SLVS304A - SEPTEMBER 2000 - REVISED AUGUST 2002

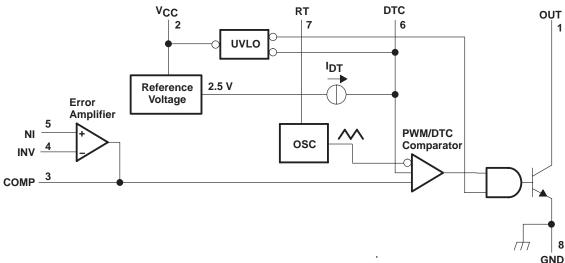
- Complete PWM Power Control
- 3.6-V to 40-V Operation
- Internal Undervoltage-Lockout Circuit
- Oscillator Frequency . . . 20 kHz to 500 kHz
- Variable Dead Time Provides Control Over Total Range
- Ideal Controller for DDR Memory Application
- Uncommitted Error Amplifier Inputs

OUT 1 8 GND VCC 2 7 RT COMP 3 6 DTC INV 4 5 NI

description

The TL5002 incorporates on a single monolithic chip all the functions required for a pulse-width-modulation (PWM) control circuit. Designed primarily for power-supply control, the TL5002 contains an error amplifier, a regulator, an oscillator, a PWM comparator with a dead-time-control input, undervoltage lockout (UVLO), and an open-collector output transistor.

The error-amplifier input common-mode voltage ranges from 0.9 V to 1.5 V. Dead-time control (DTC) can be set to provide 0% to 100% dead time by connecting an external resistor between DTC and GND. The oscillator frequency is set by terminating RT with an external resistor to GND. During low V_{CC} conditions, the UVLO circuit turns the output off until V_{CC} recovers to its normal operating range.


The TL5002 is characterized for operation from −40°C to 85°C.

AVAILABLE OPTIONS

TA	SMALL OUTLINE (D)
-20°C to 85°C	TL5002CD
-40°C to 85°C	TL5002ID

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL5002CDR).

functional block diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS304A - SEPTEMBER 2000 - REVISED AUGUST 2002

detailed description

voltage reference

A 2.5-V regulator operating from V_{CC} is used to power the internal circuitry of the TL5002.

error amplifier

The error amplifier compares a sample of the dc-to-dc converter output voltage to an external reference voltage and generates an error signal for the PWM comparator. The dc-to-dc converter output voltage is set by selecting the error-amplifier gain (see Figure 1), using the following expression:

$$V_0 = (1 + R1/R2) (1 V)$$

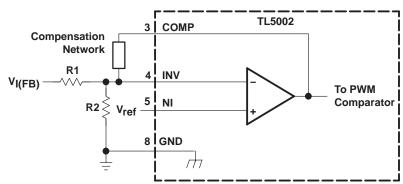


Figure 1. Error-Amplifier Gain Setting

The error-amplifier output is brought out as COMP for use in compensating the dc-to-dc converter control loop for stability. Because the amplifier can only source 45 μ A, the total dc load resistance should be 100 k Ω or more.

oscillator/PWM

The oscillator frequency (f_{OSC}) can be set between 20 kHz and 500 kHz by connecting a resistor between RT and GND. Acceptable resistor values range from 15 k Ω to 250 k Ω . The oscillator frequency can be determined by using the graph shown in Figure 5.

The oscillator output is a triangular wave with a minimum value of approximately 0.7 V and a maximum value of approximately 1.3 V. The PWM comparator compares the error-amplifier output voltage and the DTC input voltage to the triangular wave and turns the output transistor off whenever the triangular wave is greater than the lesser of the two inputs.

dead-time control (DTC)

DTC provides a means of limiting the output-switch duty cycle to a value less than 100%, which is critical for boost and flyback converters. A current source generates a reference current (I_{DT}) at DTC that is nominally equal to the current at the oscillator timing terminal, RT. Connecting a resistor between DTC and GND generates a dead-time reference voltage (V_{DT}), which the PWM/DTC comparator compares to the oscillator triangle wave as described in the previous section. Nominally, the maximum duty cycle is 0% when V_{DT} is 0.7 V or less and 100% when V_{DT} is 1.3 V or greater. Because the triangle wave amplitude is a function of frequency and the source impedance of RT is relatively high (1250 Ω), choosing R_{DT} for a specific maximum duty cycle, D, is accomplished using the following equation and the voltage limits for the frequency in question as found in Figure 11 (V_{OSC} max and V_{OSC} min are the maximum and minimum oscillator levels):

dead-time control (DTC) (continued)

$$R_{DT} = (R_t + 1250) [D(V_{OSC}max - V_{OSC}min) + V_{OSC}min]$$

Where

R_{DT} and R_t are in ohms, D in decimal

Soft start can be implemented by paralleling the DTC resistor with a capacitor (C_{DT}) as shown in Figure 2. During soft start, the voltage at DTC is derived by the following equation:

$$V_{DT} \approx I_{DT}R_{DT} \left(1 - e^{\left(-t/R_{DT}C_{DT} \right)} \right)$$

$$c_{DT} = \frac{6}{R_{DT}} DTC$$

$$TL5002$$

Figure 2. Soft-Start Circuit

If the dc-to-dc converter must be in regulation within a specified period of time, the time constant, $R_{DT}C_{DT}$, should be $t_0/3$ to $t_0/5$. The TL5002 remains off until $V_{DT}\approx 0.7$ V, the minimum ramp value. C_{DT} is discharged every time UVLO becomes active.

undervoltage-lockout (UVLO) protection

The undervoltage-lockout circuit turns the output transistor off whenever the supply voltage drops too low (approximately 3 V at 25°C) for proper operation. A hysteresis voltage of 200 mV eliminates false triggering on noise and chattering.

output transistor

The output of the TL5002 is an open-collector transistor with a maximum collector current rating of 21 mA and a voltage rating of 51 V. The output is turned on under the following conditions: the oscillator triangle wave is lower than both the DTC voltage and the error-amplifier output voltage, and the UVLO circuit is inactive.

TL5002 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

SLVS304A – SEPTEMBER 2000 – REVISED AUGUST 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	41 V
Amplifier input voltage, V _{I(INV)} , V _{I(NI)}	
Output voltage, V _O , OUT `	51 V
Output current, I _O , OUT	21 mA
Output peak current, I _{O(peak)} , OUT	100 mA
Output peak current, I _{O(peak)} , OUT	See Dissipation Rating Table
Operating ambient temperature range, T _A	
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds .	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

	PACKAGE	GE $T_A \le 25^{\circ}C$ DERATING FACT POWER RATING ABOVE $T_A = 25^{\circ}C$		T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
ı	D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC}	3.6	40	V
Amplifier input voltage, VI(INV), VI(NI)	0.9	1.5	V
Output voltage, V _O , OUT		50	V
Output current, IO, OUT		20	mA
COMP source current		45	μΑ
COMP dc load resistance	100		kΩ
Oscillator timing resistor, R _t	15	250	kΩ
Oscillator frequency, f _{OSC}	20	500	kHz
Operating ambient temperature, T _A	-40	85	°C

SLVS304A – SEPTEMBER 2000 – REVISED AUGUST 2002

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 6 V, f_{osc} = 100 kHz (unless otherwise noted)

undervoltage lockout

DADAMETED	TEGT CONDITIONS	1	LINUT		
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Upper threshold voltage	T _A = 25°C		3		V
Lower threshold voltage	T _A = 25°C		2.8		V
Hysteresis	T _A = 25°C	100	200	·	mV

[†] All typical values are at $T_A = 25^{\circ}C$.

oscillator

DADAMETED	TEST COMPITIONS	T	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNII
Frequency	$R_t = 100 \text{ k}\Omega$		100		kHz
Standard deviation of frequency			15		kHz
Frequency change with voltage	$V_{CC} = 3.6 \text{ V to } 40 \text{ V}$		1		kHz
	$T_A = -40^{\circ}C$ to $25^{\circ}C$	-4	-0.4	4	kHz
Frequency change with temperature	$T_A = -20^{\circ}C$ to $25^{\circ}C$	-4	-0.4	4	kHz
	$T_A = 25^{\circ}C$ to $85^{\circ}C$	-4	-0.2	4	kHz
Voltage at RT			1		V

[†] All typical values are at $T_A = 25$ °C.

dead-time control

242445752	TEGT COMPLETIONS	Т				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output (source) current	TL5002	$V_{(DT)} = 1.5 V$	0.9 × I _{RT} ‡		$1.2 \times I_{RT}$	μΑ
lanut threehold voltage	Duty cycle = 0%	0.5	0.7		V	
Input threshold voltage		Duty cycle = 100%		1.3	1.5	٧

[†] All typical values are at T_A = 25°C. ‡ Output source current at RT

error amplifier

DADAMETER	TEGT COMPLTIONS	-	TL5002C			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Input voltage	Input voltage				1.5	V
Input bias current				-160	-500	nA
Outrod walks are surious	Positive		1.5	2.3		V
Output voltage swing	Negative			0.3	0.4	V
Open-loop voltage amplification				80		dB
Unity-gain bandwidth				1.5		MHz
Output (sink) current		$V_{I(INV)} = 1.2 \text{ V}, COMP = 1 \text{ V}$	100	600		μΑ
Output (source) current		$V_{I(INV)} = 0.8 \text{ V}$, $COMP = 1 \text{ V}$	-45	-70		μΑ

[†] All typical values are at $T_A = 25$ °C.

SLVS304A – SEPTEMBER 2000 – REVISED AUGUST 2002

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 6 V, f_{OSC} = 100 kHz (unless otherwise noted) (continued)

output

DADAMETED	TEGT CONDITIONS	Т	LINUT		
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Output saturation voltage	I _O = 10 mA		1.5	2	V
0,,,,	$V_{O} = 50 \text{ V}, \qquad V_{CC} = 0$			10	
Off-state current	V _O = 50 V			10	μΑ
Short-circuit output current	V _O = 6 V		40		mA

[†] All typical values are at $T_A = 25$ °C.

total device

242445752	TEST SOUDITIONS	7				
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT	
Standby supply current	Off state			1	1.5	mA
Average supply current		$R_t = 100 \text{ k}\Omega$		1.4	2.1	mA

[†] All typical values are at $T_A = 25$ °C.

PARAMETER MEASUREMENT INFORMATION

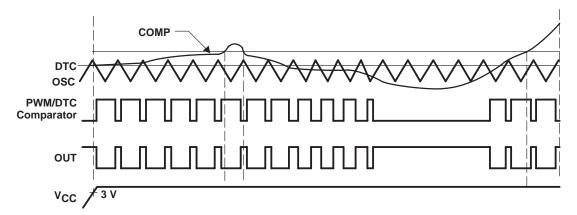


Figure 3. PWM Timing Diagram

OSCILLATOR FREQUENCY VS TIMING RESISTANCE 1 M VCC = 6 V DT Resistance = R_t $T_A = 25^{\circ}C$ 100 k 10 k $T_A = T_{AB} = T_{AB}$

Figure 4

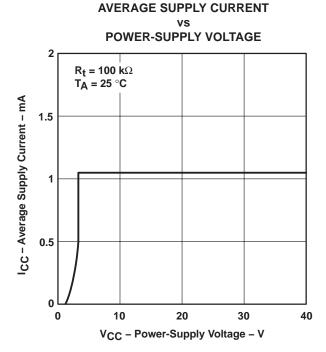


Figure 6

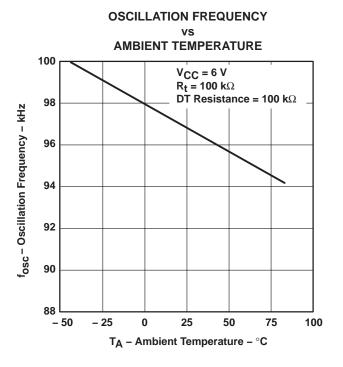


Figure 5

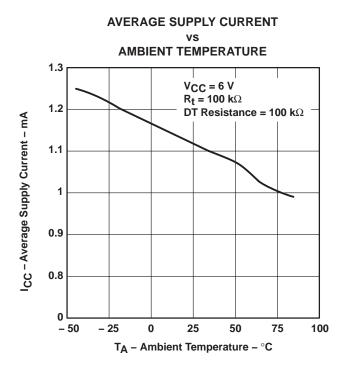


Figure 7

PWM TRIANGLE WAVE AMPLITUDE VOLTAGE OSCILLATOR FREQUENCY 1.8 $V_{CC} = 6 V$ PWM Triangle Wave Amplitude Voltage - V TA = 25 °C 1.5 Voscmax (100% duty cycle) 1.2 0.9 V_{OSC}min (zero duty cycle) 0.6 0.3 0 10 k 1 M 10 M

Figure 8

f_{OSC} – Oscillator Frequency – Hz

ERROR AMPLIFIER OUTPUT VOLTAGE OUTPUT (SOURCE) CURRENT 3 Vo - Error Amplifier Output Voltage - V 2.5 1.5 1 VCC = 6 V $V_{I(INV)} = 0.8 V$ 0.5 V_{I(NI)} = 1 V T_A = 25 °C 0 100 120 0 20 I_O – Output (Source) Current – μ A

Figure 10

ERROR AMPLIFIER OUTPUT VOLTAGE vs OUTPUT (SINK) CURRENT

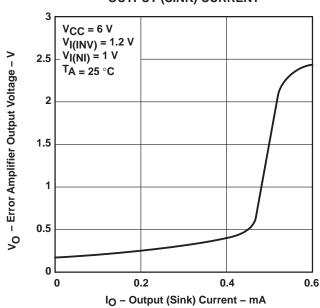


Figure 9

ERROR AMPLIFIER OUTPUT VOLTAGE

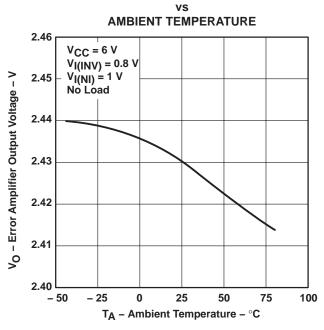
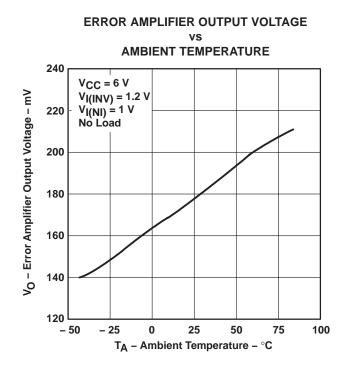
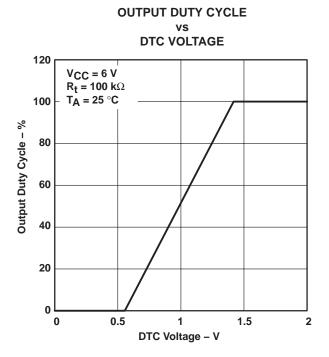
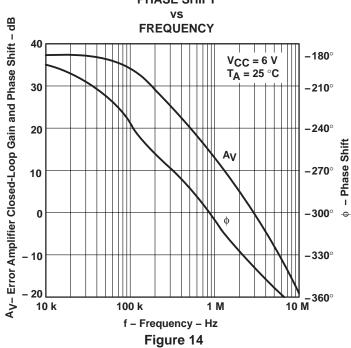
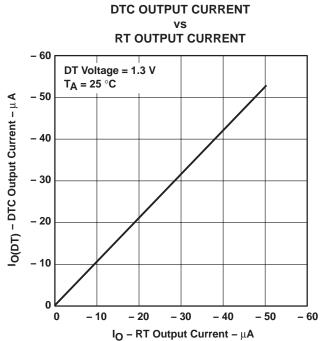



Figure 11

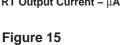

Figure 12

Figure 13

ERROR AMPLIFIER CLOSED-LOOP GAIN AND PHASE SHIFT

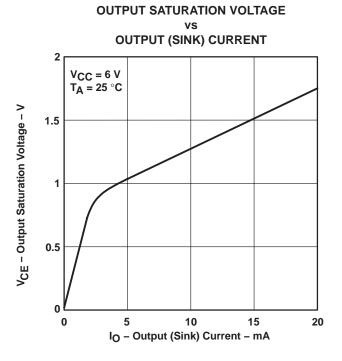


Figure 16

APPLICATION INFORMATION

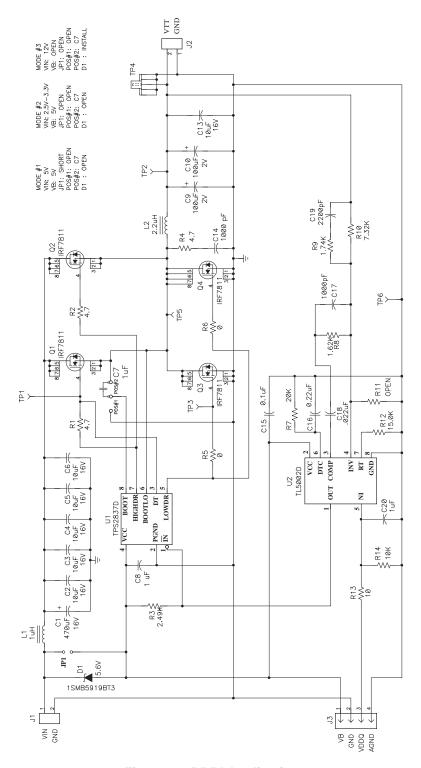


Figure 17. DDRI Application

APPLICATION INFORMATION

PARTIAL BILL OF MATERIALS

QUANTITY	REF DES	PART NUMBER	DESCRIPTION	MANUFACTURER	SIZE
1	C1	UUD1C471MNR1GS	Capacitor, aluminum	Nichicon	0.327 x 0.327
6	C2 – C6, C13	EMK325BJ106MN-B	Capacitor, ceramic	Taiyo Yuden	1210
3	C7, C8, C20	GRM40X7R105K16PT	Capacitor, ceramic, jumper	Murata	805
2	C9, C10	EEF-CD0D101R	Capacitor, aluminum	Panasonic	7343
1	C14	08055A102JAT2A	Capacitor, ceramic	AVX	805
1	C15	GRM39X7R104K016D	Capacitor, ceramic	Murata	603
1	C16	NMC0805X7R224K16TR	Capacitor, ceramic	NIP	603
1	C17	VJ0603Y222KXANT	Capacitor, ceramic	Murata	603
1	C18	C0603C223J3RACTU	Capacitor, ceramic	Kemet	603
1	C19	GRM39X7R223K16	Capacitor, ceramic	Murata	603
1	D1	1SMB5919BT3	Diode, zener, 5.6 V	On Semi	SMB
2	J1, J2	ED1609	Terminal block, 2-pin	OST	
1	J3	PTC36SAAN	Header, 4-pin	Sullins	
1	JP1	PTC36SAAN	Header, 2-pin	Sullins	
1	L1	UP2B-1R0	Inductor, SMT	Coiltronics	0.55 x 0.41
1	L2	UP4B-2R2	Inductor, SMT	Coiltronics	
4	Q1 – Q4	IRF7811	MOSFET, N-ch, 30 V	IR	SO8
3	R1, R2, R4	Std	Resistor, chip, 4.7 Ω	Std	603
1	R3	Std	Resistor, chip, 2.49 K Ω	Std	603
2	R5, R6	Std	Resistor, chip, 0 Ω	Std	603
1	R7	Std	Resistor, chip, 20 K Ω	Std	603
1	R8	Std	Resistor, chip, 162 K Ω	Std	603
1	R9	Std	Resistor, chip, 1.74 K Ω	Std	603
1	R10	Std	Resistor, chip, 7.32 K Ω	Std	603
1	R11	Std	Open	Std	603
1	R12	Std	Resistor, chip, 15 K Ω	Std	603
1	R13	Std	Resistor, chip, 10 Ω	Std	603
1	R14	Std	Resistor, chip, 10 K Ω	Std	603
4	TP1 – TP3, TP5	240-345	Test point, red, 1 mm	Farnell	0.038
1	TP4	131-4244-00 or 131-5031-00	Adaptor, 3.5 mm probe	Tektronix	0.200
1	TP6	6 1045-3-17-15-30-14-02-0 Post, wirewrap		Mill-Max	0.043
1	U1	TPS2837D	IC, MOSFET driver	Texas Instruments	SO8
1	U2	TL5002D	IC, low-cost PMW	Texas Instruments	SO8

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL5002CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 85	5002CD	Samples
TL5002CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 85	5002CD	Samples
TL5002CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 85	5002CD	Samples
TL5002ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	5002ID	Samples
TL5002IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	5002ID	Samples
TL5002IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	5002ID	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

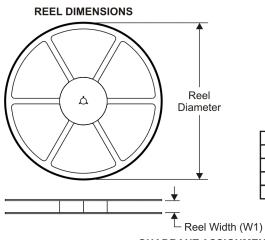
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

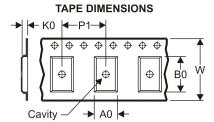
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

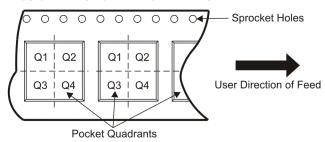
PACKAGE OPTION ADDENDUM

10-Jun-2014

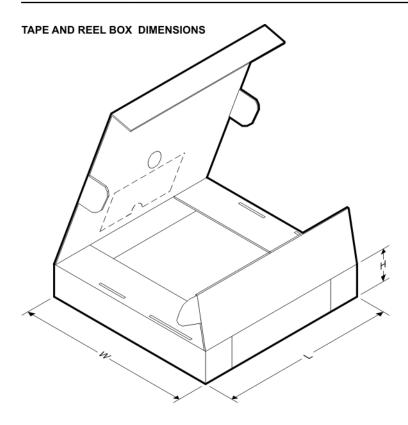

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

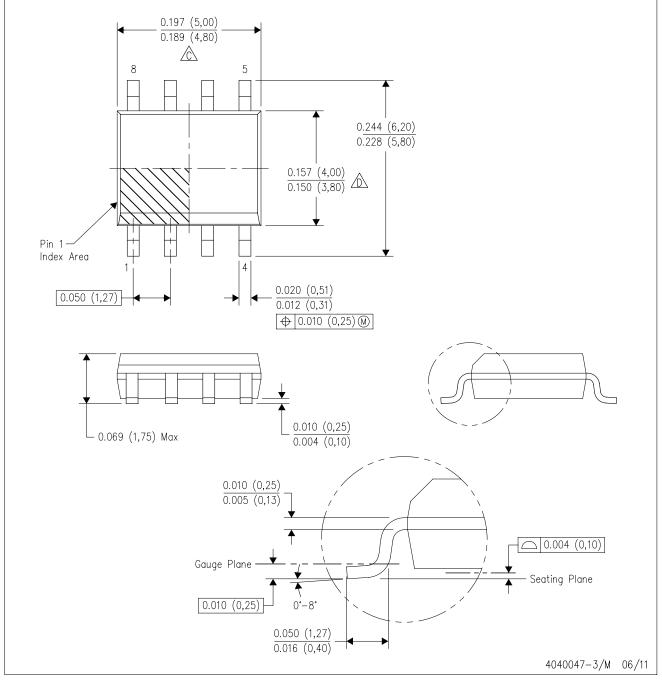

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL5002CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL5002IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

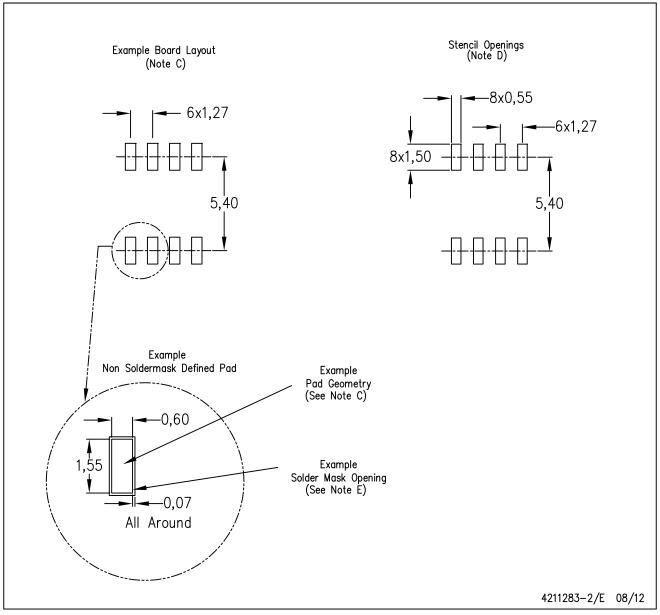


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL5002CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL5002IDR	SOIC	D	8	2500	340.5	338.1	20.6

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>