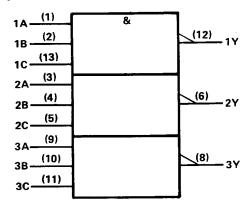
SDLS035A - DECEMBER 1983 - REVISED APRIL 2003

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

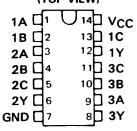

These devices contain three independent 3-input NAND gates.

The SN5410, SN54LS10, and SN54S10 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN7410, SN74LS10, and SN74S10 are characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

FUNCTION TABLE (each gate)

H	NPUT	s	OUTPUT
A	В	С	Y
н	Н	н	Ł
L	X	x	н
X	L	X	н
X	Х	L	н
	-	~	••

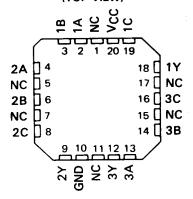
logic symbol†


[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

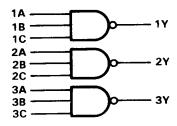
Pin numbers shown are for D, J, and N packages.


positive logic

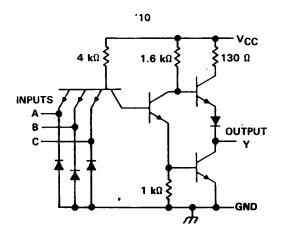
$$Y = \overline{A \cdot B \cdot C}$$
 or $Y = \overline{A} + \overline{B} + \overline{C}$

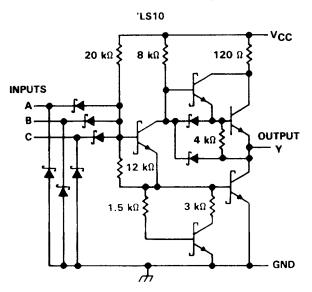

SN5410 . . . J PACKAGE SN54LS10, SN54S10 . . . J OR W PACKAGE SN7410 . . . N PACKAGE SN74LS10, SN74S10 . . . D OR N PACKAGE (TOP VIEW)

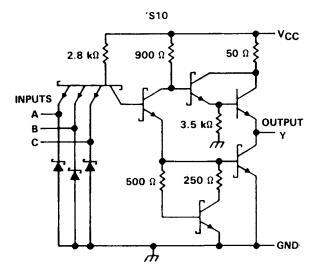
SN5410 . . . W PACKAGE (TOP VIEW)



SN54LS10, SN54S10 . . . FK PACKAGE (TOP VIEW)


NC - No internal connection


logic diagram (positive logic)



SDLS035A - DECEMBER 1983 - REVISED APRIL 2003

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage: '10, 'S10	5.5 V
'LS10	7 V
Operating free-air temperature range: SN54'	-55°C to 125°C
SN74'	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5410			SN7410)	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH} High-level input voltage	2			2			V
V _{IL} Low-level input voltage			0.8			0.8	v
IOH High-level output current			- 0.4			- 0.4	mA
IOL Low-level output current			16			16	mA
T _A Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS T			SN5410)		SN741	0	
		. 231 001101		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	I _I = - 12 mA				- 1.5			- 1.5	v
V _{OH}	V _{CC} = MIN,	V _{1L} = 0.8 V,	I _{OH} = - 0.4 mA	2.4	3.4		2.4	3.4	-	V
VoL	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
Iį	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
ЧН	V _{CC} = MAX,	V _I = 2.4 V				40			40	μΑ
IL	V _{CC} = MAX,	V ₁ = 0.4 V				- 1.6			- 1.6	mA
10s§	V _{CC} = MAX			- 20		- 55	- 18		- 55	mA
Іссн	V _{CC} = MAX,	V1 = 0 V			3	6		3	6	mA
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V			9	16.5		9	16.5	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	A, B or C	Y	$R_1 = 400 \Omega$, $C_1 = 15 pF$		11	22	ns
^t PHL		•	R _L = 400 Ω, C _L = 15 pF		7	15	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time.

SDLS035 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

		SN54LS	10	;	SN74LS	10	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	v
V _{IH} High-level input voltage	2			2			V
VIL Low-level input voltage			0.7			0.8	V
IOH High-level output current			- 0.4			- 0.4	mA
IOL Low-level output current			4			8	mA
TA Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †			SN54LS	10		SN74LS	S10 ·		
FANAMETEN		TEST CONDIT	IUNS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	I _I = — 18 mA				- 1.5			- 1.5	V
Voн	V _{CC} = MIN,	VIL = MAX,	I _{OH} = 0.4 mA	2.5	3.4		2.7	3.4		٧
Vo	V _{CC} = MIN,	V _{1H} = 2 V,	I _{OL} = 4 mA		0.25	0.4			0.4	- ∨
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 8 mA					0.25	0.5	
t _l	V _{CC} = MAX,	V ₁ = 7 V	**************************************			0.1			0.1	mA
ΉΗ	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
IL	V _{CC} = MAX,	V ₁ = 0.4 V			-	- 0.4			- 0.4	mA
IOS §	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	V _I = 0 V			0.6	1.2		0.6	1.2	mA
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V			1.8	3.3		1.8	3.3	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	A, B or C	Y	$R_1 = 2 k\Omega$, $C_1 = 15 pF$		9	15	ns
^t PHL					10	15	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

recommended operating conditions

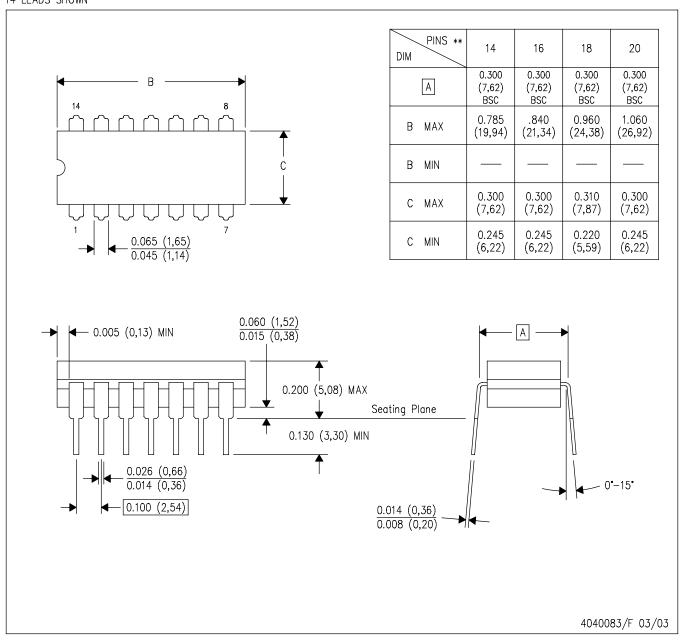
			SN54S1	N54S10 SN74S10			10	_ UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	v
ЮН	High-level output current			– 1			- 1	mA
loL	Low-level output current			20			20	mA
TA	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

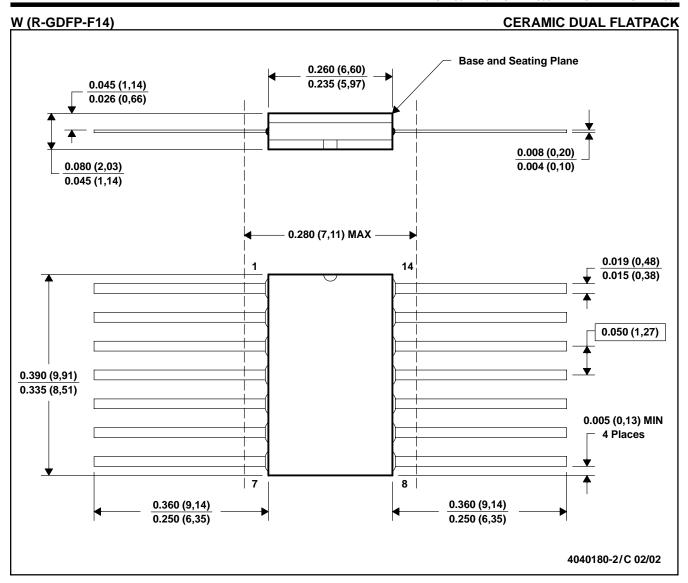
DADAMETED		TEST CONDITIONS †			SN54S10			SN74S	10	UNIT
PARAMETER		TEST CONDIT	IIONSI	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
v _{IK}	V _{CC} = MIN,	I _I = -18 mA				-1.2			-1.2	V
V _{OH}	V _{CC} ≈ MIN,	V _{IL} = 0.8 V,	I _{OH} = - 1 mA	2.5	3.4		2.7	3.4		V
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 20 mA			0.5			0.5	V
l _l	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
l _{ін}	V _{CC} = MAX,	V _I = 2.7 V				50			50	μА
fi∟	V _{CC} = MAX,	V _I = 0.5 V				-2			-2	mA
I _{OS} §	V _{CC} = MAX			-40		-100	-40		-100	mA
Іссн	V _{CC} = MAX,	V _I = 0 V			7.5	12		7.5	12	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			15	27		15	27	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONE	MIN	TYP	MAX	UNIT	
^t PLH			R _L = 280 Ω,	C ₁ = 15 pF		3	4.5	ns
^t PHĿ	A D . O	Y -	NL - 200 12,	OL - 19 bi		3	5	ns
^t PLH	A, B or C		D 200 O	C = 50 = 5		4.5		ns
^t PHL			$R_L = 280 \Omega$,	C _L = 50 pF		5		ns

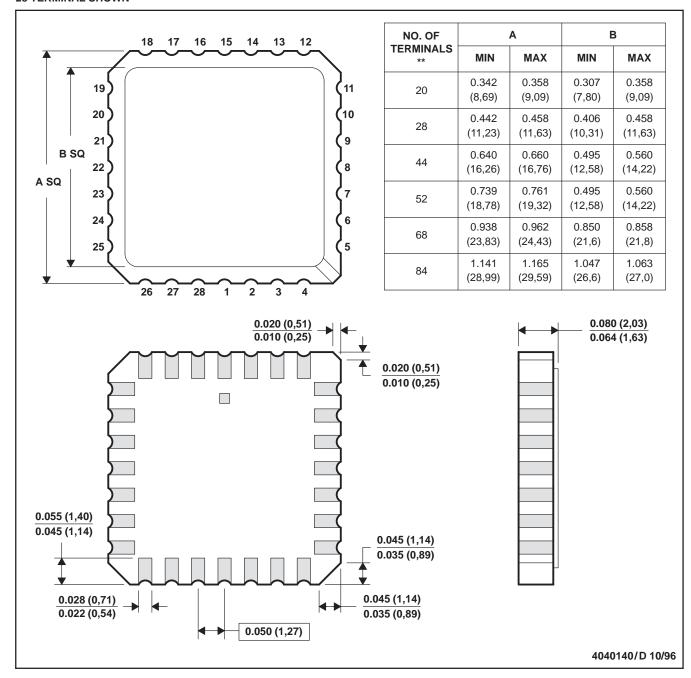
NOTE 2: Load circuits and voltage waveforms are shown in Section 1.


[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.


NOTES: A. All linear dimensions are in inches (millimeters).

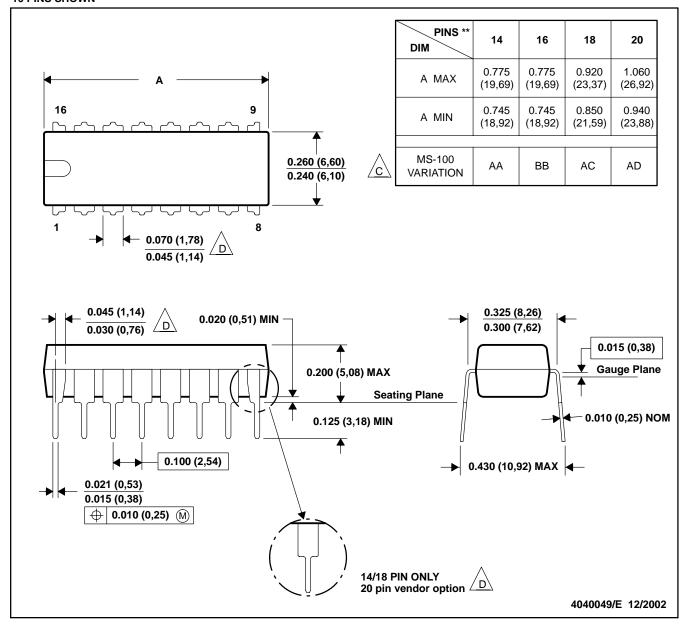
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

16 PINS SHOWN

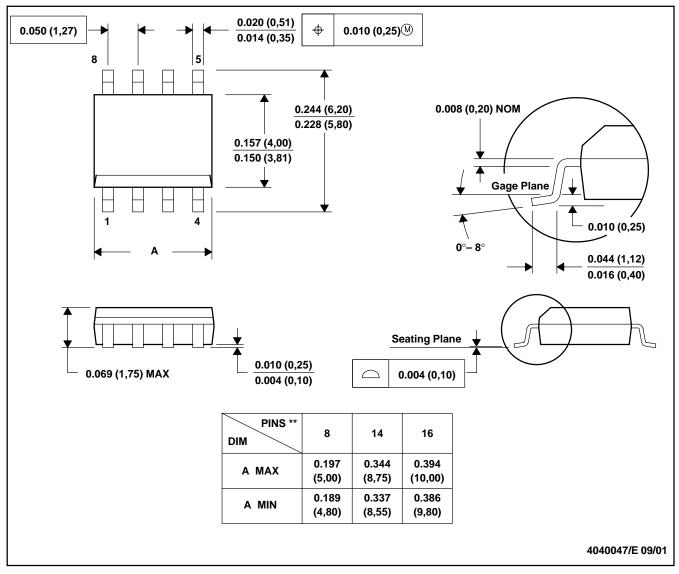
PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.



1

D (R-PDSO-G**)

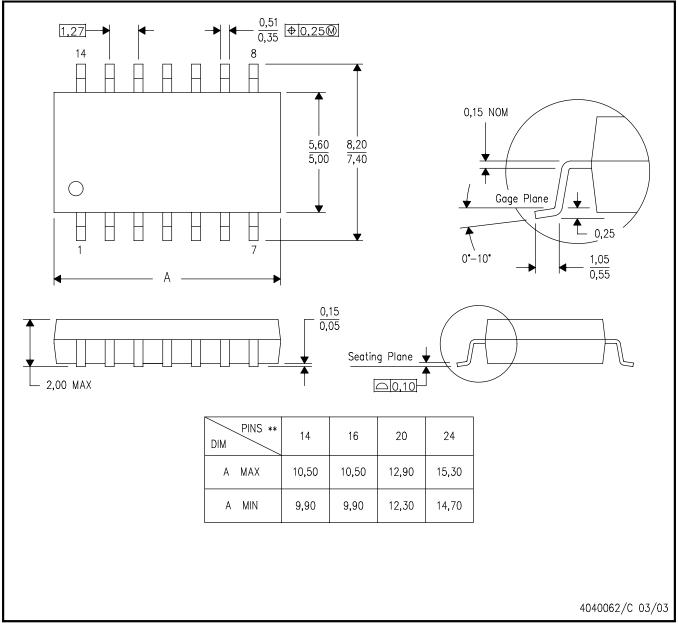
PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-012

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated