

Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 5975000501
Printed: 2013-07-03

Part Number: 5975000501

Frequency Range: High Permeability, 75 (ui=5000) material

Description: 75 TOROID

Application: Inductive Components

Where Used: Closed Magnetic Circuit

Part Type: Toroids

Mechanical Specifications

Weight: 12.000 (g)

Part Type Information

A ring configuration provides the ultimate utilization of the intrinsic ferrite material properties. Toroidal cores are used in a wide variety of applications such as power input filters, ground-fault interrupters, common-mode filters and in pulse and broadband transformers.

-Toroids are listed by initial permeability classes and increasing dimension of the inside diameter.

-All toroidal cores are supplied burnished to break sharp edges.

-Toroids are tested for AL values at 10 kHz.

-Toroids with an outside diameter of 9.5mm (.375") or smaller can be supplied Parylene C coated. The Parylene coating will increase the 'A' and 'C' dimensions and decrease the 'B' dimension a maximum of 0.038mm (.0015"). The ninth digit of a Parylene coated toroid part number is a '1'. See the material characteristics of Parylene C in our online catalog.

-Toroids with an outside diameter of 9.5mm (.375") or larger can be supplied with a uniform coating of thermo-set plastic coating. This coating will increase the 'A' and 'C' dimensions and decrease the 'B' dimension a maximum of 0.5mm (.020"). The 9th digit of the thermo-set plastic coated toroid part number is a '2'. Thermo-set plastic coating is RoHS compliant.

-Thermo-set plastic coated parts can withstand a minimum breakdown voltage of 1000 Vrms, uniformly applied across the 'C' dimension of the toroid.

-The "C" dimension may be modified to suit specific applications.

-For any toroidal core requirement not listed in the catalog, please contact our customer service department for availability and pricing.

-Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade, 9th digit 1 = Parylene coating, 2 = thermo-set plastic coating.

Fair-Rite Products Corp.

Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 5975000501
Printed: 2013-07-03

RoHS
Material Declaration

Mechanical Specifications

Dim	mm	mm tol	nominal inch	inch misc.
A	21.00	± 0.35	0.825	-
B	13.20	± 0.30	0.520	-
C	11.90	± 0.40	0.468	-
D	-	-	-	-
E	-	-	-	-
F	-	-	-	-
G	-	-	-	-
H	-	-	-	-
J	-	-	-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)	
Electrical Properties	
A_L (nH)	5500 $\pm 20\%$
A_e (cm 2)	0.46000
$\sum I/A$ (cm $^{-1}$)	11.40
l_e (cm)	5.20
V_e (cm 3)	2.36000

Land Patterns

V	W ref	X	Y	Z
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns Tested	Wire Size	1st Wire Length	2nd Wire Length
-	-	-	-

Reel Information

Tape Width mm	Pitch mm	Parts 7 "	Parts 13 "	Parts 14 "
-	-	-	-	-

Package Size

Pkg Size
- (-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A 1/2 turn is defined as a single pass through a hole.

$\sum I/A$ - Core Constant

A_e - Effective Cross-Sectional Area

A_L - Inductance Factor ($\frac{L}{N^2}$)

N/AWG - Number of Turns/Wire Size for Test Coil

l_e : Effective Path Length

V_e : Effective Core Volume

NI - Value of dc Ampere-turns

Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 5975000501
Printed: 2013-07-03

RoHS
Material
Declaration

Ferrite Material Constants

Specific Heat	0.25 cal/g/°C
Thermal Conductivity	3.5 - 4.5 mW/cm - °C
Coefficient of Linear Expansion	8 - 10x10 ⁻⁶ /°C
Tensile Strength	4.9 kgf/mm ²
Compressive Strength	42 kgf/mm ²
Young's Modulus	15x10 ³ kgf/mm ²
Hardness (Knoop)	650
Specific Gravity	≈ 4.7 g/cm ³

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

Fair-Rite Products Corp.

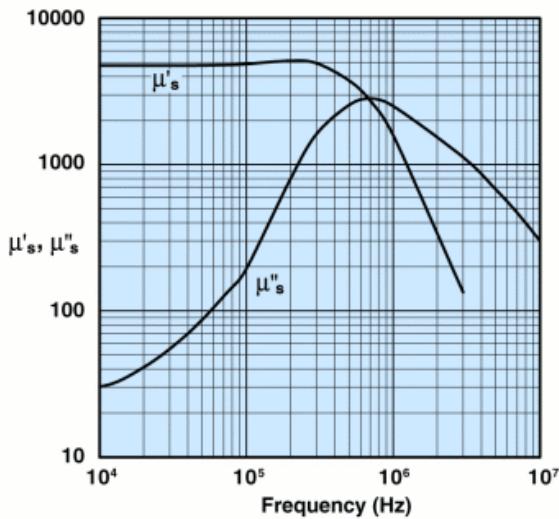
Your Signal Solution®

Ferrite Components for the Electronics Industry

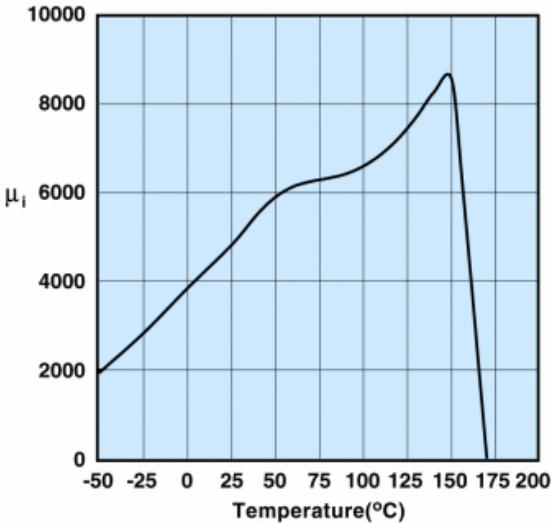
Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

A high permeability MnZn ferrite intended for a range of broadband and pulse transformer applications and common-mode inductor designs.

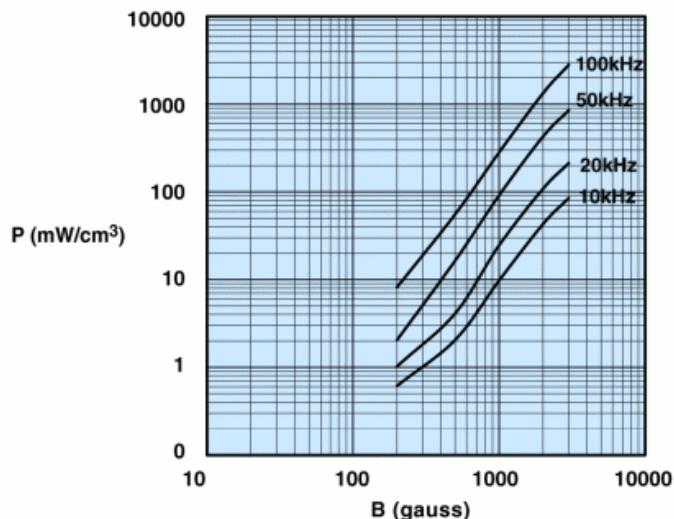
Toroidal cores are available in 75 material.


Fair-Rite Product's Catalog
Part Data Sheet, 5975000501
Printed: 2013-07-03

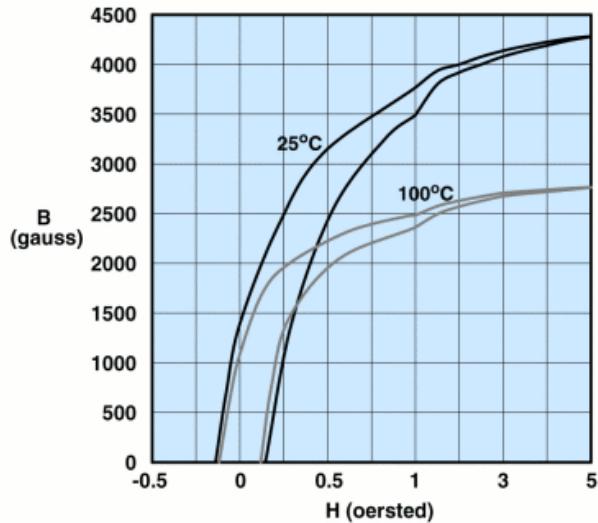
75 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability @ B < 10 gauss		μ_i	5000
Flux Density @ Field Strength	gauss oersted	B H	4300 5
Residual Flux Density	gauss	B_r	1400
Coercive Force	oersted	H_c	0.16
Loss Factor @ Frequency	10^{-6} MHz	$\tan \delta / \mu_i$	15 0.1
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		0.6
Curie Temperature	°C	T_c	>140
Resistivity	$\Omega \text{ cm}$	ρ	3×10^{-2}

Complex Permeability vs. Frequency


Measured on a 17/10/6mm toroid using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature


Measured on a 17/10/6mm toroid at 10kHz.

Power Loss Density vs. Flux Density

Measured on a 17/10/6mm toroid using the Clarke Hess 258 VAW at 100°C.

Hysteresis Loop

Measured on a 17/10/6mm toroid at 10kHz.