Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

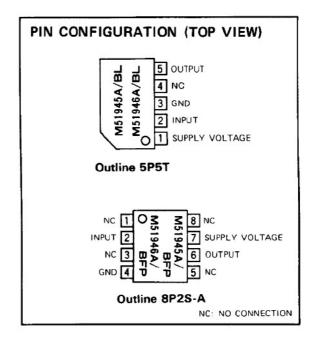
Renesas Technology Corp. Customer Support Dept. April 1, 2003

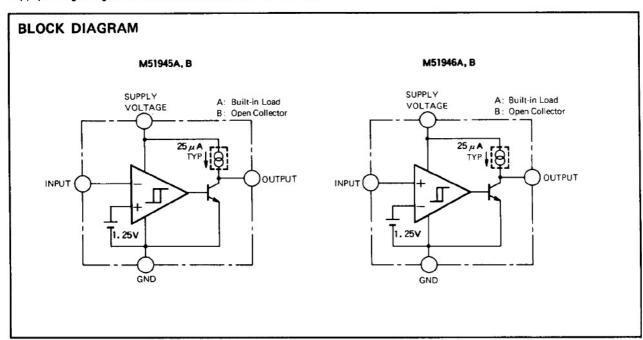
VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

DESCRIPTION

M51945A,B/M51946A,B are semiconductor integrated circuits designed for input voltage detection and for resetting of all types of logic circuits such as CPUs.

Possible applications are extensive, including circuits for battery checking, level detecting and waveform shaping.

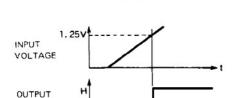

FEATURES

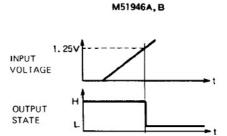

- · Few external parts
- Wide supply voltage range 2 ~ 17V
- Sudden change in power supply has minimal effect on the ICs
- Wide operation range of detecting input pin Narrower ranges of $-0.3V \sim V_{CC}$ or $-0.3V \sim 7V$ (Input voltage detecting type)
- Suitable for high supply voltage circuit with simple circuit structure (M51945B, M51946B)
- Permits easy configuration of a circuit for protection against reverse connection or surges. (M51945B, M51946B)
- Wide application range
- SIL package of the same height as DIP (5-pin SIP)

APPLICATION

Reset circuit of Pch, Nch, CMOS, microcomputer, CPU and microcomputer, Reset of logic circuit, Battery check circuit, Switching circuit back-up voltage, Level detecting circuit, Waveform shaping circuit, Delay waveform generating circuit, DC-DC converter, Over voltage protection circuit.

RECOMMENDED OPERATING CONDITION




VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

FUNCTION DIAGRAM

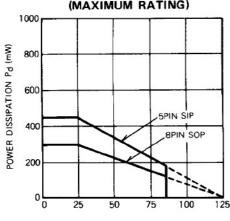
STATE

M51945A, B

ABSOLUTE MAXIMUM RATINGS (Ta=25℃, unless otherwise noted)

Symbol	Parameter	Conditions		Ratings	Unit	
Vcc	Supply voltage			18	V	
Isink	Output Sink Current			6	mA	
Vo	Output voltage	A Type (Output wit	h constant current load	Vcc		
		B Type (Open colle	ector output)	18	7 v	
Pd	Power dissipation	5P SIP		450	mw	
		8P SOP		300	T mw	
K _θ	Thermal Derating	T > 05 m	5P SIP	4.5	mW/10	
		Ta ≧ 25 ℃	8P SOP	3		
Topr	Operating temperature			-30-+85	σ	
Tstg	Storage temperature			-40~+125	TC	

ELECTRICAL CHARACTERISTICS ($Ta = 25 \, \text{C}$, unless otherwise noted)

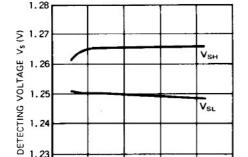

"L" reset type	"H" reset type		
M51945A	M51946A		
M51945B	M51946B		

		Test condition		Limits			11-3
Symbol	Parameter			Min	Тур	Max	Unit
٧s	Detecting voltage			1.20	1.25	1.30	V
∆Vs	Hysterisis voltage	V _{CC} = 5V		9	15	23	mV
Vs/4T	Detecting Voltage Temperature Coefficient			_	0.01	_	%/°C
Vcc	Supply Voltage Range	Ta = -30 ~ +85℃		2	- 1	17	V
VIN	Input voltage Range	Ta = -30 ~ +85°C, V _{CC} ≤ 7V		-0.3	_	Vcc	٧
		Ta = -30 ~ +85℃. V _{CC} > 7V		-0.3	-	7	
IIN	Input Current	V _{IN} = 1.25 V		-	100	500	nA
lcc	Circuit Current	Type A V _{CC} = 5V			310	470	μΑ
		Type B V _{CC} = 5V		_	280	420	
Vsat	Output Saturation Voltage	L reset type V _{CC} = 5V, V _{IN} < 1.2V, Isink = 4mA		_	0.2	0.4	٧
		H reset type Vcc = 5V, V _{IN} > 1.35V, Isink = 4mA					
Vopl	Threshold Operating Voltage	L reset type minimum supply voltage for IC operation	R _L =2.2kΩ, Vsat≤0.4V	_	0.67	0.8	Tv
			R _L = 100k Ω, Vsat ≤0.4V	_	0.55	0.7	· ·
Юн	Output Leakage Current	Туре В		_		30	nA
		Type B, Ta = -30 ~ +85℃		_	-	1	μΑ
loc	Output Load Current	Type A V _{CC} = 5V, V ₀ = 1/2 V _{CC}		-40	- 25	- 17	μА
Voн	Output High Voltage	Туре А		V _{CC} - 0.2	VCC - 0.06	-	٧
tpHL	Response time when V _{CC} changes H → L		c changes H → L	_	4	_	μs
t _{PLH}	Propagation Deray Time	Response time when V _{CC} changes L → H		_	2	_	μs

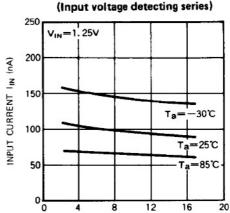
VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

TYPICAL CHARACTERISTICS

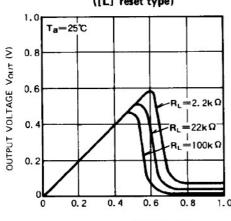
TYPICAL CHARACTERISTICS THERMAL DERATING (MAXIMUM RATING) 1000


AMBIENT TEMPERATURE Ta (°C)

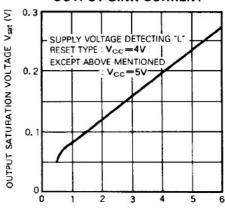
DETECTING VOLTAGE VS. AMBIENT TEMPERATURE (Input voltage detecting series)


AMBIENT TEMPERATURE Ta (°C)

DETECTION VOLTAGE VS. SUPPLY VOLTAGE (Input voltage detection series)

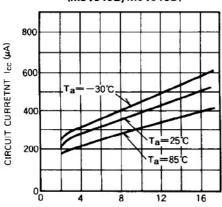

SUPPLY VOLTAGE Vcc (V)

INPUT CURRENT VS. **SUPPLY VOLTAGE**

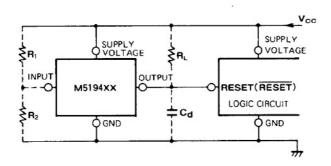

SUPPLY VOLTAGE Vcc (V)

THRESHOLD OPERATING VOLTAGE ([L] reset type)

SUPPLY VOLTAGE Vcc (V)


OUTPUT SATURATION VOLTAGE VS. OUTPUT SINK CURRENT

OUTPUT SINK CURRENT Isink (mA)


VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

CIRCUIT CURRENT VS. SUPPLY VOLTAGE (M51945B, M51946B)

SUPPLY VOLTAGE VCC (V)

EXAMPLE OF APPLICATION CIRCUIT Reset Circuit of M5194XX Series

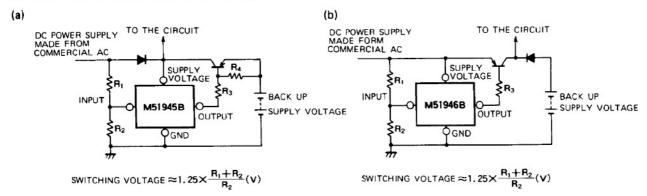
Note 1. When the detecting supply voltage is 4.25V, M51943 and M51944 are used and R_1 and R_2 are not necessary.

When the voltage is anything except 4.25V, M51945 and M51946 are used. In this case, the detecting supply voltage is 1.25 x $\frac{(R_1 + R_2)}{R_2}$ (V) approximately. The detecting supply voltage can be set between 2V and 15V.

Note 2. If the M5194XX and the logic circuit share a common power source, type A (built-in load type) can be used whether a pull-up resister is included in the logic circuit or not.

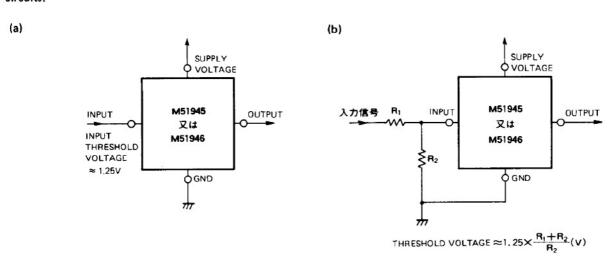
Note 3. The logic circuit preferably should not have a pull-down resistor, but if one is present, add load resistor R_L to overcome the pull-down resistor.

Note 4. It is better to use the M5195XX series to cause a delay, but if the delay is caused by the M5194XX series, the delay capacitor Cd is applied between the output and GND.

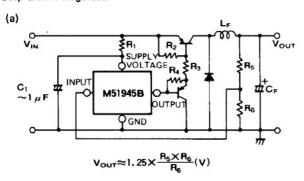

Note 5. When the reset terminal in the logic circuit is of the low reset type, M51943 and M51945 are used and when the terminal is of the high reset type, M51944 and M51946 are used.

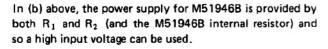
Note 6. When a delay is necessary at both rise time and fall time, M51945 and M51946 are used and the series resistors (R_{11} , R_{12}) are applied between the output and GND or instead of R_1 , and these connect the capacitor between the connection point and GND. The connection point of the capacitor is fixed according to the ratio of delay at fall/rise time.

Note 7. When a negative supply voltage is used, the supply voltage side of M5194XX and the GND side are connected to GND and the negative supply voltage respectively.


VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

Switching Circuit to Back-up Power Supply

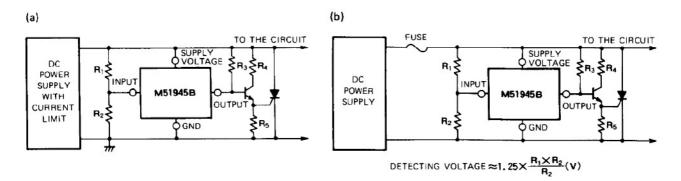

Level Detecting Circuit, Waveform Shaping Circuit

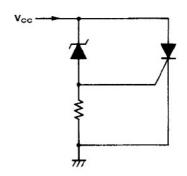

Because the input threshold of M51945 and M51946 is little dependent on supply voltage and temperature and has hysterisis of 15mV approximately, these ICs can be used in level detecting circuits and waveform shaping circuits.



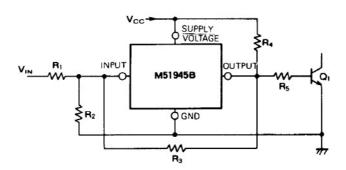
DC-DC Converter

Step Down Regulator





VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES


Over Voltage "Crowbar" Circuit

The over voltage "crowbar" circuit, using a zener diode as shown below, offers lower drive capacity and decreases the capacity for di/dt of SCR. (Enough gate current is needed to turn on SCR.)

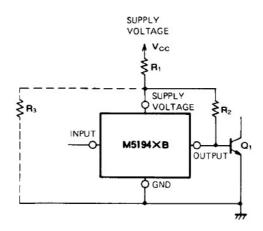
Expansion of Hysteresis Using M51945B

$$= \frac{(R_1 + R_2)}{R_2 \cdot R_3} [1.265(V) \cdot (R_1 / / R_2 + R_3) - V_{sat} \cdot (R_1 / / R_2)]$$

Threshold voltage

$$=\frac{(R_1+R_2)}{R_2\cdot(R_3+R_4/\!/R_5)}\cdot[1.25(V)\cdot(R_3+R_1/\!/R_2+R_4/\!/R_5)-\frac{R_1/\!/R_2}{R_4+R_5}\cdot(R_4\cdot V_{BE1}+R_5\cdot V_{CC})]$$

Where V_{sat} : M51945B output saturation voltage V_{BEI} : Base-emitter voltage \approx 0.7V (Transister Q_1)


$$R_1/\!/R_2 \equiv \frac{R_1 \cdot R_2}{R_1 + R_2}, R_4/\!/R_5 \equiv \frac{R_4 \cdot R_5}{R_4 + R_5}$$

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

Application to High Supply Voltage Circuit

The absolute maximum rating of supply voltage for M51945B, M51946B is 18V. By diving supply voltage using

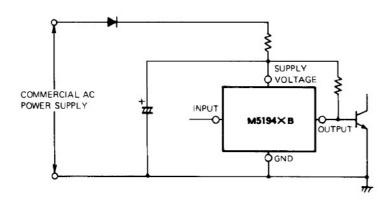
resistors, these ICs can be used in high supply voltage circuit.

In the above figure, the voltage applied to M5194XB is as follows. The voltage range is set between 2V and 17V.

$$\text{at Q}_1 \text{ ON: } \frac{\mathsf{R}_2 \cdot [\frac{\mathsf{R}_3}{(\mathsf{R}_1 + \mathsf{R}_3)} \cdot \mathsf{V}_{\text{CC}} - (\mathsf{R}_1 /\!/ \mathsf{R}_3) \cdot \mathsf{I}_{\text{CC}}] + (\mathsf{R}_1 /\!/ \mathsf{R}_3) \cdot \mathsf{V}_{\text{BEI}}}{\mathsf{R}_2 + (\mathsf{R}_1 /\!/ \mathsf{R}_3)}$$

at Q₁ OFF:
$$\frac{R_2 \cdot \left[\frac{R_3}{(R_1 + R_3)} \cdot V_{CC} - (R_1 /\!/ R_3) \cdot I_{CC} \right]}{R_2 + (R_1 /\!/ R_3)}$$

$$R_1/\!/R_3 \equiv \frac{R_1 \cdot R_3}{R_1 + R_3}$$


V_{CC}: Circuit current of M5194XB

 V_{BEI} : Base-emitter voltage $\approx 0.7V$ (Transistor Q_1)

This circuit provides reverse protection (in case of reverse connection of power supply) and surge protection.

Using this application circuit, the directly rectified or

smoothing commercial voltage can be applied as shown below.

