

83C51FA/80C51FA CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER

83C51FA—8 Kbytes of Factory Mask Programmable ROM

80C51FA—CPU with RAM and I/O

83C51FA/80C51FA—3.5 MHz to 12 MHz, $V_{CC} = 5V \pm 20\%$

83C51FA-1/80C51FA-1—3.5 MHz to 16 MHz, $V_{CC} = 5V \pm 20\%$

83C51FA-2/80C51FA-2—0.5 MHz to 12 MHz, $V_{CC} = 5V \pm 20\%$

■ High Performance CHMOS EPROM

■ Three 16-Bit Timer/Counters

— Timer 2 is an Up/Down
Timer/Counter

■ Programmable Counter Array with:

— High Speed Output,
— Compare/Capture,
— Pulse Width Modulator,
— Watchdog Timer Capabilities

■ 256 Bytes of On-Chip Data RAM

■ Boolean Processor

■ 32 Programmable I/O Lines

■ 7 Interrupt Sources

■ Programmable Serial Channel with:

— Framing Error Detection
— Automatic Address Recognition

■ TTL and CMOS Compatible Logic Levels

■ 64K External Program Memory Space

■ 64K External Data Memory Space

■ MCS®-51 Compatible Instruction Set

■ Power Saving Idle and Power Down Modes

■ ONCE™ (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 8 Kbytes of the program memory can reside in the on-chip ROM (83C51FA only). In addition the device can address up to 64K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256 x 8 on-chip RAM. In addition it can address up to 64 Kbytes of external data memory.

The Intel 83C51FA is a single-chip control oriented microcontroller which is fabricated on Intel's reliable CHMOS III technology. Being a member of the 8051 family, the 83C51FA uses the same powerful instruction set, has the same architecture, and is pin-for-pin compatible with the existing MCS-51 products. The 83C51FA is an enhanced version of the 80C51BH. It's added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

For the remainder of this document, the 83C51FA and 80C51FA will be referred to as the 83C51FA.

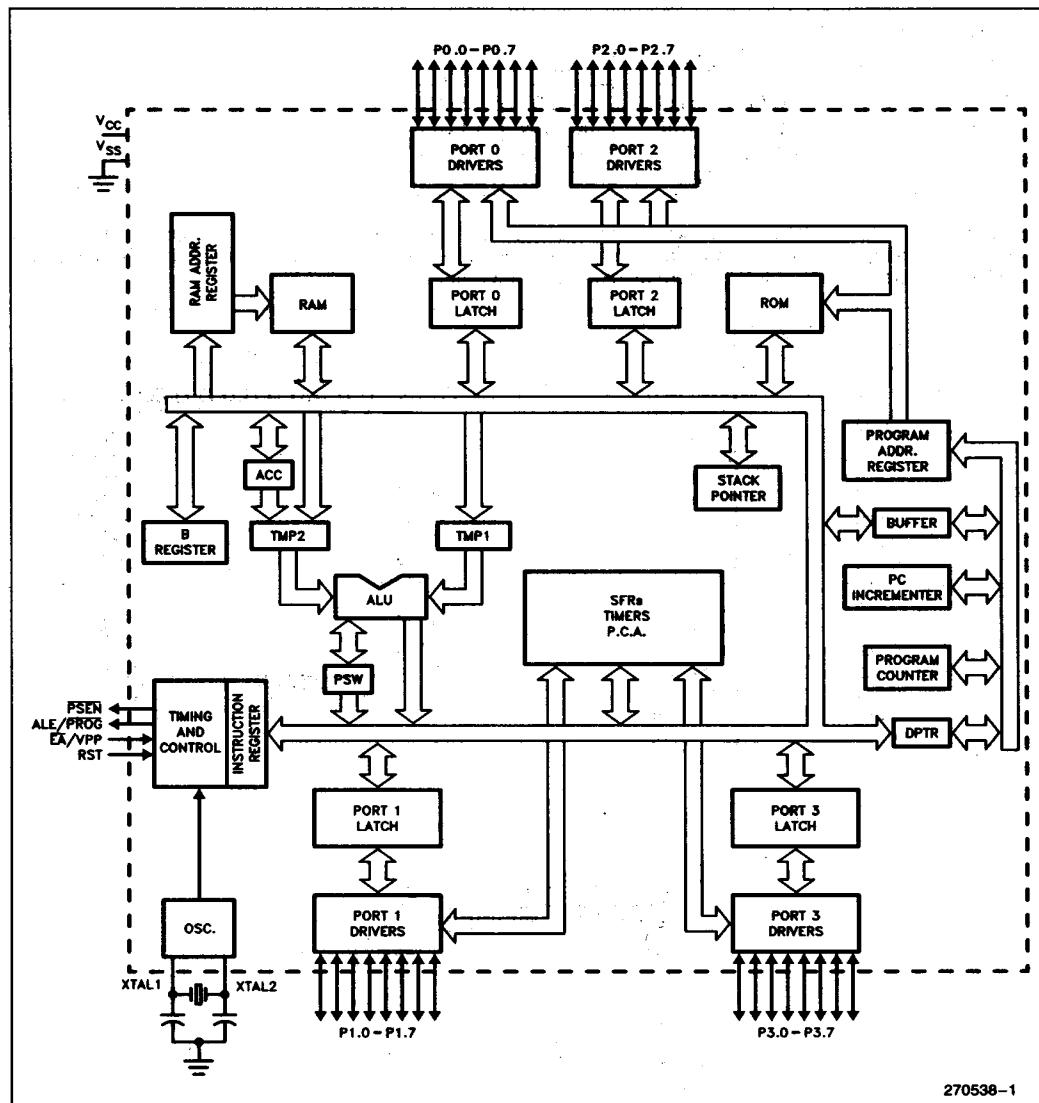


Figure 1. 83C51FA Block Diagram

PROCESS INFORMATION

This device is manufactured on P645, a CHMOS III process. Additional process and reliability information is available in Intel's *Components Quality and Reliability Handbook*, Order Number 210997.

PACKAGES

Part	Prefix	Package Type	θ_{ja}	θ_{jc}
83C51FA/ 80C51FA	P	40-Pin Plastic DIP	45°C/W	16°C/W
	D	40-Pin CERDIP	36°C/W	13°C/W
	N	44-Pin PLCC	46°C/W	16°C/W
	S	44-Pin QFP	87°C/W	24°C/W

All thermal impedance data is approximate for static air conditions at 1W of power dissipation. Values will change depending on operating conditions and application. See the Intel *Packaging Handbook* (Order Number 240800) for a description of Intel's thermal impedance test methodology.

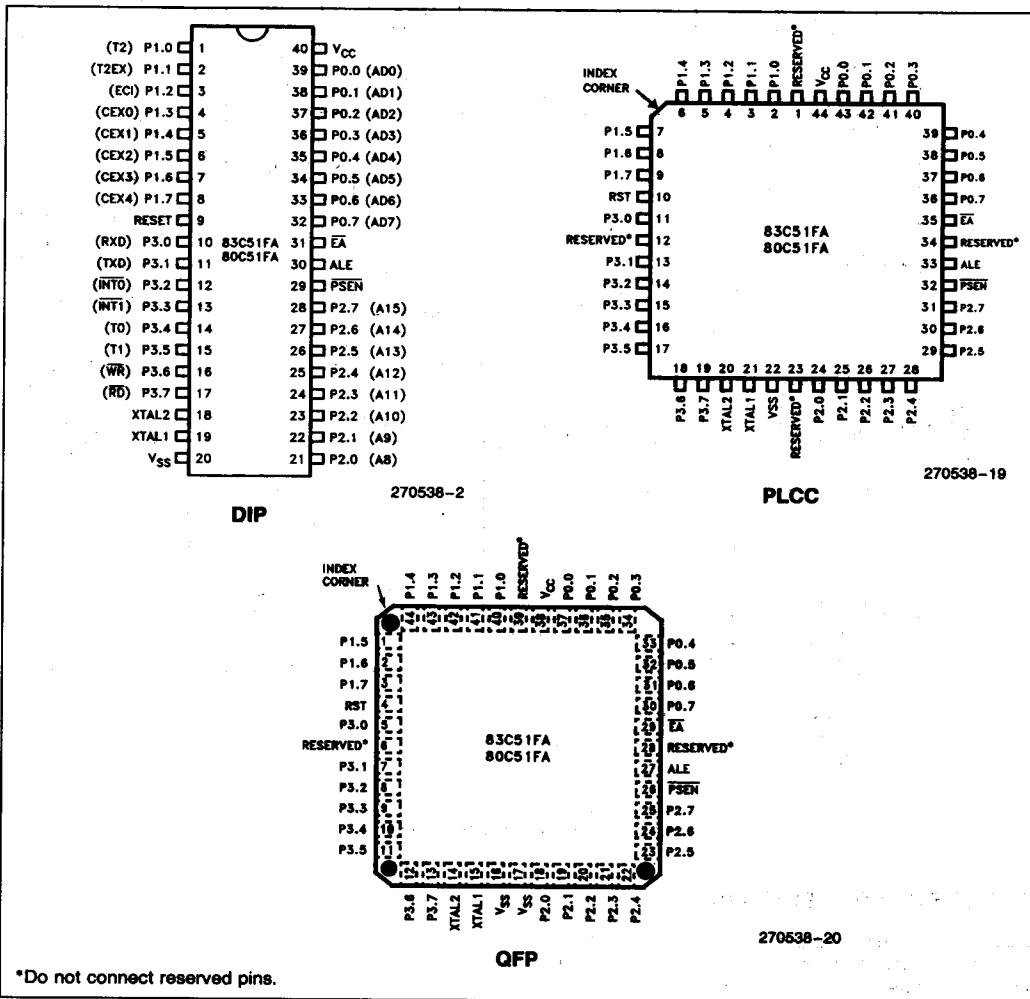


Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{CC}: Supply voltage.

V_{SS}: Circuit ground.

Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's, and can source and sink several LS TTL inputs.

Port 0 outputs the code bytes during program verification on the 83C51FA. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 83C51FA:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/Counter 2)
P1.1	T2EX (Timer/Counter 2 Capture/Reload Trigger and Direction Control)
P1.2	ECI (External Count Input to the PCA)
P1.3	CEX0 (External I/O for Compare/Capture Module 0)
P1.4	CEX1 (External I/O for Compare/Capture Module 1)
P1.5	CEX2 (External I/O for Compare/Capture Module 2)
P1.6	CEX3 (External I/O for Compare/Capture Module 3)
P1.7	CEX4 (External I/O for Compare/Capture Module 4)

Port 1 receives the low-order address bytes during ROM verification.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INT0 (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of 1/8 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the 80C51FA is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

EA/V_{PP}: External Access enable. EA must be strapped to V_{SS} in order to enable the device to fetch code from external Program Memory locations 0000H to 0FFFFH. Note, however, that if either of the Program Lock bits are programmed, EA will be internally latched on reset.

EA should be strapped to V_{CC} for internal program executions.

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF.

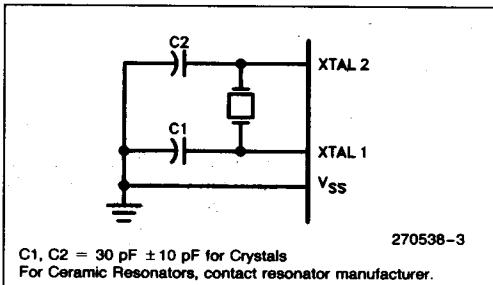


Figure 3. Oscillator Connections

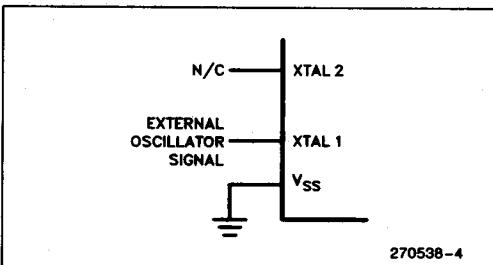


Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 83C51FA either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INT0 or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-

chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE™ MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 83C51FA without the 83C51FA having to be removed from the circuit. The ONCE Mode is invoked by:

- 1) Pull ALE low while the device is in reset and PSEN is high;
- 2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins float, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 83C51FA is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Microcontrollers and Processors Handbook, and Application Note AP-252, "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	−40°C to +85°C
Storage Temperature	−65°C to +150°C
Voltage on EA/V _{PP} Pin to V _{SS}	0V to +6.5V
Voltage on Any Other Pin to V _{SS}	−0.5V to +6.5V
I _{OL} per I/O Pin	15 mA
Power Dissipation	1.5W (based on PACKAGE heat transfer limitations, not device power consumption)

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS: T_A (under bias) = −40°C to +85°C; V_{CC} = 5V ±20%; V_{SS} = 0V

DC CHARACTERISTICS (Over Operating Conditions)

Symbol	Parameter	Min	Typical (Note 4)	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage (Except EA)	−0.5		0.2 V _{CC} −0.1	V	
V _{IL1}	Input Low Voltage EA	0		0.2 V _{CC} −0.3	V	
V _{IH}	Input High Voltage (Except XTAL1, RST)	0.2 V _{CC} +0.9		V _{CC} +0.5	V	
V _{IH1}	Input High Voltage (XTAL1, RST)	0.7 V _{CC}		V _{CC} +0.5	V	
V _{OL}	Output Low Voltage (Note 5) (Ports 1, 2 and 3)			0.3 0.45 1.0	V	I _{OL} = 100 μA I _{OL} = 1.6 mA (Note 1) I _{OL} = 3.5 mA
V _{OL1}	Output Low Voltage (Note 5) (Port 0, ALE/PROG, PSEN)			0.3 0.45 1.0	V	I _{OL} = 200 μA I _{OL} = 3.2 mA (Note 1) I _{OL} = 7.0 mA
V _{OH}	Output High Voltage (Ports 1, 2 and 3 ALE and PSEN)	V _{CC} −0.3 V _{CC} −0.7 V _{CC} −1.5			V	I _{OH} = −10 μA I _{OH} = −30 μA (Note 2) I _{OH} = −60 μA
V _{OH1}	Output High Voltage (Port 0 in External Bus Mode)	V _{CC} −0.3 V _{CC} −0.7 V _{CC} −1.5			V	I _{OH} = −200 μA I _{OH} = −3.2 mA (Note 2) I _{OH} = −7.0 mA
I _{IL}	Logical 0 Input Current (Ports 1, 2 and 3)		−10	−50	μA	V _{IN} = 0.45V
I _{LI}	Input Leakage Current (Port 0 and EA)		0.02	±10	μA	0.45 < V _{IN} < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current (Ports 1, 2 and 3)		−265	−650	μA	V _{IN} = 2V
RRST	RST Pulldown Resistor	40	100	225	KΩ	
C _{IO}	Pin Capacitance		10		pF	@1MHz, 25°C
I _{CC}	Power Supply Current: Running at 12 MHz (Figure 5) Idle Mode at 12 MHz (Figure 5) Power Down Mode		15 5 5	30 7.5 75	mA mA μA	(Note 3)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause noise pulses to be superimposed on the V_{OL} s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In applications where capacitance loading exceeds 100 pFs, the noise pulse on the ALE signal may exceed 0.8V. In these cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an Address Latch with a Schmitt Trigger Strobe input.
2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and $PSEN$ to drop below the 0.9 V_{CC} specification when the address lines are stabilizing.
3. See Figures 6-9 for test conditions. Minimum V_{CC} for power down is 2V.
4. Typicals are based on limited number of samples, and are not guaranteed. The values listed are at room temperature and 5V.
5. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA

Maximum I_{OL} per 8-bit port -

Port 0: 26 mA

Ports 1, 2, and 3: 15 mA

Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

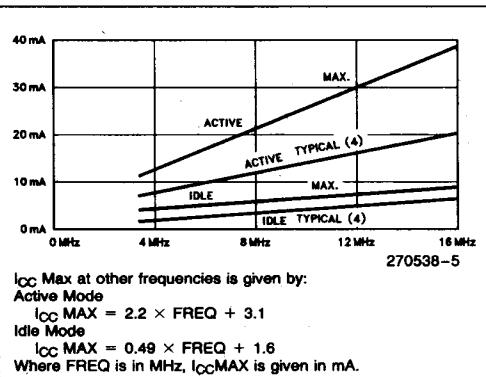


Figure 5. I_{CC} vs Frequency

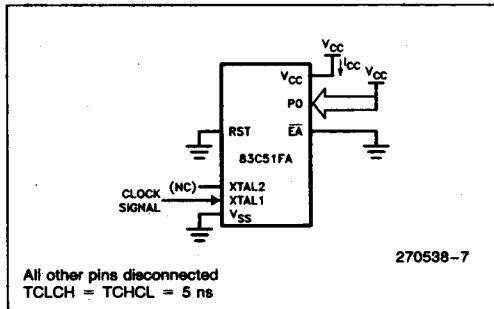


Figure 7. I_{CC} Test Condition Idle Mode

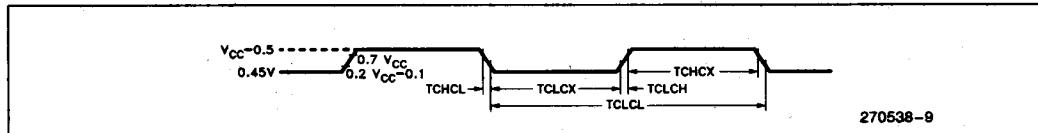


Figure 9. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes. $TCLCH = TCHCL = 5$ ns.

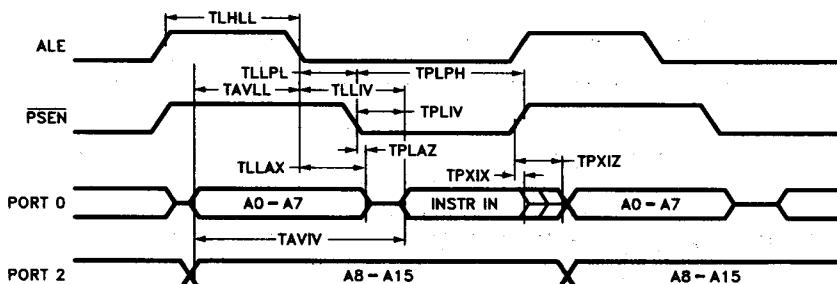
EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

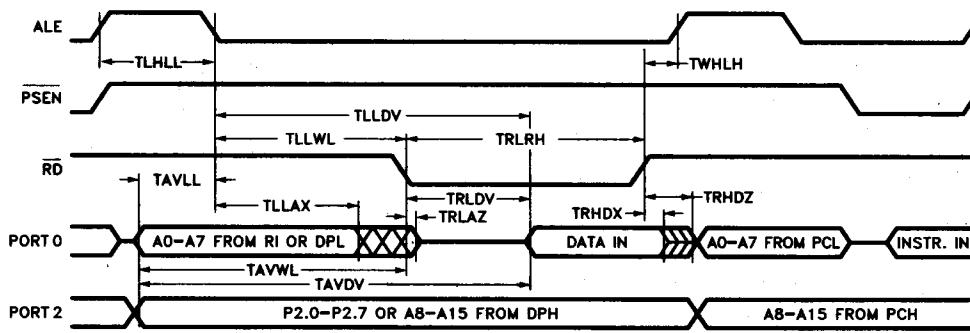
- A: Address
- C: Clock
- D: Input Data
- H: Logic level HIGH
- I: Instruction (program memory contents)

- L: Logic level LOW, or ALE
- P: PSEN
- Q: Output Data
- R: RD signal
- T: Time
- V: Valid
- W: WR signal
- X: No longer a valid logic level
- Z: Float

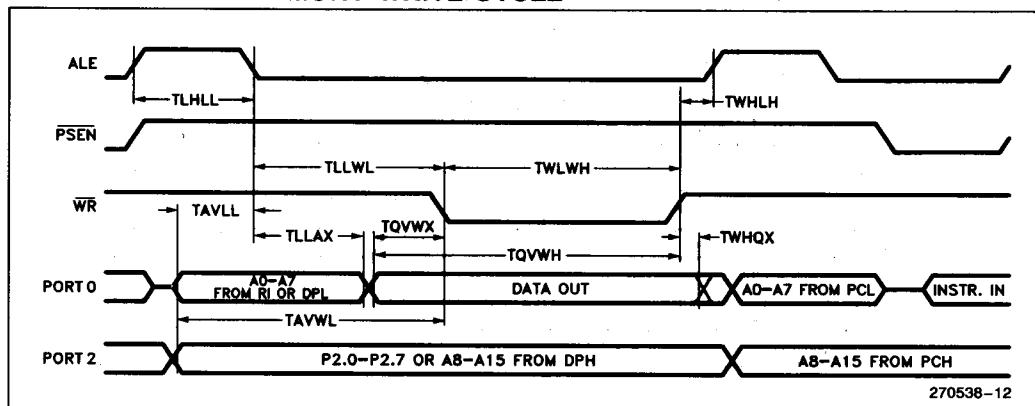
For example,

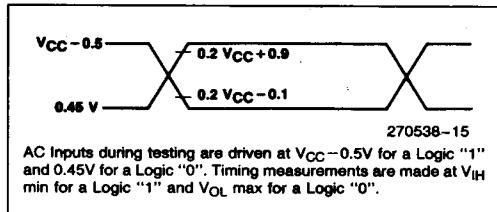

TAVLL = Time from Address Valid to ALE Low
 TLLPL = Time from ALE Low to PSEN Low

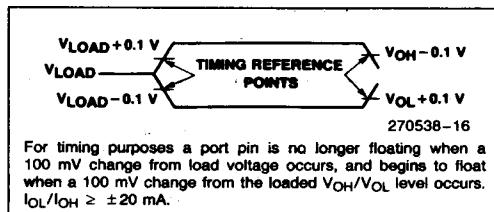
AC CHARACTERISTICS (Over Operating Conditions, Load Capacitance for Port 0, ALE and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF)


EXTERNAL MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency			3.5	12	MHz
	83C51FA			3.5	16	
	83C51FA-1			0.5	12	
	83C51FA-2					
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30		ns
TLLIV	ALE Low to Valid Instruction In		234		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL-30		ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		145		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		59		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312		5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10		10	ns
TRLRH	RD Pulse Width	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100		ns
TRLDV	RD Low to Valid Data In		252		5TCLCL-165	ns
TRHDX	Data Hold After RD	0		0		ns
TRHDZ	Data Float After RD		107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to RD or WR Low	203		4TCLCL-130		ns
TQVWX	Data Valid to WR Transition	33		TCLCL-50		ns
TWHQX	Data Hold after WR	33		TCLCL-50		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150		ns
TRLAZ	RD Low to Address Float		0		0	ns
TWHLH	RD or WR High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

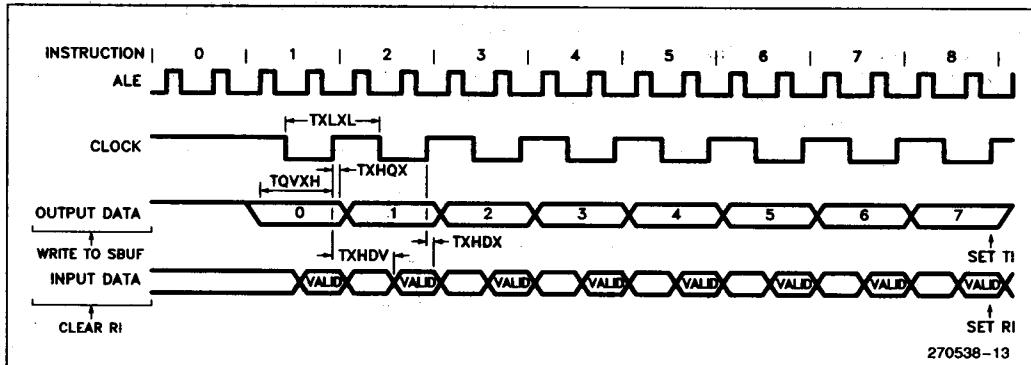

EXTERNAL PROGRAM MEMORY READ CYCLE


EXTERNAL DATA MEMORY READ CYCLE


EXTERNAL DATA MEMORY WRITE CYCLE

AC TESTING INPUT, OUTPUT WAVEFORMS

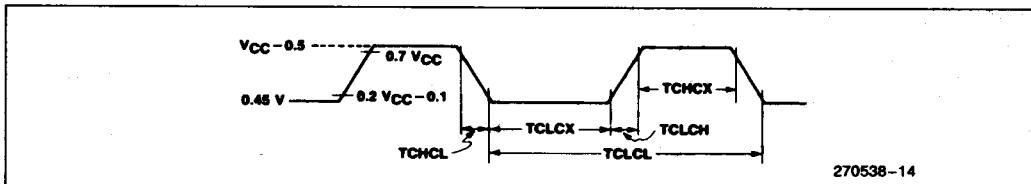
FLOAT WAVEFORMS



SERIAL PORT TIMING—SHIFT REGISTER MODE

Test Conditions: Over Operating Conditions; Load Capacitance = 80 pF

Symbol	Parameter	12 MHz Oscillator		Variable Oscillator		Units
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1		12TCLCL		μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL - 133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL - 117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10TCLCL - 133	ns


SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency			
	83C51FA/80C51FA	3.5	12	MHz
	83C51FA-1/80C51FA-1	3.5	16	
83C51FA-2/80C51FA-2	0.5	12		
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

8

ROM CHARACTERISTICS

Table 2 shows the logic levels for verifying the code data and reading the signature bytes on the 83C51FA.

Table 2. ROM Modes

Mode	RST	PSEN	ALE	EA	P2.7	P2.6	P3.6	P3.7
Verify Code Data	1	0	1	1	0	0	1	1
Read Signature	1	0	1	1	0	0	0	0

NOTES:

"1" = Valid high for that pin

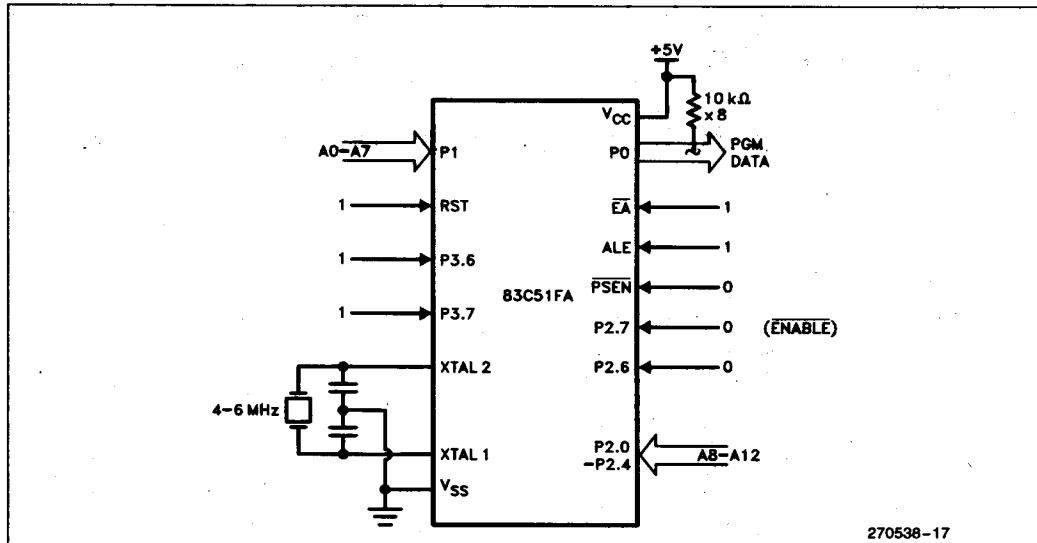
"0" = Valid low for that pin

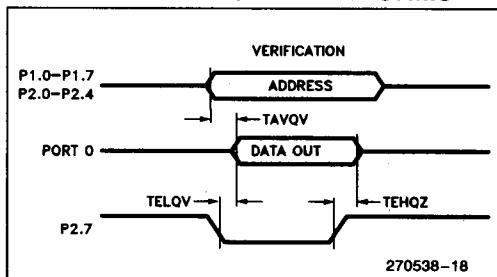
Program Verification

The on-chip Program Memory can be read out for verification purposes, if desired. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0-P2.4. The other pins should be held at the "Verify" levels indicated in Table 2. The

contents of the addressed locations will come out on Port 0. External pullups are required on Port 0 for this operation.

Figure 10 shows the setup for verifying the program memory.




Figure 10. Verifying the ROM

ROM VERIFICATION CHARACTERISTICS

$T_A = 21^\circ\text{C to } 27^\circ\text{C}$; $V_{CC} = 5V \pm 0.25V$; $V_{SS} = 0V$

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	

ROM VERIFICATION WAVEFORMS

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values returned are:

- (030H) = 89H indicates manufacture by Intel
- (031H) = 53H indicates 83C51FA

DATA SHEET REVISION HISTORY

The following differences exist between this data sheet and the previous version (270538-003):

1. Pins labeled "NC" changed to "Reserved" in Figure 2.
2. θ_{ja} and θ_{jc} specifications added to "Packages" table.
3. Capacitor values for ceramic resonators deleted from Figure 3.
4. Absolute maximum ambient temperature under bias specification changed from (0°C to + 70°C) to (- 40°C to + 85°C).
5. All references to Program Lock Bit and Encryption Array deleted from "Program Verification" section. This information is available in the hardware description.

The following are the key differences between the -003 and the -002 version of the 83C51FA/80C51FA data sheet:

1. Raised V_{CC} max tolerance to 20%.
2. Dropped Program Lock System spec and description.
3. Dropped word "maximum" from I_{OL} in the Absolute Maximum Rating table.
4. Dropped EA from I_{LI} spec of the DC table.
5. Corrected TQVWH spec (from TTCLCL - 70 to TCLCL - 150).
6. QFP Package was added.
7. Note on external clock capacitance loading was added.

The following are the key differences between the -002 and the -001 version of the 83C51FA/80C51FA data sheet:

1. Data sheet was upgraded from ADVANCE INFORMATION to PRELIMINARY.
2. The old device name (83C252/80C252) was removed from the title.
3. PLCC pin connection diagram was added.
4. Package table was added.
5. Exit from Power Down Mode was clarified.
6. Maximum I_{OL} per I/O pin was added to the ABSOLUTE MAXIMUM RATINGS.
7. Note 4 was added to explain the maximum safe current spec.
8. I_{pd} was improved from 100 μ A to 75 μ A.
9. Typical DC characteristics were added for: I_{IL} , I_{LI} , I_{TL} , RRST, I_{CC} .

- 10. Note 5 was added to explain the test conditions for typical values.
- 11. Maximum clock frequency was added to the AC table.
- 12. Timing spec's improved for:
 - TAVLL changed from TCLCL-55 to TCLCL-40
 - TLLAX changed from TCLCL-35 to TCLCL-30
 - TLLPL changed from TCLCL-40 to TCLCL-30
 - TRHDZ changed from TCLCL-70 to TCLCL-60
 - TQVWX changed from "Address Valid Before WR" to "Data Valid to WR Transition", and changed from TCLCL-60 to TCLCL-50
 - TQVWH was added.
- 13. Data sheet revision summary was added.