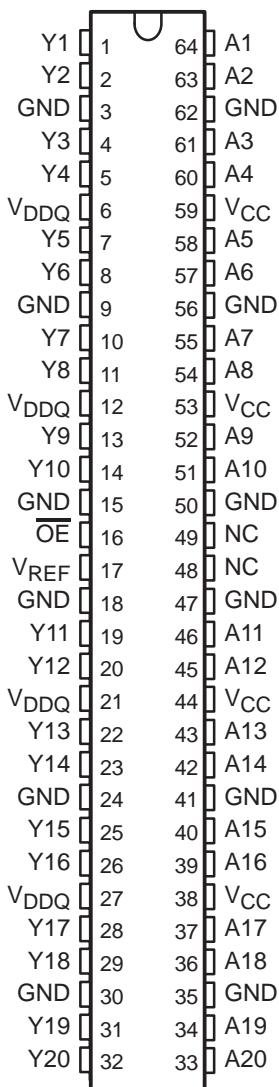


- Member of the Texas Instruments Widebus™ Family
- Supports SSTL_3 Signal Inputs and Outputs
- Flow-Through Architecture Optimizes PCB Layout
- Meets SSTL_3 Class I and Class II Specifications
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Packaged in Plastic Thin Shrink Small-Outline Package

description


This 20-bit buffer is designed for 3-V to 3.6-V V_{CC} operation and SSTL_3 input levels.

Data flow from A to Y is controlled by the output-enable (\overline{OE}). When \overline{OE} is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74SSTL16847 is characterized for operation from 0°C to 70°C.

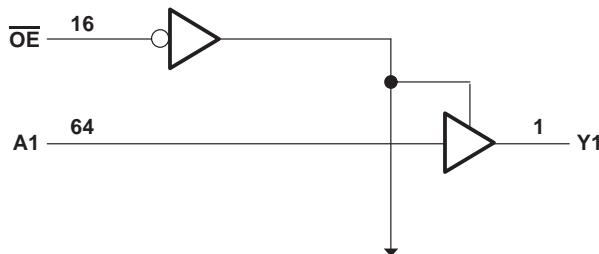
DGG PACKAGE
(TOP VIEW)

NC – No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SN74SSTL16847
20-BIT SSTL_3 INTERFACE BUFFER
WITH 3-STATE OUTPUTS

SCBS709A – OCTOBER 1997 – REVISED MAY 1998

FUNCTION TABLE

INPUTS		OUTPUT
\overline{OE}	A	Y
L	H	H
L	L	L
H	X	Z

logic diagram (positive logic)

To 19 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} or V_{DDQ}	-0.5 V to 4.6 V
Input voltage range, V_I (see Note 1)	-0.5 V to V_{CC} + 0.5 V
Output voltage range, V_O (see Notes 1 and 2)	-0.5 V to V_{DDQ} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)	-50 mA
Output clamp current, I_{OK} ($V_O < 0$)	-50 mA
Continuous output current, I_O ($V_O = 0$ to V_{DDQ})	± 50 mA
Continuous current through each V_{CC} , V_{DDQ} or GND	± 100 mA
Package thermal impedance, θ_{JA} (see Note 3):	73°C/W
Storage temperature range, T_{stg}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. This current will flow only when the output is in the high state and $V_O > V_{DDQ}$.
 3. The package thermal impedance is calculated in accordance with JEDEC 51.

recommended operating conditions (see Note 4)

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	V_{DDQ}		3.6	V
V_{DDQ}	Output supply voltage	3		3.6	V
V_{REF}	Reference voltage ($V_{REF} = 0.45 \times V_{DDQ}$)	1.3	1.5	1.7	V
V_{TT}	Termination voltage	$V_{REF}-50mV$	V_{REF}	$V_{REF}+50mV$	V
V_I	Input voltage	0	V_{CC}		V
V_{IH}	AC high-level input voltage	All inputs	$V_{REF}+400mV$		V
V_{IL}	AC low-level input voltage	All inputs		$V_{REF}-400mV$	V
V_{IH}	DC high-level input voltage	All inputs	$V_{REF}+200mV$		V
V_{IL}	DC low-level input voltage	All inputs		$V_{REF}-200mV$	V
I_{OH}	High-level output current			-20	mA
I_{OL}	Low-level output current			20	
T_A	Operating free-air temperature	0		70	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{CC}	MIN	TYP†	MAX	UNIT
V_{IK}	$I_I = -18 \text{ mA}$	3 V		-1.2		V
V_{OH}	$I_{OH} = -100 \mu\text{A}$	3 V to 3.6 V	$V_{CC}-0.2$	2.2	2.1	V
	$I_{OH} = -16 \text{ mA}$					
	$I_{OH} = -20 \text{ mA}$					
V_{OL}	$I_{OL} = 100 \mu\text{A}$	3 V to 3.6 V	3 V	0.2	0.5	V
	$I_{OL} = 16 \text{ mA}$					
	$I_{OL} = 20 \text{ mA}$					
I_I	Data inputs, \overline{OE}	3.6 V	$V_I = 2.1 \text{ V or } 0.9 \text{ V}, V_{REF} = 1.3 \text{ V or } 1.7 \text{ V}$	± 5	μA	
	V_{REF}					
I_{OZ}	$V_O = 0.9 \text{ V or } 2.1 \text{ V}$	3.6 V		± 10	μA	
I_{CC}	$V_I = 2.1 \text{ V or } 0.9 \text{ V}, I_O = 0$	3.6 V		90	mA	
C_i	Control inputs	3.3 V	$V_I = 2.1 \text{ V or } 0.9 \text{ V}$	2	pF	
	A port			2.5		
C_o	Y port	3.3 V		3.5	pF	

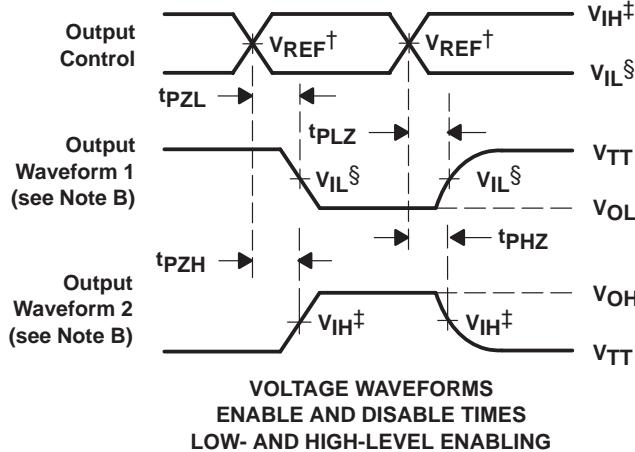
† All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$.

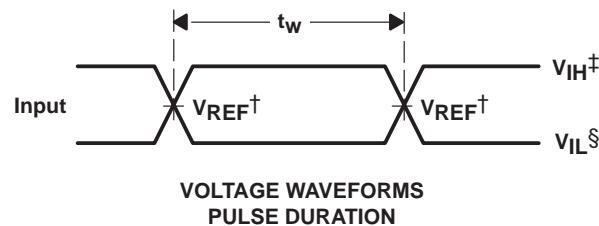
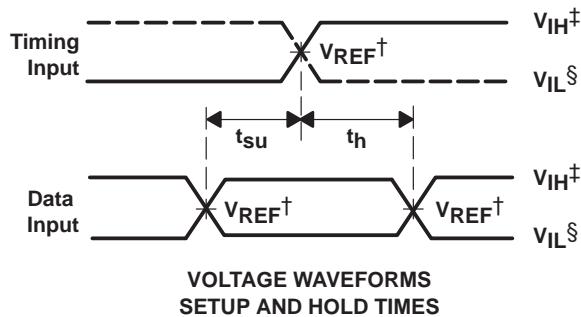
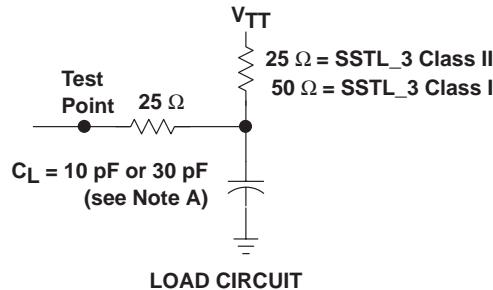
SN74SSTL16847**20-BIT SSTL_3 INTERFACE BUFFER****WITH 3-STATE OUTPUTS**

SCBS709A – OCTOBER 1997 – REVISED MAY 1998

**switching characteristics over recommended operating free-air temperature range,
Class I, $V_{REF} = V_{TT} = V_{DDQ} \times 0.45$ and $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 1)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
t_{pd}	A	Y	1.5	3	ns
t_{en}	\overline{OE}	Y	1.5	4	ns
t_{dis}	\overline{OE}	Y	1.6	4.9	ns






**switching characteristics over recommended operating free-air temperature range,
Class II, $V_{REF} = V_{TT} = V_{DDQ} \times 0.45$ and $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
t_{pd}	A	Y	1.5	3	ns
t_{en}	\overline{OE}	Y	1.5	4.1	ns
t_{dis}	\overline{OE}	Y	1.5	4.8	ns

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

† $V_{REF} = 0.45 V_{DDQ}$

‡ $V_{IH} = V_{REF} + 400\text{mV}$ (AC voltage levels)

§ $V_{IL} = V_{REF} - 400\text{mV}$ (AC voltage levels)

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_f \leq 1.25 \text{ ns/V}$, $t_f \leq 1.25 \text{ ns/V}$.

D. The outputs are measured one at a time with one transition per measurement.

E. $V_{TT} = V_{REF} = V_{DDQ} \times 0.45$

F. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

G. t_{PZL} and t_{PZH} are the same as t_{en} .

H. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated