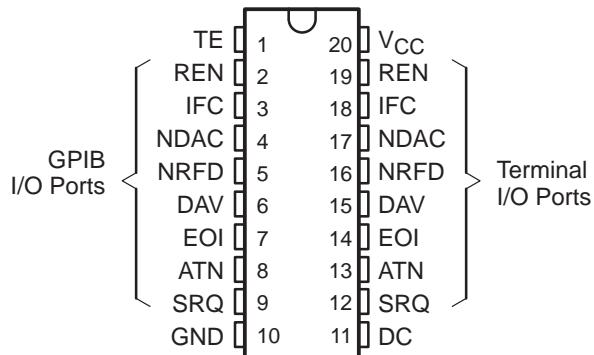


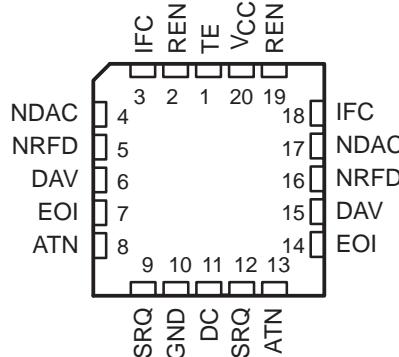
SUITABLE FOR IEEE STANDARD 488-1978 (GPIB)[†]

- 8-Channel Bidirectional Transceivers
- Designed to Implement Control Bus Interface
- Designed for Single Controller
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation:
SN55ALS161 . . . 59 mW Max Per Channel
SN75ALS161 . . . 46 mW Max Per Channel
- Fast Propagation Times:
SN55ALS161 . . . 25 ns Max
SN75ALS161 . . . 20 ns Max
- High-Impedance pnp Inputs
- Receiver Hysteresis:
SN55ALS161 . . . 550 mV Typ
SN75ALS161 . . . 650 mV Typ
- Bus-Terminating Resistors Provided on Driver Outputs
- No Loading of Bus When Device Is Powered Down ($V_{CC} = 0$)
- Power-Up/Power-Down Protection (Glitch Free)

description

The SN55ALS161 and SN75ALS161 eight-channel general-purpose interface bus transceivers are high-speed, advanced low-power Schottky-process devices designed to provide the bus-management and data-transfer signals between operating units of a single-controller instrumentation system. When combined with the SN55ALS160 and SN75ALS160 octal bus transceivers, these devices provide a complete 16-wire interface for the IEEE 488 bus.


The SN55ALS161 and SN75ALS161 devices feature eight driver-receiver pairs connected in a front-to-back configuration to form input/output (I/O) ports at both the bus and terminal sides. The direction of data through these driver-receiver pairs is determined by the direction-control (DC) and talk-enable (TE) signals.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[†] The transceivers are suitable for IEEE Standard 488 applications to the extent of the operating conditions and characteristics specified in this data sheet. Certain limits contained in the IEEE specification are not met or cannot be tested over the entire military temperature range.

SN55ALS161 . . . J OR W PACKAGE
SN75ALS161 . . . DW OR N PACKAGE
(TOP VIEW)

SN55ALS161 . . . FK PACKAGE
(TOP VIEW)

CHANNEL-IDENTIFICATION TABLE

NAME	IDENTITY	CLASS
DC	Direction Control	
TE	Talk Enable	Control
ATN	Attention	
SRQ	Service Request	
REN	Remote Enable	
IFC	Interface Clear	Bus Management
EOI	End or Identify	
DAV	Data Valid	
NDAC	Not Data Accepted	
NRFD	Not Ready for Data	Data Transfer

SN55ALS161, SN75ALS161 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

description (continued)

The driver outputs general-purpose interface bus (GPIB I/O ports) feature active bus-terminating resistor circuits designed to provide a high impedance to the bus when $V_{CC} = 0$. The drivers are designed to handle sink-current loads up to 48 mA. Each receiver features pnp transistor inputs for high input impedance and hysteresis of 400 mV on the commercial part, 250 mV on the military part, minimum, for increased noise immunity. All receivers have 3-state outputs to present a high impedance to the terminal when disabled.

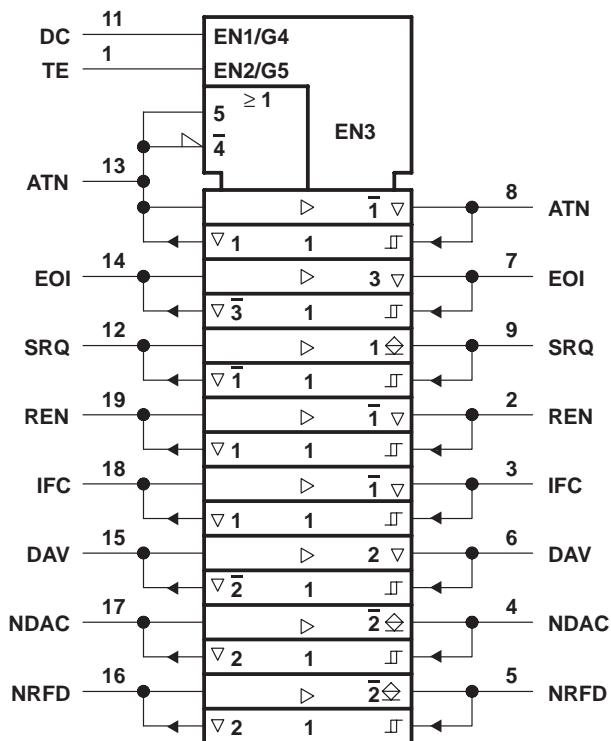
The SN55ALS161 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN75ALS161 is characterized for operation from 0°C to 70°C .

FUNCTION TABLE
RECEIVE/TRANSMIT

CONTROLS			BUS-MANAGEMENT CHANNELS				DATA-TRANSFER CHANNELS			
DC	TE	ATN [†]	ATN [†]	SRQ	REN	IFC	EOI	DAV	NDAC	NRFD
H	H	H	R	T	R	R	T	T	R	R
							R			
L	L	H	T	R	T	T	R	R	T	T
							T			
H	L	X	R	T	R	R	R	R	T	T
							T			
L	H	X	T	R	T	T	T	T	R	R
							T			

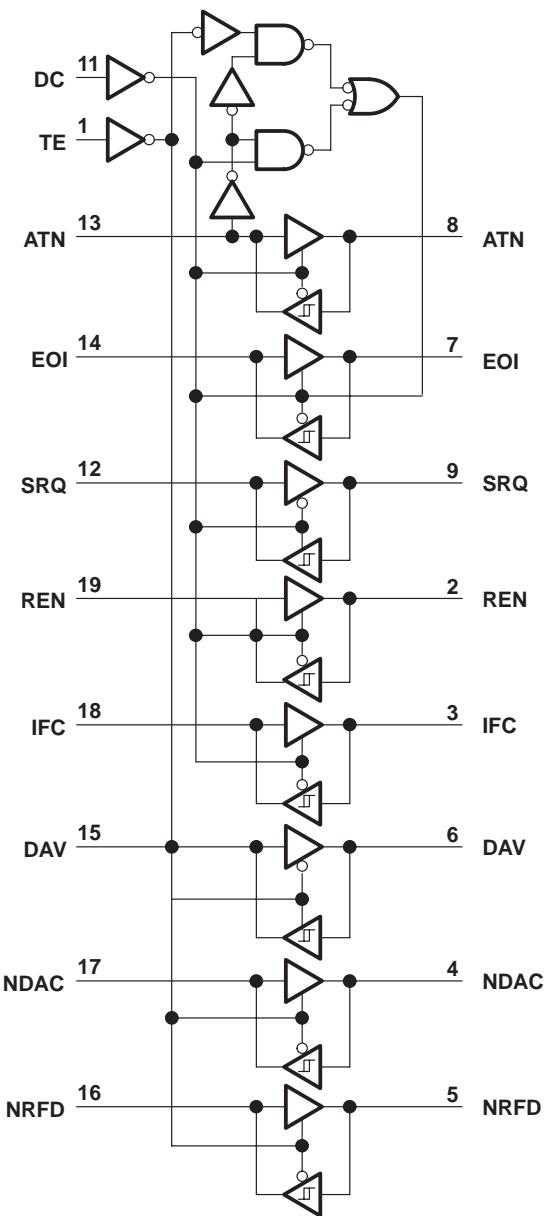
H = high level, L = low level, R = receive, T = transmit, X = irrelevant

Direction of data transmission is from the terminal side to the bus side, and the direction of data receiving is from the bus side to the terminal side.


Data transfer is noninverting in both directions.

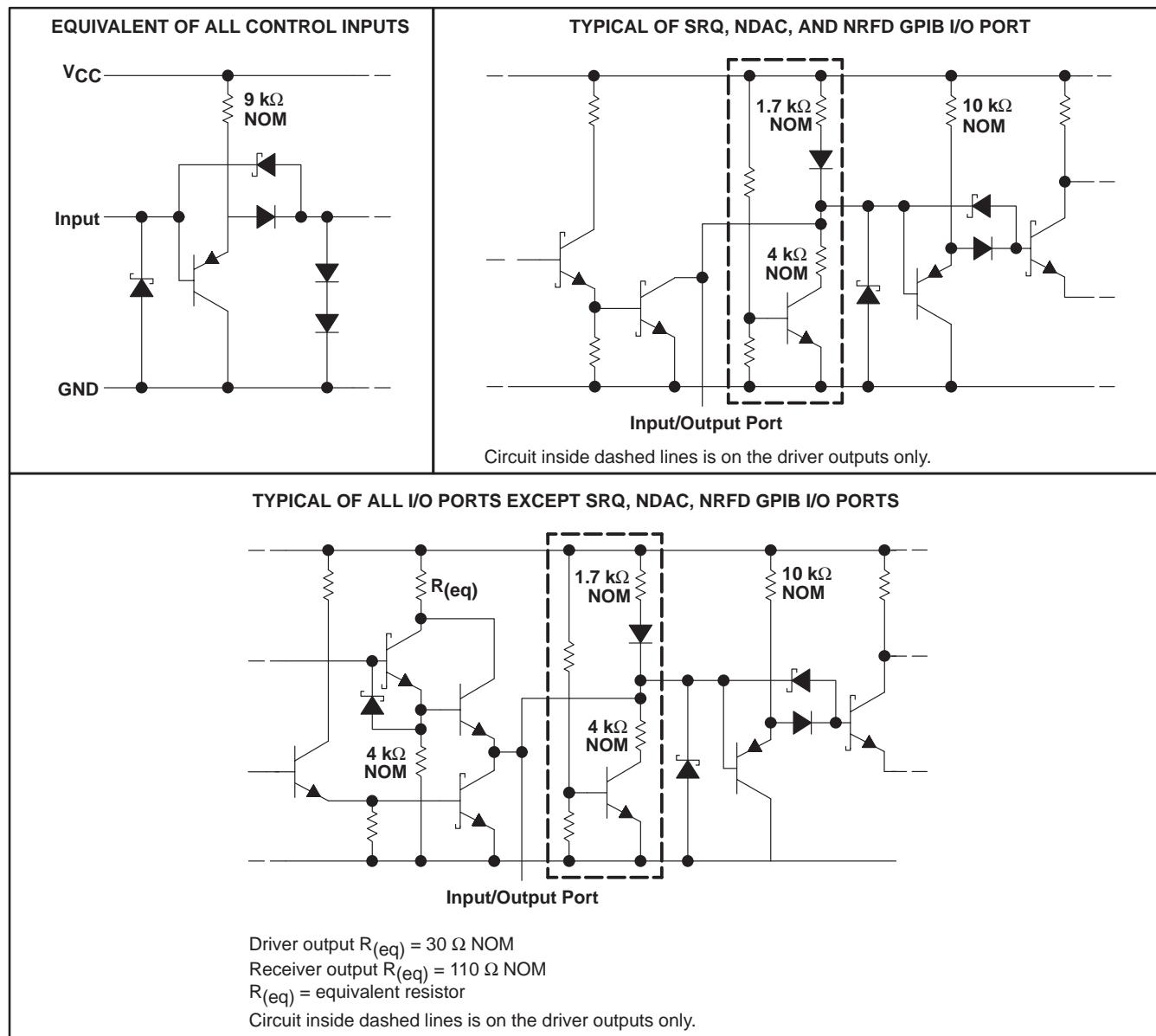
[†]ATN is a normal transceiver channel that functions additionally as an internal direction control or talk enable for EOI whenever the DC and TE inputs are in the same state. When DC and TE are in opposite states, the ATN channel functions as an independent transceiver only.

SN55ALS161, SN75ALS161
OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS


SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagram (positive logic)

SN55ALS161, SN75ALS161 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

schematics of inputs and outputs

SN55ALS161, SN75ALS161 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	OPERATING FACTOR	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	275 mW
W	1000 mW	8.0 mW/°C	640 mW	200 mW

SN55ALS161 recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
High-level input voltage, V_{IH}	TE and DC at $T_A = -55^\circ C$ to $125^\circ C$	2			V
	Bus and terminal at $T_A = 25^\circ C$ to $125^\circ C$	2			
	Bus and terminal at $T_A = -55^\circ C$	2.1			
Low-level input voltage, V_{IL}	TE and DC at $T_A = -55^\circ C$ to $125^\circ C$			0.8	V
	Bus and terminal at $T_A = 25^\circ C$ to $-55^\circ C$			0.8	
	Bus and terminal at $T_A = 125^\circ C$			0.7	
High-level output current, I_{OH}	Bus ports with pullups active ($V_{CC} = 5$ V)			-5.2	mA
	Terminal ports			-800	μA
Low-level output current, I_{OL}	Bus ports			48	mA
	Terminal ports			16	
Operating free-air temperature, T_A		-55		125	°C

SN55ALS161, SN75ALS161 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

SN75ALS161 recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
High-level input voltage, V_{IH}		2			V
Low-level input voltage, V_{IL}			0.8		V
High-level output current, I_{OH}	Bus ports with pullups active			-5.2	mA
	Terminal ports			-800	μ A
Low-level output current, I_{OL}	Bus ports		48		mA
	Terminal ports		16		
Operating free-air temperature, T_A		0	70		°C

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN55ALS161, SN75ALS161
OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN55ALS161			SN75ALS161			UNIT	
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX		
V_{IK}	Input clamp voltage	$I_I = -18 \text{ mA}$			-0.8	-1.5	-0.8	-1.5	V
V_{hys}	Bus				0.4	0.55	0.4	0.65	V
	Bus	$V_{CC} = 5 \text{ V}$, $T_A = -55^\circ\text{C}$ and 25°C	0.4	0.55	0.25				
$V_{OH}^§$	Terminal	$I_{OH} = -800 \mu\text{A}$, $V_{CC} = \text{MIN}$	$T_A = 25^\circ\text{C}$ and MAX	2.7	3.5	2.7	3.5	V	
			$T_A = \text{MIN}$	2.5	3.5	2.7	3.5		
	Bus	$I_{OH} = -5.2 \text{ mA}$, $V_{CC} = \text{MIN}$	$T_A = 25^\circ\text{C}$ and MAX	2.2		2.2			
			$T_A = \text{MIN}$	2.0		2.2			
V_{OL}	Terminal	$I_{OL} = 16 \text{ mA}$, $V_{CC} = \text{MIN}$		0.3	0.5	0.3	0.5	V	
	Bus	$I_{OL} = 48 \text{ mA}^¶$, $V_{CC} = \text{MIN}$		0.35	0.5	0.35	0.5		
I_I	Input current at maximum input voltage	Terminal	$V_I = 5.5 \text{ V}$, $V_{CC} = \text{MAX}$	0.2	100	0.2	100	μA	
I_{IH}	High-level input current	Terminal and control inputs	$V_I = 2.7 \text{ V}$, $V_{CC} = \text{MAX}$	0.1	20	0.1	20	μA	
I_{IL}	Low-level input current	control inputs	$V_I = 0.5 \text{ V}$, $V_{CC} = \text{MAX}$	-30	-100	-10	-100	μA	
$V_{I/O}$	Voltage at GPIB I/O port	Driver disabled, $V_{CC} = 5 \text{ V}$ (SN55')	$I_I(\text{bus}) = 0$	2.5	3	2.5	3	3.7	V
			$I_I(\text{bus}) = -12 \text{ mA}$		-1.5			-1.5	
$I_{I/O}$	Current into GPIB I/O port	Power on	$V_I(\text{bus}) = -1.5 \text{ V}$ to 0.4 V	-1.3		-1.3			mA
			$V_I(\text{bus}) = 0.4 \text{ V}$ to 2.5 V	0	-3.2	0	-3.2		
			$V_I(\text{bus}) = 2.5 \text{ V}$ to 3.7 V		2.5		2.5		
			$V_I(\text{bus}) = 3.7 \text{ V}$ to 5 V	0	2.5	0	2.5		
			$V_I(\text{bus}) = 5 \text{ V}$ to 5.5 V	0.7	2.5	0.7	2.5		
	Power off	$V_{CC} = 0$	$V_I(\text{bus}) = 0$ to 2.5 V		40		40		μA
$I_{OS}^§$	Short-circuit output current	Terminal	$V_{CC} = \text{MAX}$	-15	-35	-75	-15	-35	mA
				-25	-50	-125	-25	-50	
I_{CC}	Supply current	No load,	$V_{CC} = \text{MAX}$	55	90	55	75	mA	
$C_{I/O}$	GPIB I/O port capacitance	$V_{CC} = 0$ to 5 V , $V_{I/O} = 0$ to 2 V , $f = 1 \text{ MHz}$		30		30		pF	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

[§] V_{OH} and I_{OS} apply to 3-state outputs only.

[¶] For SN55', $I_{OL} = 24 \text{ mA}$ at -55°C .

SN55ALS161, SN75ALS161 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

SN55ALS161 switching characteristics, $V_{CC} = 5$ V and $C_L = 50$ pF (unless otherwise noted)

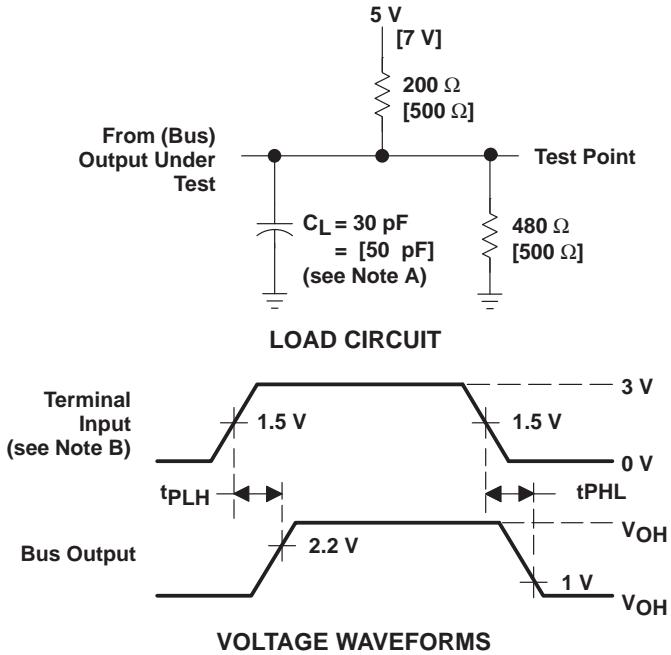
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	T_A^\dagger	MIN	TYP‡	MAX	UNIT
t_{PLH} Propagation delay time, low- to high-level output	Terminal	Bus (Except SRQ, NDAC, and NRFD)	See Figure 1	25°C		10	17	ns
t_{PHL} Propagation delay time, high- to low-level output				Full range		20		
t_{PLH} Propagation delay time, low- to high-level output				25°C		10	14	
t_{PHL} Propagation delay time, high- to low-level output				Full range		18		
t_{PLH} Propagation delay time, low- to high-level output	Terminal	Bus (NRFD, SRQ, NDAC)	See Figure 2	25°C		25		ns
t_{PHL} Propagation delay time, high- to low-level output				Full range		37		
t_{PLH} Propagation delay time, low- to high-level output				25°C		10	14	
t_{PHL} Propagation delay time, high- to low-level output				Full range		19		
t_{PLH} Propagation delay time, low- to high-level output	Bus	Terminal	See Figure 2	25°C		10	15	ns
t_{PHL} Propagation delay time, high- to low-level output				Full range		22		
t_{PLH} Propagation delay time, low- to high-level output				25°C		10	15	
t_{PHL} Propagation delay time, high- to low-level output				Full range		24		
t_{PZH} Output enable time to high level	TE or DC	Bus (ATN, REN, IFC, and DAV)	See Figure 3	25°C		20	30	ns
t_{PHZ} Output disable time from high level				Full range		52		
t_{PZL} Output enable time to low level				25°C		8	14	
t_{PLZ} Output disable time from low level				Full range		18		
t_{PZH} Output enable time to high level				25°C		16	28	
t_{PHZ} Output disable time from high level				Full range		44		
t_{PZL} Output enable time to low level,				25°C		10	19	
t_{PLZ} Output disable time from low level				Full range		30		
t_{PZH} Output enable time to high level	TE or DC	Bus (EOI)	See Figure 3	25°C		24	30	ns
t_{PHZ} Output disable time from high level				Full range		64		
t_{PZL} Output enable time to low level,				25°C		13	19	
t_{PLZ} Output disable time from low level				Full range		30		
t_{PZH} Output enable time to high level				25°C		21	35	
t_{PHZ} Output disable time from high level				Full range		54		
t_{PZL} Output enable time to low level				25°C		13	20	
t_{PLZ} Output disable time from low level				Full range		40		
t_{PZH} Output enable time to high level	TE or DC	Terminal	See Figure 4	25°C		24	36	ns
t_{PHZ} Output disable time from high level				Full range		70		
t_{PZL} Output enable time to low level				25°C		12	20	
t_{PLZ} Output disable time from low level				Full range		40		
t_{PZH} Output enable time to high level				25°C		20	34	
t_{PHZ} Output disable time from high level				Full range		56		
t_{PZL} Output enable time to low level				25°C		13	24	
t_{PLZ} Output disable time from low level				Full range		43		

† Full range is -55°C to 125°C .

‡ All typical values are at $V_{CC} = 5$ V.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**SN75ALS161 switching characteristics over recommended operating free-air temperature range,
 $V_{CC} = 5$ V**

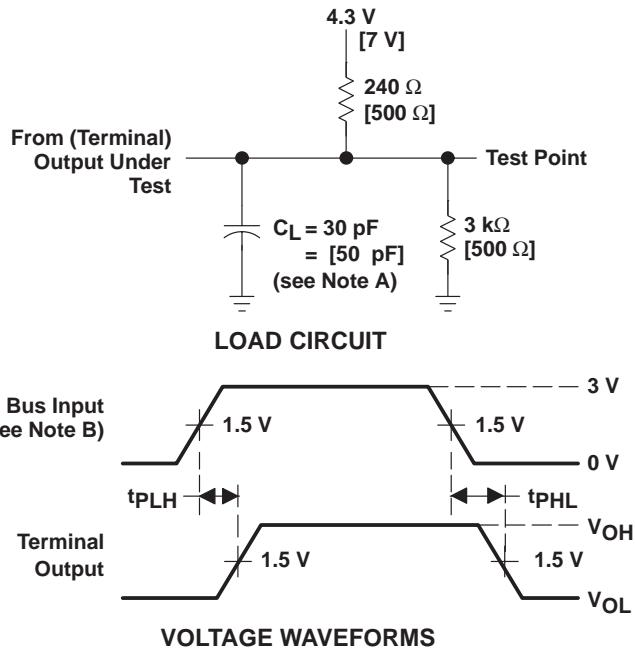

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	Terminal	$C_L = 30$ pF, See Figure 1	10	20		ns
t _{PHL}				12	20		
t _{PLH}	Propagation delay time, low- to high-level output	Bus	$C_L = 30$ pF, See Figure 2	5	10		ns
t _{PHL}				7	14		
t _{PZH}	Output enable time to high level	TE or DC	Bus (ATN, EOI, REN, IFC, and DAV)	30			ns
t _{PHZ}	Output disable time from high level			20			
t _{PZL}	Output enable time to low level			45			
t _{PLZ}	Output disable time from low level			20			
t _{PZH}	Output enable time to high level	TE or DC	Terminal	30			ns
t _{PHZ}	Output disable time from high level			25			
t _{PZL}	Output enable time to low level			30			
t _{PLZ}	Output disable time from low level			25			

[†] All typical values are at $T_A = 25^\circ\text{C}$.

SN55ALS161, SN75ALS161 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

PARAMETER MEASUREMENT INFORMATION


[] denotes the SN55ALS161 military test conditions.

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: $\text{PRR} \leq 1\text{ MHz}$, 50% duty cycle, $t_r \leq 6\text{ ns}$, $t_f \leq 6\text{ ns}$, $Z_O = 50\Omega$.

Figure 1. Terminal-to-Bus Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

[] denotes the SN55ALS161 military test conditions.

NOTES: A. C_L includes probe and jig capacitance.

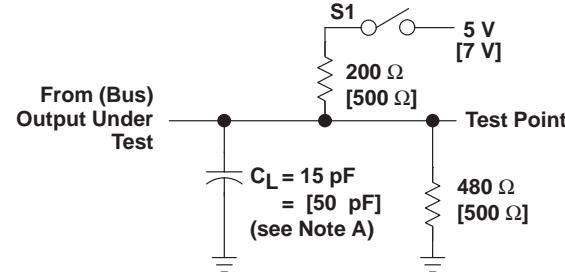
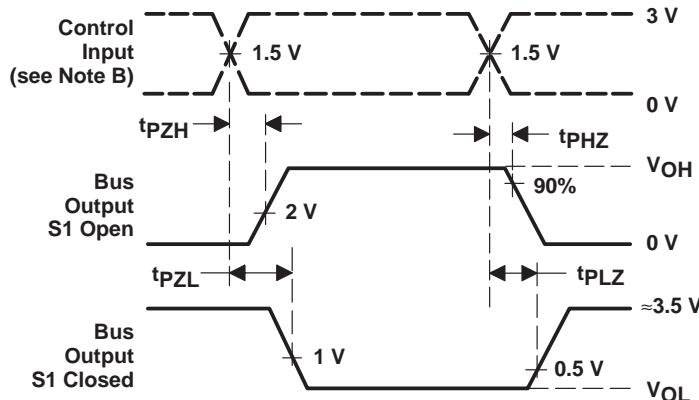

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq 6$ ns, $t_f \leq 6$ ns, $Z_0 = 50 \Omega$.

Figure 2. Bus-to-Terminal Load Circuit and Voltage Waveforms

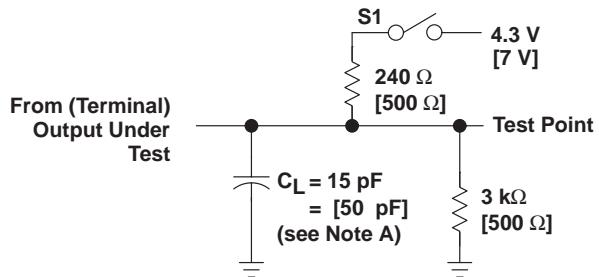

SN55ALS161, SN75ALS161 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS


[] denotes the SN55ALS161 military test conditions.

NOTES: A. C_L includes probe and jig capacitance.

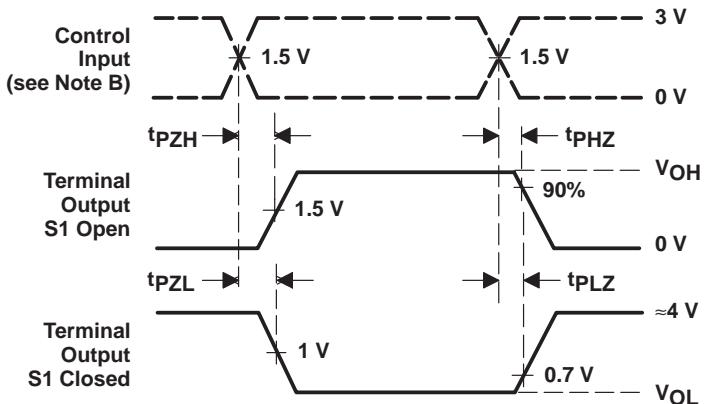

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq 6$ ns, $t_f \leq 6$ ns, $Z_O = 50 \Omega$.

Figure 3. Bus Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS

[] denotes the SN55ALS161 military test conditions.

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR $\leq 1 \text{ MHz}$, 50% duty cycle, $t_r \leq 6 \text{ ns}$, $t_f \leq 6 \text{ ns}$, $Z_0 = 50 \Omega$.

Figure 4. Terminal Load Circuit and Voltage Waveforms

SN55ALS161, SN75ALS161 OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVERS

SLLS019E – JUNE 1986 – REVISED NOVEMBER 1999

TYPICAL CHARACTERISTICS[†]

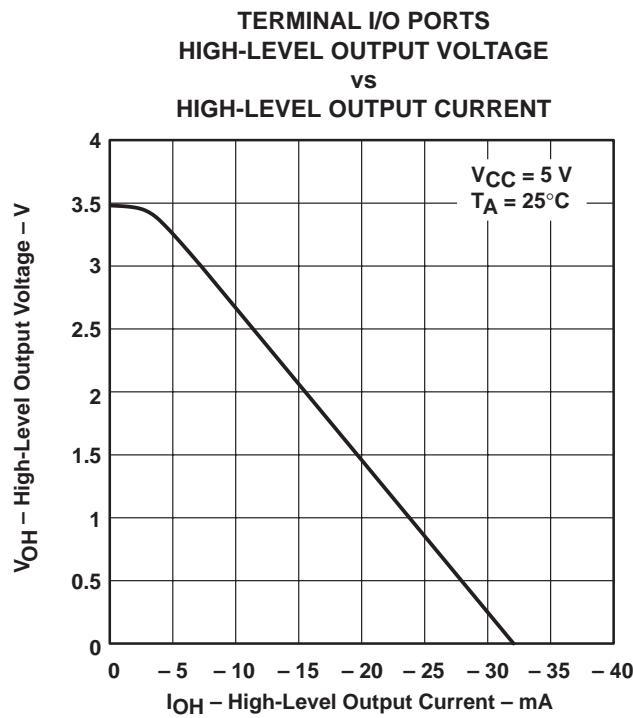


Figure 5

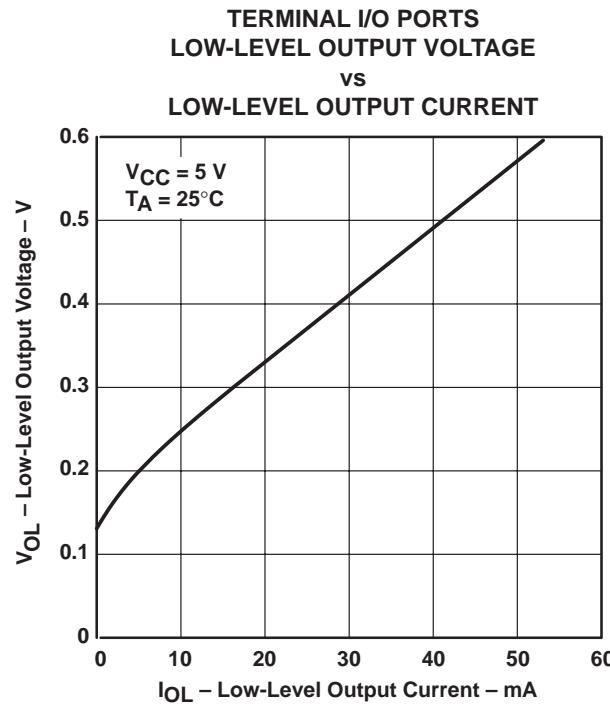


Figure 6

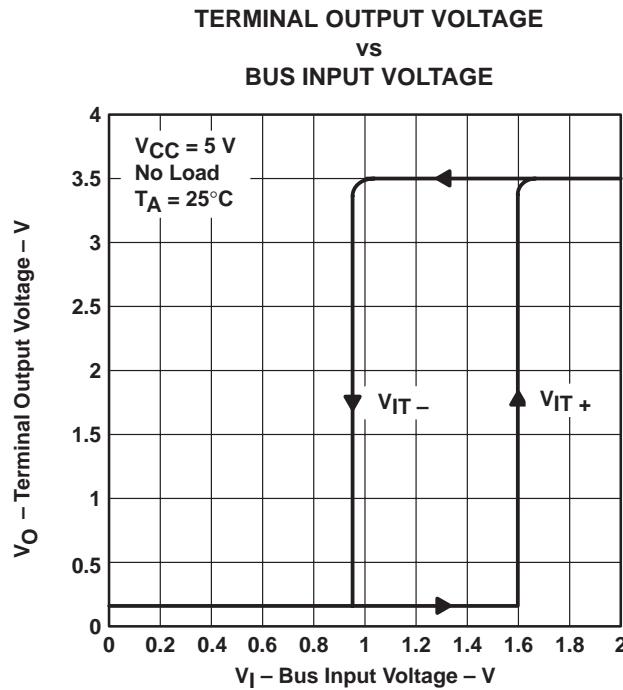


Figure 7

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

TYPICAL CHARACTERISTICS[†]

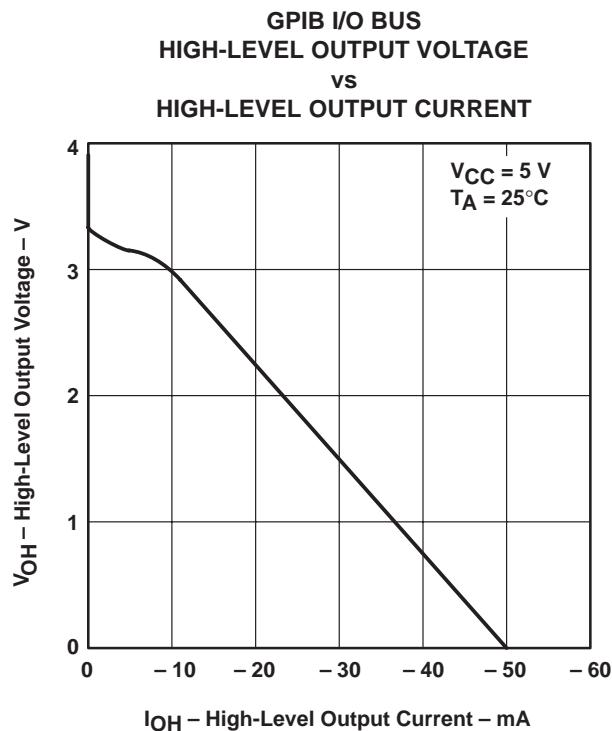


Figure 8

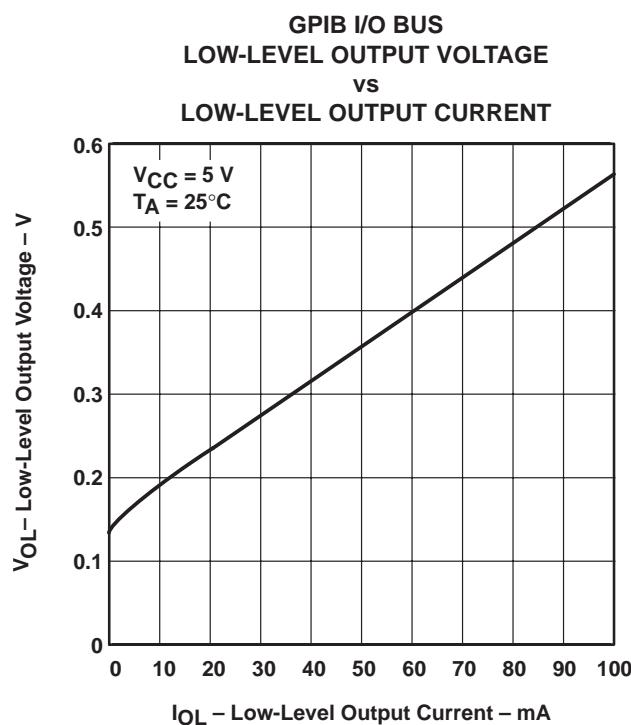


Figure 9

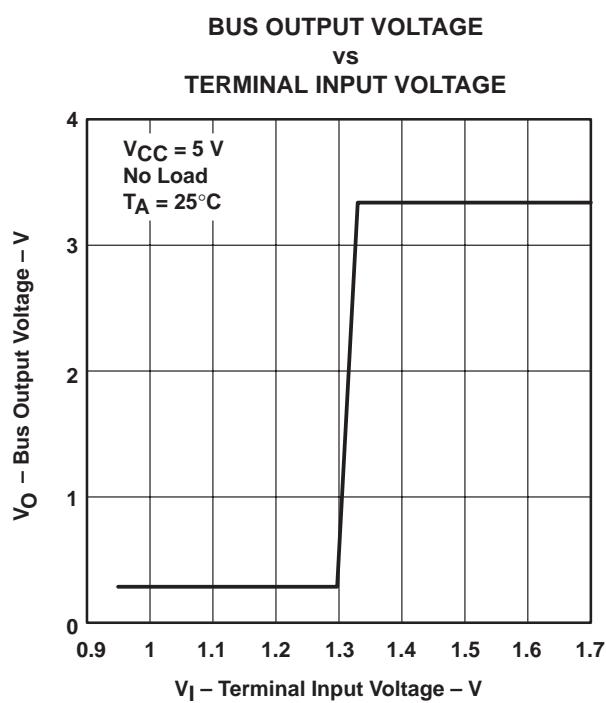


Figure 10

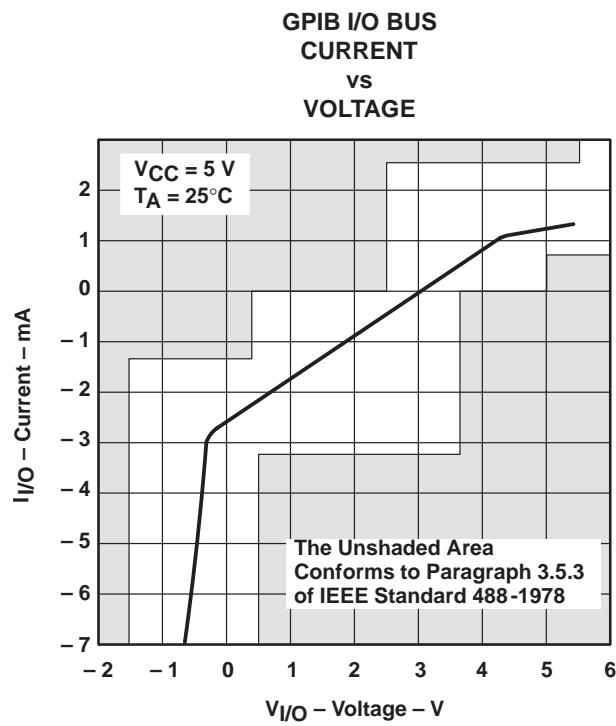


Figure 11

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated