

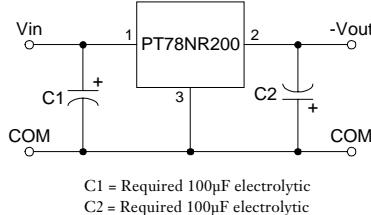
PT78NR200 Series

10-12W Plus to Minus Voltage
Integrated Switching Regulator

 Power Trends Products
from Texas Instruments

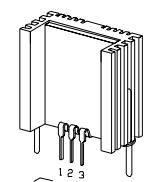
SLTS074A

(Revised 6/30/2000)


- Negative output from positive input
- Wide Input Range
- Self-Contained Inductor
- Short Circuit Protection
- Over-Temperature Protection
- Fast Transient Response

The PT78NR200 series creates negative output voltage from a posi-

tive input voltage greater than 9V. These easy-to-use, 3-terminal, Integrated Switching Regulators (ISRs) have maximum output power of 10 to 12 watts and a negative output voltage that is laser trimmed. They also have excellent line and load regulation.


The PT78NR200 requires 100 LFM of airflow at its maximum output current.

Standard Application

Pin-Out Information

Pin	Function
1	+V _{in}
2	-V _{out}
3	GND

SUGGESTED BOARD LAYOUT
COMPONENT SIDE VIEW
Pkg Style 600

Ordering Information

PT78NR2_{XX}_{YY}

Output Voltage

52 = -5.2 Volts

06 = -6.0 Volts

12 = -12.0 Volts

15 = -15.0 Volts

Package Suffix

H = Horizontal Mount

S = Surface Mount

V = Vertical Mount

(For dimensions and PC board layout, see
Package Styles 600 and 610.)

Specifications

Characteristics (T _a = 25°C unless noted)	Symbols	Conditions	PT78NR200 SERIES			
			Min	Typ	Max	Units
Output Current	I _o	Over V _{in} range V _o = -5.2V V _o = -12.0V	0.1*	—	2.0	A
Short Circuit Current	I _{sc}	V _{in} =10V	—	4 \times I _{max}	—	Apk
Inrush Current	I _{ir} t _{ir}	V _{in} =10V On start-up	—	4	—	A
Input Voltage Range	V _{in}	0.1 \leq I _o \leq I _{max}	9	—	15	V
Output Voltage Tolerance	Δ V _o	Over V _{in} range T _a = 0°C to +70°C	—	\pm 1.0	\pm 3.0	%V _o
Line Regulation	Reg _{line}	Over V _{in} range	—	\pm 0.5	\pm 1.0	%V _o
Load Regulation	Reg _{load}	0.3 \leq I _o \leq I _{max}	—	\pm 0.5	\pm 1.0	%V _o
V _o Ripple/Noise	V _n	V _{in} =10V, I _o =I _{max}	—	\pm 2	—	%V _o
Transient Response (with 100 μ F output cap)	t _{tr}	50% load change V _o over/undershoot	—	100	250	μ Sec
Efficiency	η	V _{in} =9V, I _o =0.5 \times I _{max} , V _o =-12V	—	78	—	%
Switching Frequency	f _o	Over V _{in} and I _o ranges	600	650	700	kHz
Absolute Maximum Operating Temperaturte Range	T _a	100 LFM airflow Over V _{in} and I _o Ranges	0	—	+85	°C
Recommended Operating Temperature Range	T _a	100 LFM airflow Over V _{in} and I _o Ranges	0	—	+60**	°C
Thermal Resistance	θ_{ja}	100 LFM airflow	—	35	—	°C/W
Storage Temperature	T _s	—	-40	—	+125	°C
Mechanical Shock	—	Per Mil-STD-883D, Method 2002.3	—	500	—	G's
Mechanical Vibration	—	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	—	10	—	G's
Weight	—	—	—	11	—	Grams

*ISR will operate down to no load with reduced specifications.

Note: The PT78NR200 series requires a 100 μ F electrolytic or tantalum output capacitor for proper operation in all applications.

**See Thermal Derating chart.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated