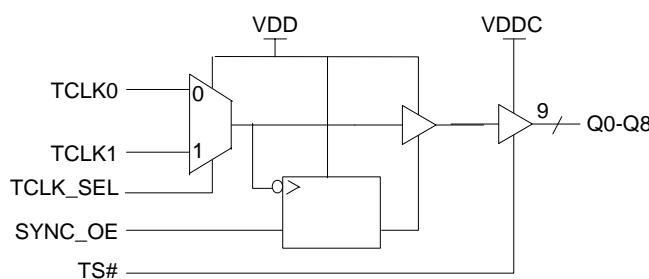


CYPRESS

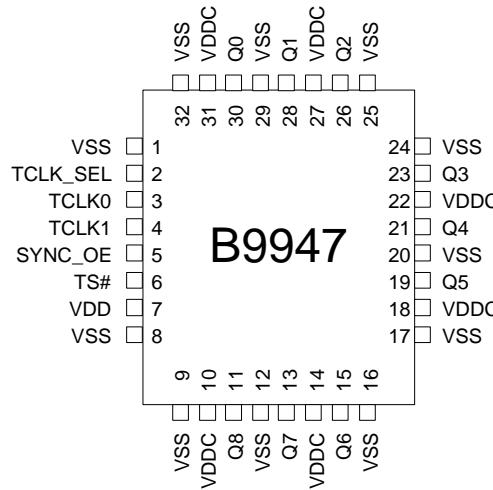
B9947

3.3V, 160-MHz, 1:9 Clock Distribution Buffer

Product Features


- 160-MHz Clock Support
- LVCMS/LVTTL Compatible Inputs
- 9 Clock Outputs: Drive up to 18 Clock Lines
- Synchronous Output Enable
- Output Three-state Control
- 350-ps Maximum Output-to-Output Skew
- Pin Compatible with MPC947
- Industrial Temp. Range: -40°C to $+85^{\circ}\text{C}$
- 32-Pin TQFP Package

Description

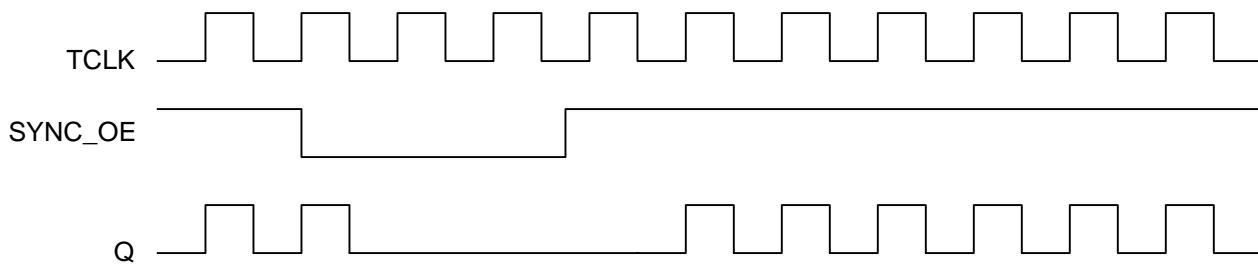

The B9947 is a low-voltage clock distribution buffer with the capability to select one of two LVCMS/LVTTL compatible clock inputs. The two clock sources can be used to provide for a test clock as well as the primary system clock. All other control inputs are LVCMS/LVTTL compatible. The nine outputs are 3.3V LVCMS or LVTTL compatible and can drive two series terminated 50Ω transmission lines. With this capability the B9947 has an effective fanout of 1:18. The outputs can also be three-stated via the three-state input TS#. Low output-to-output skews make the B9947 an ideal clock distribution buffer for nested clock trees in the most demanding of synchronous systems.

The B9947 also provides a synchronous output enable input for enabling or disabling the output clocks. Since this input is internally synchronized to the input clock, potential output glitching or runt pulse generation is eliminated.

Block Diagram

Pin Configuration

Pin Description


Pin	Name	PWR	I/O	Description
3	TCLK0		I, PU	Test Clock Input
4	TCLK1		I, PU	Test Clock Input
2	TCLK_SEL		I, PU	Test Clock Select Input. When LOW, TCLK0 is selected. When asserted HIGH, TCLK1 is selected.
11, 13, 15, 19, 21, 23, 26, 28, 30	Q(8:0)	VDDC	O	Clock Outputs
5	SYNC_OE		I, PU	Output Enable Input. When asserted HIGH, the outputs are enabled and when set LOW the outputs are disabled in a LOW state.
6	TS#		I, PU	Three-state Control Input. When asserted LOW, the output buffers are three-stated. When set HIGH, the output buffers are enabled.
10, 14, 18, 22, 27, 31	VDDC			3.3V Power Supply for Output Clock Buffers
7	VDD			3.3V Power Supply
1, 8, 9, 12, 16, 17, 20, 24, 25, 29, 32	VSS			Common Ground

Note:

1. PU = Internal Pull-Up.

Output Enable/Disable

The B9947 features a control input to enable or disable the outputs. This data is latched on the falling edge of the input clock. When SYNC_OE is asserted LOW, the outputs are disabled in a LOW state. When SYNC_OE is set HIGH, the outputs are enabled as shown in *Figure 1*.

Figure 1. SYNC_OE Timing Diagram

Maximum Ratings[2]

Maximum Input Voltage Relative to V_{SS} :	$V_{SS} - 0.3V$
Maximum Input Voltage Relative to V_{DD} :	$V_{DD} + 0.3V$
Storage Temperature:	$-65^{\circ}C$ to $+150^{\circ}C$
Operating Temperature:	$-40^{\circ}C$ to $+85^{\circ}C$
Maximum ESD protection	2 kV
Maximum Power Supply:	5.5V
Maximum Input Current:	± 20 mA

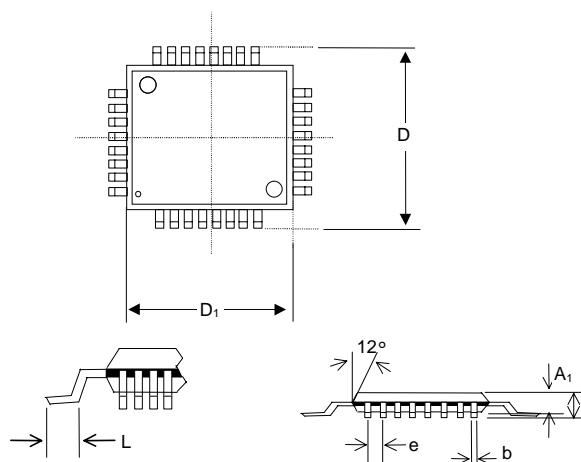
This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, V_{in} and V_{out} should be constrained to the range:

$$V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$$

Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}).

DC Parameters: $V_{DDC} = 3.3V \pm 10\%$, $V_{DD} = 3.3V \pm 10\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
	Input Low Voltage		V_{SS}		0.8	V
	Input High Voltage		2.0		V_{DD}	V
I_{IL}	Input Low Current (@ $V_{IL} = V_{SS}$)	Note 3			-100	μA
I_{IH}	Input High Current (@ $V_{IL} = V_{DD}$)				10	μA
V_{OL}	Output Low Voltage	$I_{OL} = 20$ mA, Note 4			0.4	V
V_{OH}	Output High Voltage	$I_{OH} = -20$ mA, $V_{DDC} = 3.3V$, Note 4	2.5			V
I_{DD}	Quiescent Supply Current	All V_{DDC} and V_{DD}		1	2	mA
C_{in}	Input Capacitance				4	pF


AC Parameters^[5]: $V_{DDC} = 3.3V \pm 10\%$, $V_{DD} = 3.3V \pm 10\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
Fmax	Maximum Input Frequency ^[6]		160			MHz
Tpd	TCLK to Q Delay ^[6]		4.75		9.25	ns
FoutDC	Output Duty Cycle ^[6,7]	Measured at $V_{DDC}/2$	TCYCLE/2 - 800		TCYCLE/2 + 800	ps
tpZL, tpZH	Output Enable Time (all outputs)		2		10	ns
tpLZ, tpHZ	Output Disable Time (all outputs)		2		10	ns
Tskew	Output-to-Output Skew ^[6,9]				350	ps
Tskew (pp)	Part to Part Skew ^[10]				2.0	ns
Ts	Set-up Time ^[6,8]	SYNC_OE to TCLK	0.0			ps
Th	Hold Time ^[6,8]	TCLK to SYNC_OE	1.0			ps
Tr/Tf	Output Clocks Rise/Fall Time ^[9]	0.8V to 2.0V	0.20		1.0	ns

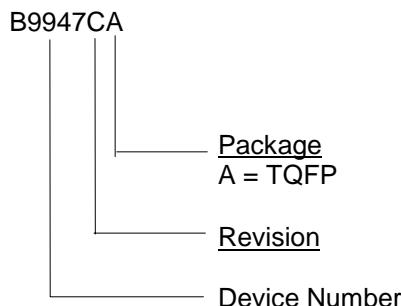
Notes:

2. The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
3. Inputs have pull-up resistors that effect input current.
4. Driving series or parallel terminated 50Ω (or 50Ω to $V_{DD}/2$) transmission lines.
5. Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs.
6. Outputs driving 50Ω transmission lines.
7. 50% input duty cycle.
8. Set-up and Hold times are relative to the falling edge of the input clock
9. Outputs loaded with 30pF each
10. Part to Part Skew at a given temperature and voltage

Package Drawing and Dimensions

32-Pin TQFP Outline Dimensions

Symbol	Inches			Millimeters		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	-	-	0.047	-	-	1.20
A ₁	0.002	-	0.006	0.05	-	0.15
A ₂	0.037	-	0.041	0.95	-	1.05
D	-	0.354	-	-	9.00	-
D ₁	-	0.276	-	-	7.00	-
b	0.012	-	0.018	0.30	-	0.45
e	0.031 BSC			0.80 BSC		
L	0.018	-	0.030	0.45	-	0.75


Ordering Information

Part Number ^[11]	Package Type	Production Flow
B9947CA	32-Pin TQFP	Industrial, -40°C to +85°C

Note:

11. The ordering part number is formed by a combination of device number, device revision, package style, and screening as shown below.

Marking: Example: Cypress
 B9947CA
 Date Code, Lot #

Document Title: B9947 3.3V, 160-MHz, 1:9 Clock Distribution Buffer
Document Number: 38-07078

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	107114	06/06/01	IKA	Convert from IMI to Cypress
*A	108058	07/03/01	NDP	Changed Commercial to Industrial (See page 6)
*B	109804	01/31/02	DSG	Convert from Word to Frame
*C	122763	12/22/02	RBI	Add power up requirements to maximum ratings information