}	INT4 ~ INT7 Low level pulse width	8x + 100		600		500		ns
t _{INTBH}	INT4 ~ INT7 High level pulse width	8x + 100		600		500		ns

4.8 Timing Chart for I/O Interface Mode

4.9 Timing Chart for Bus Request (BUSRQ)/BUS Acknowledge (BUSAK)


Cumbal	Parameter	Vari	161	ИHz	201	Unit		
Symbol	raiametei	Min	Max	Min	Max	Min	Max	UIIIL
t _{BRC}	BUSRQ setup time for CLK	120		120		120		ns
t _{CBAL}	CLK→BUSAK falling edge		1.5x + 120		214		195	ns
t _{CBAH}	CLK→BUSAK rising edge		0.5x + 40		71		65	ns
t _{ABA}	Output buffer is off to BUSAK	0	80	0	80	0	80	ns
t _{BAA}	BUSAK output buffer is on.	0	80	0	80	0	80	ns

Note 1: The Bus will be released after the $\overline{\text{WAIT}}$ request is inactive, when the $\overline{\text{BUSRQ}}$ is set to "0" during "Wait" cycle.

Note 2: This line only shows the output buffer is off-states. They don't indicate the signal levels are fixed. After the bus is released, the signal level is kept dynamically before the bus is released by the external capacitance. Therefore, to fix the signal level by an external resistance under the bus is releasing, the design must be carefully because of the level-fix will be delayed. The internal programmable pull-up/pull-down resistance is switched active by the internal signal.

4.10 Interrupt Operation

V_{cc} = 5V, Ta = -25°C, unless otherwise noted

5. Table of Special Function Registers (SFRs)

(SFR; Special Function Register)

The special function registers (SFRs) include the I/O ports and peripheral control registers allocated to the 128-byte addresses from 000000H to 00007FH.

- (1) I/O port
- (2) I/O port control
- (3) Timer control
- (4) Pattern Generator control
- (5) Watch Dog Timer control
- (6) Serial Channel control
- (7) A/D converter control
- (8) Interrupt control
- (9) Chip Select/Wait Control

Configuration of the table

Symbol	Name	Address	7	6	\mathcal{L}	1		0	
	*				\lceil				→bit Symbol
					$\backslash \! $				→Read / Write
					7	:	-		→Initial value afrer reset
					7,				→ Remarks

Table 5 I/O Register Address Map

Address	Name	Address	Name	Address	Name	Address	Name
000000H	P0	20H	TRUN	40H	TREG6L	60H	ADREG0L
1H	P1	21H		41H	TREG6H	61H	ADREG0H
2H	POCR	22H	TREG0	42H	TREG7L	62H	ADREG1L
3H		23H	TREG1	43H	TREG7H	63H	ADREG1H
4H	P1CR	24H	TMOD	44H	CAP3L	64H	ADREG2L
5H	P1FC	25H	TFFCR	45H	CAP3H	65H	ADREG2H
6H	P2	26H	TREG2	46H	CAP4L	66H	ADREG3L
7H	P3	27H	TREG3	47H	CAP4H	67H	ADREG3H
8H	P2CR	28H	POMOD	48H	T5MOD	68H	BOCS
9H	P2FC	29H	P1MOD	49H	T5FFCR	69H	B1CS
AH	P3CR	2AH	PFFCR	4AH		6AH	B2CS
BH	P3FC	2BH		4BH		6BH	
CH	P4	2CH		4CH	PGOREG	6CH	
DH	P5	2DH		4DH	PG1REG	6DH	
EH	P4CR	2EH		4EH	PG01CR	6EH	
FH		2FH		4FH		6FH	
10H	P4FC	30H	TREG4L	50H	SCOBUF	70H	INTE0AD
11H		31H	TREG4H	51H	SCOCR	71H	INTE45
12H	P6	32H	TREG5L	52H	SCOMOD	72H	INTE67
13H	P7	33H	TREG5H	53H	BROCR	73H	INTET10
14H	P6CR	34H	CAP1L	54H	SC1BUF	74H	INTEPW10
15H	P7CR	35H	CAP1H	55H	SC1CR	75H	INTET54
16H	P6FC	36H	CAP2L	56H	SC1MOD	76H	INTET76
17H	P7FC	37H	CAP2H	57H	BR1CR	77H	INTES0
18H	P8	38H	T4MOD	58H	ODE	78H	INTES1
19H	P9	39H	TFF4CR	59H		79H	
1AH	P8CR	3AH	T45CR	5AH		7AH	
1BH	P9CR	3BH		5BH		7BH	IIMC
1CH	P8FC	3CH		5CH	WDMOD	7CH	DMA0V
1DH	P9FC	3DH		5DH	WDCR	7DH	DMA1V
1EH		3EH		5EH	ADMOD	7EH	DMA2V
1FH		3FH		5FH		7FH	DMA3V

(1) I/O Port

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P07	P06	P05	P04	P03	P02	P01	P00
DO	DODTO	0011		l		R	/W			
P0	PORT0	00H				Input	mode			
						Und	efined			
			P17	P16	P15	P14	P13	P12	P11	P10
P1	PORT1	01H		•	'	R	/W			•
PI	PURTT	UIH				Input	mode			
			0	0	0	0	0	0	0	0
			P27	P26	P25	P24	P23	P22	P21	P20
P2	PORT2	06H				R	/W			
Г	FUNIZ	ООП				Input	mode			
			0	0	0	0	0	0	0	0
			P37	P36	P35	P34	P33	P32	P31	P30
P3	PORT3	07H					/W			
10	1 01110	0711				mode				t mode
			1	1	1	1	1	1	1	1
								P42	P41	P40
P4	PORT4	OCH -							R/W	
	1 0111 1	0011							Input mode	
								0	1	1
							P53	P52	P51	P50
P5	PORT5	0DH							R	
									mode	1
			P67	P66	P65	P64	P63	P62	P61	P60
P6	PORT6	12H					/W			
							mode		T .	
			1	1	1	1	1	1	1	1
							P73	P72	P71	P70
P7	PORT7	13H							/W	
									mode	
			D07	DOC	DOE	D0.4	1	1	1	1
			P87	P86	P85	P84	P83	P82	P81	P80
P8	PORT8	18H					/W			
			1	1	1		mode	4	-1	1
			1	1	1	1 P94	1	1 P92	1	1
					P95	F94	P93		P91	P90
P9	PORT9	19H						W		
					1	1		mode	1	4
					1	1	1	1	1	1

Note: When P30 pin is defined as \overline{RD} signal output mode (P30F = 1), clearing the output latch register P30 to "0" outputs the \overline{RD} strobe from P30 pin for PSRAM, even when the internal address is accessed. If the output latch register P30 remains "1", the \overline{RD} strobe is output only when the external address is accessed.

Read/Write R/W ; Either read or write is possible

R ; Only read is possible W ; Only write is possible

Prohibit RWM; Prohibit Read Modify Write. (Prohibit RES/SET/TSET/CHG/STCF/ANDCF/ORCF Instruction)

162

(2) I/O Port Control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C
DOOD	PORT0	02H				V	V			
P0CR	Control	(Prohibit RMW)	0	0	0	0	0	0	0	0
		,	ļ	0 : 11	N 1: OUT (Whe	n external acces	s, set as AD7 -	0 and cleared to	"0".)	
			P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
DAOD	PORT1	04H (Prohibit			-	V	V	1		
P1CR	Control	RMW)	0	0	0	0	0	0	0	0
		,	'		•	< <refer td="" th<="" to=""><td>ne "P1FC">></td><td>•</td><td></td><td></td></refer>	ne "P1FC">>	•		
			P27F	P26F	P25F	P24F	P23F	P22F	P21F	P20F
P1FC	PORT1	05H (Prohibit	1			V	V		'	
PIFG	Function	RMW)	0	0	0	0	0	0	0	0
		,			P1FC/ P1CR =	:00 : IN, 01 : OL	JT, 10 : AD15 -	8, 11 : A23 - 16		
			P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C
DOOD	PORT2	08H (Prohibit				V	V		'	
P2CR	Control	RMW)	0	0	0	0	0	0	0	0
		,				< <refer td="" th<="" to=""><td>ne "P2FC">></td><td>1</td><td></td><td></td></refer>	ne "P2FC">>	1		
			P27F	P26F	P25F	P24F	P23F	P22F	P21F	P20F
DOEC	PORT2	09H (Prohibit				V	V			
P2FC	Function	RMW)	0	0	0	0	0	0	0	0
					P2FC/ P2CR	= 00 : IN, 01 : 0	UT, 10 : A7 - 0,	, 11 : A23 - 16		
			P37C	P36C	P35C	P34C	P33C	P32C		
P3CR	PORT3	0AH (Prohibit				V				
roun	Control	RMW)	0	0	0	0	0	0		
						0 : IN 1	: OUT			
			P37F	P36F	P35F	P34F		P32F	P31F	P30F
	PORT3	0BH				V	V			
P3FC	Function	(Prohibit RMW)	0	0	0	0		0	0	0
		Tuvivv)	0 : <u>PORT</u> 1 : RAS	0 : PORT 1 : R/W	0 : PORT 1 : BUSAK	0 : <u>PORT</u> 1 : <u>BUSRQ</u>		0 : <u>PORT</u> 1 : HWR	0 : PORT 1 : WR	0 : <u>PORT</u> 1 : RD
								P42C	P41C	P40C
DACD	PORT4	0EH (Prohibit							W	
P4CR	Control	RMW)						0	0	0
									0 : IN 1 : OUT	
								P42F	P41F	P40F
P4FC	PORT4	10H (Prohibit							W	
F4F6	Function	RMW)						0	0	0
								0	: PORT 1 : CS/C/	AS

Note: With the TMP96C141A/TMP96C141A/TMP96C041A, which requires an external ROM, PORT0 functions as AD0 to AD7; PORT1, AD8 to AD15; P30, the RD signal; P31, the WR signal, regardless of the values set in POCR, P1CR, P1FC, P30F and P31F.

TMP96C141AF

I/O Port Control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
DOOD	PORT6	14H			L		W			
P6CR	Control	(Prohibit - RMW)	0	0	0	0	0	0	0	0
				-		0 : IN	1 : OUT			
							P73C	P72C	P71C	P70C
P7CR	PORT7	15H (Prohibit						٧	I	
77011	Control	RMW)					0	0	0	0
								0:IN	I : OUT	
		4011	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F
P6FC	PORT6	16H (Prohibit					W			
1010	Function	RMW)	0	0	0	0	0	0	0	0
				0 : PORT 1 :	PG1 - OUT			0 : PORT 1 :	PGO - OUT	
							P73F	P72F	P71F	
	PORT7	17H						W		
P7FC	Function	(Prohibit RMW)					0	0	0	
		""""					0 : PORT 1 : TO3	0 :PORT 1 : TO2	0 : PORT 1 : TO1	
			P87C	P86C	P85C	P84C	P83C	P82C	P81C	P80C
P8CR	PORT8	1AH (Prohibit					W			
roon	Control	RMW)	0	0	0	0	0	0	0	0
						0 : IN	1:0UT			
		4811			P95C	P94C	P93C	P92C	P91C	P90C
P9CR	PORT9	1BH (Prohibit					V	V		
1 3011	Control	RMW)			0	0	0	0	0	0
							0:IN 1	I:OUT		
				P86F			P83F	P82F		
	PORT8	1CH		W			W	W		
P8FC	Function	(Prohibit RMW)		0			0	0		
		,		0 : PORT 1 : T06			0 : PORT 1 : T05	0 : PORT 1 : TO4		
					P95F		P93F	P92F		P90F
	PORT9	1DH			W		W	W		W
P9FC	Function	(Prohibit RMW)			0		0	0		0
		1111111111			0 : PORT 1 : SCLK1		0 : PORT 1 : TxD1	0 : PORT 1 : SCLK0		0 : PORT 1 : TxD0

(3) Timer Control (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PRRUN		T5RUN	T4RUN	P1RUN	PORUN	T1RUN	TORUN
			R/W				R,	W		
TRUN	Timer	20H	0		0	0	0	0	0	0
mon	Control	2011			Pres	scaler and Timer 0 : Stop a 1 : Run (0	and Clear	TROL		
	4 : 1	22H				-	-			
TREG0	8bit Timer Register 0	(Prohibit RMW)				V Unde				
		23H				_	_			
TREG1	8bit Timer Register 1	(Prohibit RMW)				V	V			
	negister i	nivivv)				Unde	fined			
			T10M1	T10M0	PWMM1	PWMM0	T1CLK1	T1CLK0	T0CLK1	T0CLK0
	8bit Timer	0.411		•	•	V	V		'	•
TMOD	Source CLK	24H (Prohibit	0	0	0	0	0	0	0	0
	and MODE	`RMW)	00 : 8-b 01 : 16-l 10 : 8-b 11 : 8-b	oit Timer it PPG	00 : - 01 : 2 ⁶ - 10 : 2 ⁷ - 11 : 2 ⁸ -	1	00 : T00 01 : φ̄T 10 : φ̄T 11 : φ̄T2	ī1 16	00 : TI0 01 : φT 10 : φT 11:φT16	1 4
						DBEN	TFF1C1	TFF1C0	TFF1IE	TFF1IS
						R/W	١	V	R	W
	8bit Timer					0	0	0	0	0
TFFCR	Flip-flop Control	25H				1 : Double Buffer Enable	00 : Inve 01 : Set 10 : Clea 11 : Don	TFF1 ır TFF1	1 : TFF1 Invert Enable	0 : Inverted by Timer 0
				•		-	_		•	
TREG2	PWM Timer Register 2	26H			(R)	/W (Can read do	ouble buffer valu	es.)		
	ricyisici Z					Unde	fined			
						-	_			
TREG3	PWM Timer Register 3	27H			(R)	/W (Can read do	ouble buffer valu	es.)		
	riogistor o					Unde	fined			
			FF2RD	DB2EN	PWM0INT	PWM0M	T2CLK1	T2CLK0	PWM0S1	PWM0S0
			R		_		W			
POMOD	PWM0 MODE	28H (Prohibit	_	0	0	0	0	0	0	0
FUMOD	F WIND MODE	RMW)	TFF2 output value	1 : Double Buffer Enable	0 : Overflow Interrupt 1: Compare/ Match Interrupt	0 : PWM Mode 1 : Timer Mode	00: φP 01: φP 10: φP1 11: Don	4(fc/16) 6(fc/64)	00 : 2 ⁶ - 01 : 2 ⁷ - 10 : 2 ⁸ - 11 : Don	1 1
			FF3RD	DB3EN	PWM1INT	PWM1M	T3CLK1	T3CLK0	PWM1S1	PWM1S0
			R		1	1	W	1	1	1
B	DUM.	29H	_	0	0	0	0	0	0	0
P1MOD	PWM1 MODE	(Prohibit RMW)	TFF3 output value	1 : Double Buffer Enable	0 : Overflow Interrupt 1 : Compare/ Match Interrupt	0 : PWM Mode 1 : Timer Mode	00: φF 01: φF 10: φP1 11: Don	4(fc/16) 6(fc/64)	00 : 2 ⁶ - 01 : 2 ⁷ - 10:2 ⁸ - 11:Don't	1

Timer Control (2/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			FF3C1	FF3C0	FF3TRG1	FF3TRG0	FF2C1	FF2C0	FF2TRG1	FF2TRG0		
			\	V	R/	W	1	N	R/	W		
	D)A/A		0	0	0	0	0	0	0	0		
PFFCR	PWM Flip-flop Control	2AH	00 : Don 01 : Set 10 : Clea 11 : Don	TFF3 ır TFF3	Inve 01 : Inve 10 : Set i Clea 11 : Clea	hibit TFF3 rted rt if matched if matched; ar if overflowed ir if matched; if overflowed	00 : Don 01 : Set 10 : Clea 11 : Don	TFF2 ar TFF2	10 : Set i Clea 11 : Clea			
TREG4L	16-bit Timer Register 4L	30H (Prohibit RMW)				V	N efined					
		31H				-	_					
TREG4H	16-bit Timer	(Prohibit				V	V					
	Register 4H	RMW)				Unde	efined					
	40 1 '' T'	32H				-	_					
TREG5L	16-bit Timer Register 5L	(Prohibit RMW)					V					
	110g10101 02	,				Unde	efined					
TREG5H	16-bit Timer	33H (Prohibit										
	Register 5H	RMW)				Unde	efined					
	01					-	_					
CAP1L	Capture Register 1L	34H					R					
							efined					
OADALI	Capture	0511					-					
CAP1H	Register 1H	35H					R efined					
							- -					
CAP2L	Capture	36H					 R					
	Register 2L						efined					
							_					
CAP2H	Capture	37H				-	R					
	Register 2H					Unde	efined					
			CAP2T5	EQ5T5	CAP1IN	CAP12M1	CAP12M0	CLE	T4CLK1	T4CLK0		
			R,	W	W		R,	/W				
T4M0D	16-bit Timer 4 Source	38H	0	0	0	0	0	0	0	0		
UDIVITI	CLK and MODE	3011	TFF5 INV O: TRG I 1: TRG E	Disable	0 : Soft- Capture 1 : Don't care	Capture 00 : Disable 01 : T14 10 : T14 11 : TFF1	e ↑ T15 ↑ ↑ T14 ↓	1 : UC4 Clear Enable	Source Cloc 00 : TI4 01 : φT1 10 : φT4 11 :φT16			

Timer Control (3/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			TFF5C1	TFF5C0	CAP2T4	CAP1T4	EQ5T4	EQ4T4	TFF4C1	TFF4C0	
	16bit Timer 4		V	V		R	/W		١	Ň	
T4FFCR	Flip-flop	39H	0	0	0	0	0	0	0	0	
	Control		00 : Inve 01 : Set 10 : Clea 11 : Don	TFF5 ır TFF5		TFF4 Invert T 0 : Trigger Di 1 : Trigger Er	sable		Sourc 00 : Inve 01 : Set 10 : Clea 11 : Dor	TFF4 ar TFF4	
			_				PG1T	PG0T	DB6EN	DB4EN	
			R/W					R/V	N		
T45CR	T4, T5 Control	3AH	0				0	0	0	0	
14300	14, 13 COIIIIOI	ЭАП	Fix at "0"				PG1 shift trigger 0 : Timer 0, 1 1 : Timer 5	PG0 shift trigger 0 : Timer 0, 1 1 : Timer 4		ouble ffer able	
	16bit Timer	40H				-	_				
TREG6L	Register 6L	(Prohibit					N				
	·	RMW)				Unde	efined				
TDEOGLI	16bit Timer	41H									
TREG6H	Register 6H	(Prohibit RMW)					N				
							efined _				
TREG7L	16bit Timer	42H (Prohibit									
THE GITE	Register 7L	RMW)					efined				
		43H									
TREG7H	16bit Timer Register 7H	(Prohibit				\	N				
	Hogistol III	RMW)				Unde	efined				
	Capture						_				
CAP3L	Register 3L	44H					R				
							efined				
CAP3H	Capture	45H					 R				
OAFSII	Register 3H	JUI					n efined				
CAP4L	Capture Register 4L	46H					R				
	negistel 4L					Unde	efined				
	0						_				
CAP4H	Capture Register 4H	47H				1	R				
	J						Undefined OAPPAMA OLE TECHNAL TECHNAL				
					CAP3IN	CAP34M1	CAP34M0	CLE	T5CLK1	T5CLK0	
	16hit Times 5		0	0		/W				N O	
T5M0D	16bit Timer 5 Source	48H	0	0	0	0 Conture	0 Timing				
	CLK and MODE				0 : Soft- Capture 1 : Don't care	Capture 00 : Disable 01 : T16 10 : T16 11 : TFF1	e ↑ T17 ↑ ↑ T16 ↓	Source Clock 1: UC5 00: Invert TFF6 Clear 01: Set TFF6 Enable 10: Clear TFF6 11: Don't care			

Timer Control (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
					CAP4T6	CAP3T6	EQ7T6	EQ6T6	TFF6C1	TFF6C0
					R	/W			V	V
TEEEOD	16bit Timer 5	4011			0	0	0	0	0	0
T5FFCR	Flip-flop Control	49H				TFF6 Inve 0 : Trigger 1 : Trigger	Disable		00 : Inve 01 : Set 10 : Clea 11 : Dor	TFF6 ar TFF6

(4) Pattern Generator

Symbol	Name	Address	7	6	5	4	3	2	1	0	
		4CH	PG03	PG02	PG01	PG00	SA03	SA02	SA01	SA00	
PGOREG	PGO Register	(Prohibit		V	V			R	W		
		RMW)	0	0	0	0		Unde	efined		
		4DH	PG13	PG12	PG11	PG10	SA13	SA12 SA11 SA1			
PG1REG	PG1 Register	(Prohibit		V	V			R/W			
		RMW)	0	0	0	0		Undefined			
			PAT1	CCW1	PG1M	PG1TE	PAT0	CCW0	PG0M	PG0TE	
						R	W				
DCO1CD	DCO 1 Control	4EH	0	0	0	0	0	0	0	0	
PG01CR	PG0, 1 Control	(Prohibit RMW)	0 : 8bit write 1 : 4bit write	0 : Normal Rotation 1 : Reverse Rotation	0 : 4bit Step 1 : 8bit Step	PG1 trigger input enable 1 : Enable	0 : 8bit write 1 : 4bit write	0 : Normal Rotation 1 : Reverse Rotation	PG0 trigger input enable 1 : Enable		

(5) Watch Dog Timer

Symbol	Name	Address	7	6	5	4	3	2	1	0
			WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE
				!	!	R/	W	!	!	
WD	W D		1	0	0	0	0	0	0	0
WD- MOD	Watch Dog Timer Mode	5CH	1 : WDT Enable	00 : 2 01 : 2 10 : 2 11 : 2	¹⁸ /fc ²⁰ /fc	Warming up Time 0:2 ¹⁴ /fc 1:2 ¹⁶ /fc	Standby 00 : RUN 01 : STO 10 : IDLE 11 : Don	I Mode P Mode E Mode	1 : Connect internally WDT out pin to Reset Pin	1 : Drive the pin in STOP Mode
	Watch Dog					-	-			
WDCR	Timer	5DH				V	V			
	Control Register					_				
	riogistoi				B1H : V	VDT Disable Cod	e 4EH : WDT CI	ear Code		

(6) Serial Channel (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial		RB7 TB7	RB6 TB6	RB5 TB5	RB4 TB4	RB3 TB3	RB2 TB2	RB1 TB1	RB0 TB0
SC0BUF	Channel 0 Buffer	50H				R (Receiving)/W	(Transmission)			
	Dullel					Unde	fined			
			RB8	EVEN	PE	OERR	PERR	FERR	_	_
			R	R,	W	R (Cle	eared to 0 by rea	ading)	R	/W
	Serial		0	0	0	0	0	0	0	0
SC0CR	Channel 0 Control	51H	Receiving	Parity 0 : Odd	1 : Parity		1 : Error		0: SCLK0	1: Input SCLK0 pin
			data bit 8	1 : Even	Enable	Overrun	Parity	Framing	1. SCLKO	(Note)
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
						R/			_	
SCO-	Serial Channel 0	52H	0	0	0	0	0	0	0	0
MOD	Mode	3211	Transmission data bit 8	1 : CTS Enable	1 : Receive Enable	1 : Wake up Enable	10 : U	nused ART 7bit ART 8bit ART 9bit	00 : T00 Tri 01 : Baud ra 10 : Interna 11 : Don't c	ate generator I clock ϕ 1
			_		BR0CK1	BR0CK0	BR053	BR052	BR051	BR050
			R/W				R/W			
2200	Baud Rate	5011	0		0	0	0	0	0	0
BROCR	Control	53H	Fix at "0"		01 10	: \(\phi t0 \) (fc/4) : \(\phi t2 \) (fc/16) : \(\phi t8 \) (fc/64) : \(\phi t32 \) (fc/256)		0 -	ncy divisor ~ F bhibited)	
	Serial		RB7 TB7	RB6 TB6	RB5 TB5	RB4 TB4	RB3 TB3	RB2 TB2	RB1 TB1	RB0 TB0
SC1BUF	Channel 1 Buffer	54H			•	R (Receiving)/W	(Transmission)		•	•
	Bullot					Unde	fined			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
			R	R,	W	R (Cle	eared to 0 by rea	ading)	R	/W
	Serial			0	0	0	0	0	0	0
SC1CR	Channel 1	55H					1 : Error			
	Control		Receiving data bit 8	Parity 0 : Odd 1 : Even	1 : Parity Enable	Overrun	Parity	Framing	0: SCLK1 () 1: SCLK1 ()	1 : Input SCLK1 pin
			TB8	_	RXE	WU	SM1	SM0	SC1	SC0
				<u> </u>	l .	R/		<u> </u>	1	<u> </u>
SC1-	Serial		0	0	0	0	0	0	0	0
MOD	Channel 1 Mode	56H	Transmission data bit 8	Fix at "0"	1 : Receive Enable	1 : Wake up Enable	00 : I/ 01 : U 10 : U	O Interface ART 7bit ART 8-bit ART 9bit	00 : T00 Tri	igger ate generator I clock ø1

Serial Channel (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-		BR1CK1	BR1CK0	BR153	BR152	BR151	BR150
			R/W				R/W	1		
DD4.0D	Baud Rate	F711	0		0	0	0	0	0	0
BR1CR	Control	57H	Fix at "0"		01 10	: φt0 (fc/4) : φt2 (fc/16) : φt8 (fc/64) : φt32 (fc/256)		Set frequer 0 - ("1" pro		
			-						ODE1	ODE0
	Special								R/	W
ODE	Open Drain	58H					0 (0
	Enable									1 : P90 Open-drain

(7) A/D Converter Control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			EOCF	ADBF	REPET	SCAN	ADCS	ADS	ADCH1	ADCH0
A.D.	A /D O			R			·	R/W		
AD- MOD	A/D Converter Mode reg	5EH	0	0	0	0	0	0	0	0
	S		1 : End	1 : Busy	1 : Repeat mode	1 : Scan mode	1 : Slow mode	1 : START	Analog Input (Channel Series
*1)	AD D II		ADR01	ADR00						
AD	AD Result Reg 0 low	60H				•	R		•	
REG0L	Tiog o ton		Und	efined	1	1	1	1	1	1
	AD DII		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
AD	AD Result Reg 0 high	61H		•		•	R			
REG0H						Und	defined			
*1)	AD Dooult		ADR11	ADR10						
AD	AD Result Reg 1 low	62H					R		_	
REG1L	.5		Unc	efined	1	1	1	1	1	1
	AD Result		ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
AD	Reg 1 high	63H					R			
REG1H	3 0			-		Und	defined			
*1)	AD Result		ADR21	ADR20						
AD	Reg 2 low	64H				_	R			
REG2L	Ů			efined	1	1	1	1	1	1
	AD Result		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
AD	Reg 2 high	65H					R			
REG2H	3 3					Und	defined			
*1)	AD Result		ADR31	ADR30						
AD	Reg 3 low	66H					R			
REG3L	. Itog o tow		Unc	efined	1	1	1	1	1	1
AD	AD Result		ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
REG3H	Reg 3 high	67H					R			
						Und	defined			

^{*1:} Data to be stored in A/D Conversion Result Reg Low are the lower 2 bits of the conversion result. The contents of the lower 6 bits of this register are always read as "1".

(8) Interrupt Control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
	INTerrupt		INTAD			INT0					
INTE- 0AD	Enable 0 & A/D	70H	IADC	IADM2	IADM1	IADM0	10C	: I0M2	IOM1	: 10M0	
		(Prohibit	R/W	:	W		R/W		W		
	U & AVD	RMW)	0	0	0	0	0	0	0	0	
	INTerrupt			IN	T5		INT4				
INTE45	Enable	71H	I5C	15M2	I5M1	15M0	14C	14M2	14M1	: I4M0	
	4/5	(Prohibit	R/W		W		R/W		W	-	
	4/3	RMW)	0	0	0	0	0	0	0	0	
	INTerrupt	Torrupt INT7			INT6						
INTE67	Enable	72H	17C	17M2	17M1	17M0	16C	: 16M2	16M1	16M0	
INTEG	6/7	(Prohibit	R/W		W		R/W		W		
	0/ /	RMW)	0	0	0	0	0	0	0	0	
	INTerrupt			INTT1 (1	Timer 1)			INTTO (Timer 0)		
INTET10	1 '	73H	IT1C	IT1M2	IT1M1	IT1M0	IT0C	IT0M2	IT0M1	IT0M0	
INTETTO	Timer 1/0	(Prohibit	R/W		W		R/W		W		
	Timer 1/0	RMW)	0	0	0	0	0	0	0	0	
	INTerrupt Enable PWm 1/0	74H (Prohibit	INTT3 (Timer 3/PWM1)				INTT2 (Timer 2/PWM0)				
INTE-			IPW1C	IPW1M2	IPW1M1	IPW1M0	IPW0C	IPW0M2	IPW0M1	IPW0M0	
PW10			R/W		W		R/W	:	W		
		RMW)	0	0	0	0	0	0	0	0	
	INTerrupt Enable Treg 5/4	Enable 75H	INTTR5 (TREG5)					INTTR4	(TREG4)		
INTET54			IT5C	IT5M2	IT5M1	IT5M0	IT4C	IT4M2	IT4M1	IT4M0	
11412134			R/W		W		R/W		W		
		RMW)	0	0	0	0	0	0	0	0	
	INTerrupt Enable Treg 7/6	NTerrunt	INTTR7 (TREG7)				INTTR6 (TREG6)				
INTET76		76H	IT7C	IT7M2	IT7M1	IT7M0	IT6C	IT6M2	IT6M1	IT6M0	
			(Prohibit	R/W		W		R/W		W	
		RMW)	0	0	0	0	0	0	0		
	INTerrupt			INT	TX0		INTRXO				
INTES0	Enable	77H	ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0	
11411230	Serial 0	(Prohibit	R/W		W		R/W		W		
		RMW)	0	0	0	0	0	0	0	0	
	INTerrupt			INT	TX1		INTRX1				
INTES1	Enable Serial 1	' 78H	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0	
ונשווייו		(Prohibit	R/W		W		R/W		W		
		RMW)	0	0	0	0	0	0	0	0	
						1	L			1	

lxxM2	lxxM1	lxxM0	Function (Write)		
0	0	0	Prohibit interrupt request.		
0	0	1	Set interrupt request level to "1".		
0	1	0	Set interrupt request level to "2"		
0	1	1	Set interrupt request level to "3"		
1	0	0	Set interrupt request level to "4"		
1	0	1	Set interrupt request level to "5"		
1	1	0	Set interrupt request level to "6"		
1	1	1	Prohibit interrupt request.		

IxxC	Function (Read)	Function (Write)
0	Indicate no interrupt request.	Clear interrupt request flag.
1	Indicate interrupt request.	Don't care

Interrupt Control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
	DMA 0 request Vector	7CH (Prohibit RMW)				μDMA0 start vector					
DMA0V						DMA0V8	DMA0V7	DMA0V6	DAM0V5	DMA0V4	
						W					
		,				0	0	0	0	0	
						μDMA1 start vector					
DMA1V	DMA 1	7DH (Probibit				DMA01V8	DMA1V7	DMA1V6	DAM1V5	DMA1V4	
DIVIATV	request Vector	(Prohibit RMW)						W			
		,				0	0	0	0	0	
DMA2V	DMA 2 request Vector	7EH (Prohibit RMW)					μ	DMA2 start vec	tor	•	
						DMA2V8	DMA2V7	DMA2V6	DAM2V5	DMA2V4	
						W					
						0	0	0	0	0	
	DMA 3 request Vector	7FH (Prohibit RMW)				μDMA3 start vector					
DMA3V						DMA3V8	DMA3V7	DMA3V6	DAM3V5	DMA3V4	
DIVINOV						W					
						0	0	0	0	0	
								IOIE	IOLE	NMIREE	
								W	W	W	
	Interrupt Input Mode Control							0	0	0	
IIMC								1 : INTO input enable	0:INTO edge mode 1:INTO level mode	1 : Operate even at NMI rise edge	

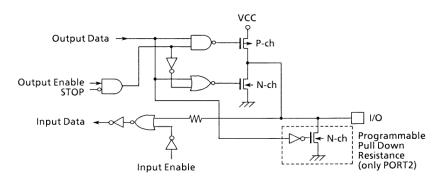
(9) Chip Select/Wait Controller

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Block 0 CS/WAIT control register	68H (Prohibit RMW)	B0E	BOSYS	BOCAS	BOBUS	B0W1	B0W0	B0C1	B0C0
			W	W	W	W	W	W	W	W
DOOG			0	0	0	0	0	0	0	0
BOCS			1 : CS Enable	1 : SYSTEM only	0 : <u>CS0</u> 1 : <u>CAS0</u>	0 : 16bit Bus 1 : 8bit Bus	00 : 2WAIT 01 : 1WAIT 10 : 1WAIT + n 11 : 0WAIT		00 : 7F00H ~ 7FFFH 01 : 400000H ~ 10 : 800000H ~ 11 : C00000H ~	
	Block 1 CS/WAIT control register	69H (Prohibit RMW)	B1E	B1SYS	B1CAS	B1BUS	B1W1	B1W0	B1C1	B1C0
			W	W	W	W	W	W	W	W
D400			0	0	0	0	0	0	0	0
B1CS			1 : CS Enable	1 : SYSTEM only	0 : <u>CS1</u> 1 : <u>CAS1</u>	0 : 16bit Bus 1 : 8bit Bus	00 : 2WAIT 01 : 1WAIT 10 : 1WAIT + n 11 : 0WAIT		00 : 480 01 : 400 10 : 800 11 : C00	000H ~
	Block 2 CS/WAIT control register	S/WAIT (Prohibit RMW)	B2E	B2SYS	B2CAS	B2BUS	B2W1	B2W0	B2C1	B2C0
			W	W	W	W	W	W	W	W
DOOG			0	0	0	0	0	0	0	0
B2CS			1 : CS Enable	1 : SYSTEM only	0 : <u>CS2</u> 1 : <u>CAS2</u>	0 : 16bit Bus 1 : 8bit Bus	00 : 2 01 : 1 10 : 1 11 : 0	WAIT WAIT + n	00 : 800 01 : 400 10 : 800 11 : C00	000H ~ 000H ~

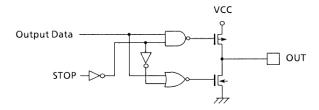
Note 1: After reset, only "Block 2" is set to enable.

→ After reset, the program starts in 16-bit data bus, 2-wait state.

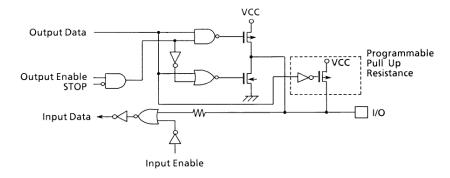
Note 2: These registers can be accessed only in system mode.

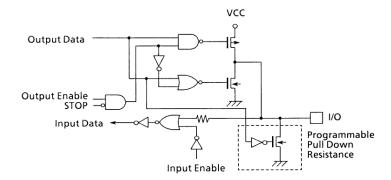

Note 3: TMP96C141A for internal RAM less is 80H ~ 7FFFH.

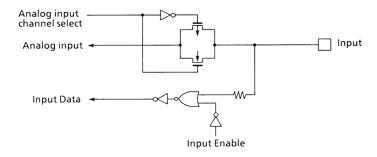
6. Port Section Equivalent Circuit Diagram

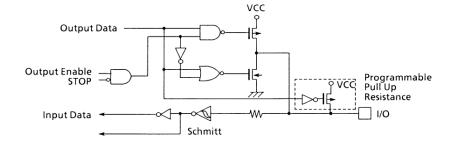

- Reading The Circuit Diagram
 - Basically, the gate singles written are the same as those used for the standard CMOS logic IC [74HCXX] series.

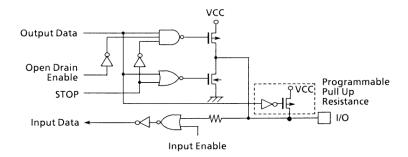
The dedicated signal is described below.


- STOP: This signal becomes active "1" when the hold mode setting register is set to the STOP mode and the CPU executes the HALT instruction. When the drive enable bit [DRIVE] is set to "1", however, STP remains at "0".
- The input protection resistor ranges from several tens of ohms to several hundreds of ohms.
- PO (ADO ~ AD7), P1 (AD8 ~ 15, A8 ~ 15), P2 (A2 23, A0 ~7)


• P30 (RD), P31 (WR)

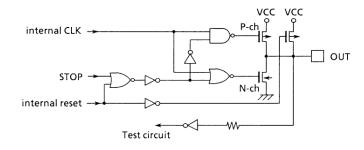

• P32 ~ 37, P40 ~ 41, P6, P7, P80 ~ 86, P91 ~ 92, P94 ~ 95


• P42 (CS2, CAS2)

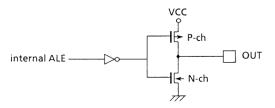

• P5 (AN0 ~ 3)

• P87 (INTO)

• P90 (TXD0), P93 (TXD1)

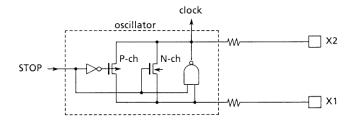

NMI

• WDTOUT

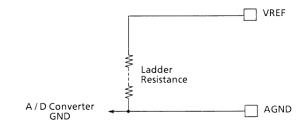

• CLK

• EA, AM8/16

• ALE



• RESET



176

• X1, X2

• VREF, AGND

7. Guidelines and Restrictions

- (1) Special Expression
 - ① Explanation of a built-in I/O register: Register

Symbol <Bit Symbol> ex) TRUN <TRUN> · · · Bit TORUN of Register TRUN

2 Read, Modify and Write Instruction

An instruction which CPU executes following by one instruction.

- 1. CPU reads data of the memory.
- 2. CPU modifies the data.
- 3. CPU writes the data to the same memory.

ex1) SET 3, (TRUN) ··· set bit3 of TRUN ex2) INC1, (100H) increment the data of 100H

 The representative Read, Modify and Write Instruction in the TLCS-900

SET	imm, mem,	RES	imm, mem
CHG	imm, mem,	TSET	imm, mem
INC	imm, mem,	DEC	imm, mem
RLD	A, mem,	ADD	imm, reg

3 1 state

One cycle clock divided by 2 oscillation frequency is called 1 state

- ex) The case of oscillation frequency is 20MHz.
- (2) Guidelines
 - ① EA, pin

Fix these pins VCC or GND unless changing voltage.

② Warming-up Counter

The warming-up counter operates when the STOP mode. is released even the system which is used an

external oscillator. As a result, it takes warming up time from inputting the releasing request to outputting the system clock.

3 High Speed µDMA (DRAM) refresh mode)

When the bus is released (\overline{BUSAK} = "0") for waiting to accept the interrupt, DRAM refresh is not performed because of the high speed μDMA is generated by an interrupt.

Programmable Pull Up/Down Resistance

The programmable pull up/down resistors can be selected ON/OFF by program when they are used as the input ports. The case of they are used as the output ports, they cannot be selected ON/OFF by program.

⑤ Bus Releasing Function

Refer to the "Note about the Bus Release" in 3.5 Functions of Ports because the pin state when the bus is released is written.

Watch Dog Timer

When the bus is released, both internal memory and internal I/O cannot be accessed. But internal I/O cantinues to operate. So, the watch dog timer continues to run. Therefore, be carefull about the bus releasing time and set the detection timer of watch dog timer.

Watch Dog Timer

The watch dog timer starts operation immediately after the reset is released. When the watch dog timer is not used, set watch dog timer to disable.

® CPU (High SpeedµDMA)

Only the "LDC cr, r", "LDC r, cr" instruction can be used to access the control register like transfer source address register (DMASn) in the CPU.

178