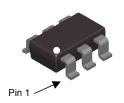


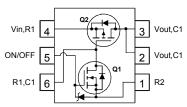
Si3861DV

Integrated Load Switch

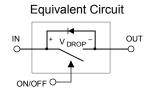
General Description


This device is particularly suited for compact power management in portable electronic equipment where 2.5V to 8V input and 2.8A output current capability are needed. This load switch integrates a small N-Channel power MOSFET (Q1) that drives a large P-Channel power MOSFET (Q2) in one tiny SuperSOTTM-6 package.

Applications


- Load switch
- · Power management

Features


- -2.8 A, -8 V. $R_{DS(ON)} = 55$ m Ω @ $V_{GS} = -4.5$ V $R_{DS(ON)} = 70$ m Ω @ $V_{GS} = -2.5$ V $R_{DS(ON)} = 100$ m Ω @ $V_{GS} = -1.8$ V
- Control MOSFET (Q1) includes Zener protection for ESD ruggedness (>6KV Human body model)
- High performance trench technology for extremely low $R_{\mathsf{DS}(\mathsf{ON})}$

See Application Circuit

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{IN}	Maximum Input Voltage		± 8	V
V _{ON/OFF}	High level ON/OFF voltage range		-0.5 to 8	V
I _{Load}	Load Current - Continuous	(Note 1)	-2.8	Α
	Pulsed		-9	
P _D	Maximum Power Dissipation	(Note 1)	0.7	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1)	180	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	60	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.861	Si3861DV	7"	8mm	3000 units

Electrical Characteristics T_A = 25°C unless otherwise noted Symbol **Parameter Test Conditions** Min Тур Max Units **Off Characteristics** Vin Breakdown Voltage $V_{ON/OFF} = 0 \text{ V}, I_D = -250 \mu\text{A}$ 8 V Zero Gate Voltage Drain Current $V_{IN} = 6.4 V$ $V_{ON/OFF} = 0 V$ -1 μΑ I_{Load} Leakage Current, Forward $V_{ON/OFF} = 0 V$, $V_{IN} = 8 V$ -100 nΑ I_{FL} $V_{ON/OFF} = \overline{0 V}$ I_{RL} Leakage Current, Reverse $V_{IN} = -8 \text{ V}$ 100 nΑ On Characteristics (Note 2) V_{ON/OFF (th)} Gate Threshold Voltage $V_{IN} = V_{ON/OFF}$, $I_D = -250 \mu A$ 0.4 0.9 1.5 ٧ $R_{\text{DS}(\text{on})}$ Static Drain-Source $V_{IN} = 4.5 V,$ $I_{\rm D} = -2.8A$ 34 55 $\mathsf{m}\Omega$ On-Resistance (Q2) $V_{IN} = 2.5 V$, $I_D = -2.5 A$ 45 70 $V_{IN} = 1.8 V,$ $I_D = -2.0 A$ 64 100 R_{DS(on)} $I_{D} = 0.4A$ Static Drain-Source $V_{IN} = 4.5 V,$ 3.1 4 Ω $V_{IN} = 2.7 V,$ 5 On-Resistance (Q1) $I_D = 0.2 A$ 3.8

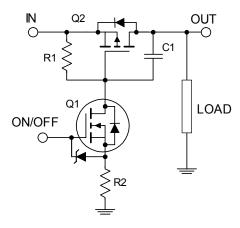
Notes

 V_{SD}

1. R _{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R _{BJC} is guaranteed by design while R _{BJA} is determined by the user's board design.

 $V_{ON/OFF} = 0 \text{ V}, I_S = -0.6 \text{ A} \text{ (Note 2)}$

Drain-Source Diode Characteristics and Maximum Ratings

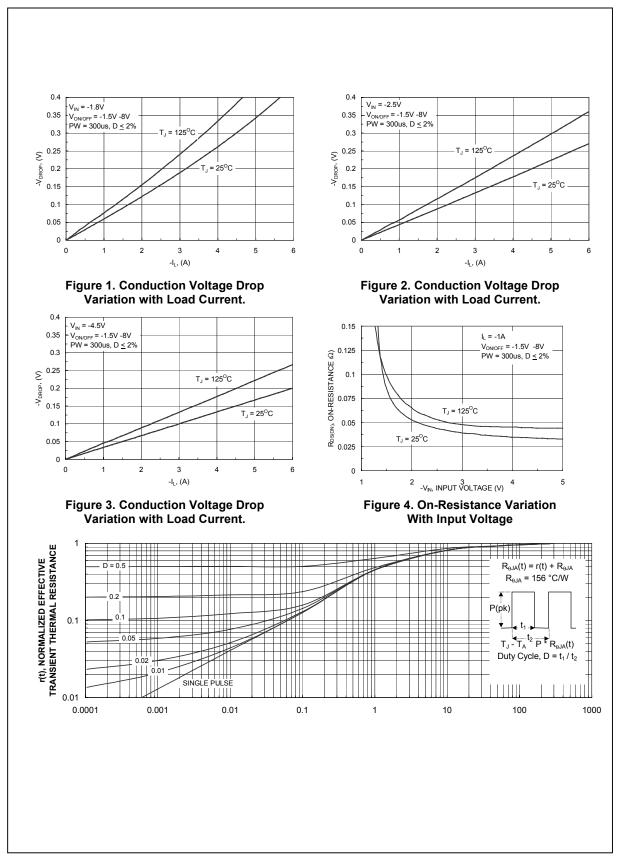

I_S Maximum Continuous Drain-Source Diode Forward Current

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.

Voltage

Si3861DV Load Switch Application Circuit

Drain-Source Diode Forward



External Component Recommendation:

For additional in-rush current control, R2 and C1 can be added. For more information, see application note AN1030.

-0.6

-1.2

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} EnSigna™ MicroFET™ TruTranslation™ QT Optoelectronics™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4