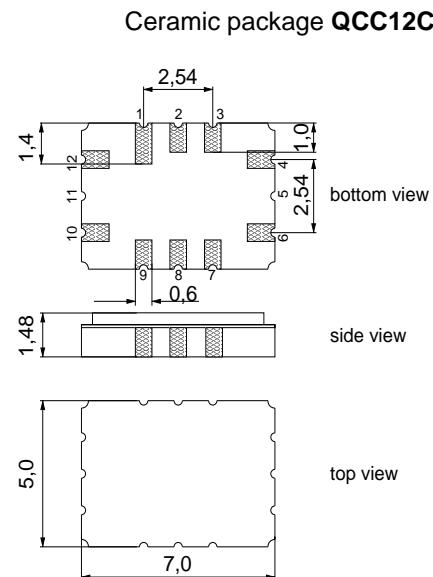


SAW filters for infrastructure systems

Series/Type: B3825

The following products presented in this data sheet are being withdrawn.

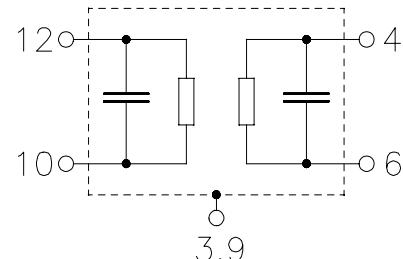
Ordering Code	Substitute Product	Date of Withdrawal	Deadline Last Orders	Last Shipments
B39381B3825H310		2012-01-13	2012-12-31	2013-03-30


For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

Features

- IF low-loss filter for base stations
- Channel selection in W-CDMA systems
- Balanced and unbalanced operation possible
- 3,84 MHz usable bandwidth
- Ceramic SMD package

Terminals


■ Gold plated

Dim. in mm, approx. weight 0,22 g

Pin configuration

12	Input
10	Input ground or balanced input
6	Output
4	Output ground or balanced output
1, 2, 7, 8	to be grounded
3, 9	Case - ground

Type	Ordering code	Marking and Package according to	Packing according to
B3825	B39381-B3825-H310	C61157-A7-A95	F61074-V8170-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

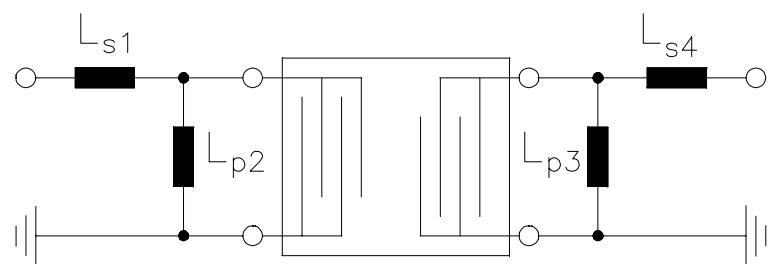
Operable temperature range	T	– 40/+ 85	°C	
Storage temperature range	T_{stg}	– 40/+ 85	°C	
DC voltage	V_{DC}	0	V	
Source power	P_s	10	dBm	

SAW Components**B3825****Low-Loss Filter****380,00 MHz****Data Sheet****Characteristics (unbalanced operation)**

Operating temperature: $T = -25$ to $+85$ °C
Terminating source impedance: $Z_S = 577 \Omega \parallel 20 \text{ nH}$
Terminating load impedance: $Z_L = 817 \Omega \parallel 21 \text{ nH}$

		min.	typ.	max.	
Nominal frequency	f_N	—	380,0	—	MHz
Minimum insertion attenuation (including matching network ¹⁾)	α_{\min}	8,0	8,9	10,0	dB
Passband width	$B_{3,0\text{dB}}$				
	$\alpha_{\text{rel}} \leq 3,0 \text{ dB}$	4,9	5,1	5,3	MHz
Amplitude ripple (p-p)	$\Delta\alpha$				
	$f_N \pm 1,92 \text{ MHz}$	0,2	1,0	1,2	dB
Phase ripple (p-p)	$\Delta\phi$				
	$f_N \pm 1,92 \text{ MHz}$	3,0	5,0	7,0	°
Absolute group delay	τ				
	@ f_N	360	460	560	ns
Group delay ripple (p-p)	$\Delta\tau$				
	$f_N \pm 1,92 \text{ MHz}$	40	80	180	ns
Mean value of absolute group delay	$\bar{\tau}$				
	$f_N \pm 1,92 \text{ MHz}$	440	460	480	ns
Adjacent channel selectivity	ACS	24	32	39	dB
Intermodulation	$IM3$				
	$f_1 = 360 \text{ MHz, input power } 0 \text{ dBm}$ $f_2 = 370 \text{ MHz, input power } 0 \text{ dBm}$ @ f_N	-120	-95	-85	dBm
	$f_1 = 360 \text{ MHz, input power } -5 \text{ dBm}$ $f_2 = 370 \text{ MHz, input power } -5 \text{ dBm}$ @ f_N	-135	-110	-100	dBm

SAW Components
B3825
Low-Loss Filter
380,00 MHz
Data Sheet

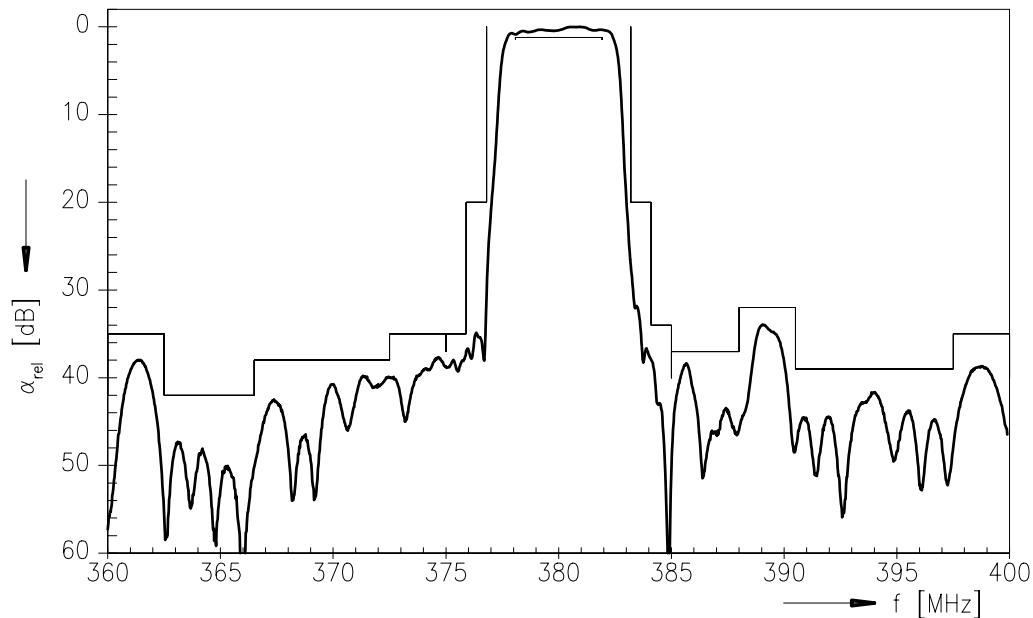
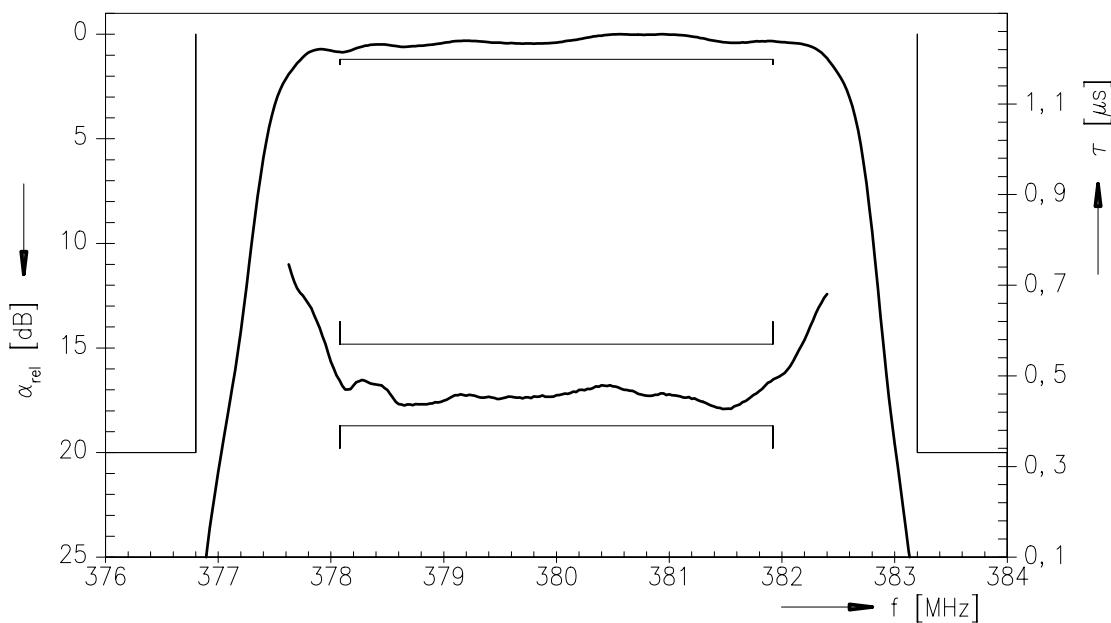

	min.	typ.	max.	
$f_1 = 390 \text{ MHz}$, input power 0 dBm $f_2 = 400 \text{ MHz}$, input power 0 dBm @ f_N	-120	-95	-85	dBm
$f_1 = 390 \text{ MHz}$, input power -5 dBm $f_2 = 400 \text{ MHz}$, input power -5 dBm @ f_N	-135	-110	-100	dBm
Minimum relative attenuation (relative to α_{\min}) α_{rel}				
at $f_N - 5,0 \text{ MHz}$	37	40	50	dB
at $f_N + 5,0 \text{ MHz}$	40	45	50	dB
DC ... $f_N - 20,0 \text{ MHz}$	42	46	55	dB
$f_N - 20,0 \text{ MHz}$... $f_N - 17,5 \text{ MHz}$	35	38	45	dB
$f_N - 17,5 \text{ MHz}$... $f_N - 13,5 \text{ MHz}$	42	45	55	dB
$f_N - 13,5 \text{ MHz}$... $f_N - 7,5 \text{ MHz}$	38	40	45	dB
$f_N - 7,5 \text{ MHz}$... $f_N - 4,1 \text{ MHz}$	35	38	45	dB
$f_N - 4,1 \text{ MHz}$... $f_N - 3,2 \text{ MHz}$	20	22	40	dB
$f_N + 3,2 \text{ MHz}$... $f_N + 4,1 \text{ MHz}$	20	23	40	dB
$f_N + 4,1 \text{ MHz}$... $f_N + 5,0 \text{ MHz}$	34	37	45	dB
$f_N + 5,0 \text{ MHz}$... $f_N + 8,0 \text{ MHz}$	37	39	45	dB
$f_N + 8,0 \text{ MHz}$... $f_N + 10,5 \text{ MHz}$	32	35	45	dB
$f_N + 10,5 \text{ MHz}$... $f_N + 17,5 \text{ MHz}$	39	42	50	dB
$f_N + 17,5 \text{ MHz}$... $f_N + 20,0 \text{ MHz}$	35	38	45	dB
$f_N + 20,0 \text{ MHz}$... $f_N + 100,0 \text{ MHz}$	40	43	55	dB
Impedance at f_N (without matching)				
Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$	—	795 \parallel 6	—	$\Omega \parallel \text{pF}$
Output: $Z_{\text{OUT}} = R_{\text{OUT}} \parallel C_{\text{OUT}}$	—	652 \parallel 6	—	$\Omega \parallel \text{pF}$
Temperature coefficient of frequency ²⁾	TC_f	—	-0,036	ppm/K ²
Turnover temperature	T_0	—	25	°C

¹⁾ Matching inductor Q=40

²⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

Matching network

(Element values depend upon PCB layout)

$$L_{s1} = 68 \text{ nH}$$

$$L_{p2} = 27 \text{ nH}$$

$$L_{p3} = 27 \text{ nH}$$

$$L_{s4} = 82 \text{ nH}$$

Normalized frequency response

Normalized frequency response (pass band)

SAW Components	B3825
Low-Loss Filter	380,00 MHz
Data Sheet	

Published by EPCOS AG

Surface Acoustic Wave Components Division, SAW MC PD

P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2005. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

EPCOS:

[B39381B3825H310](#)