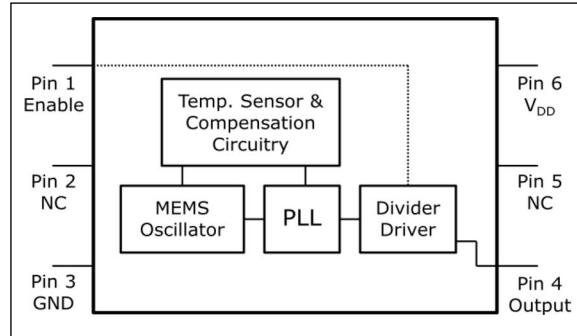


Low-Jitter Precision CMOS Oscillator

Features

- Low RMS Phase Jitter: <1 ps (typ.)
- High Stability: ± 10 ppm, ± 20 ppm, ± 25 ppm, ± 50 ppm
- Wide Temperature Range:
 - Automotive: -55°C to $+125^{\circ}\text{C}$
 - For AEC-Q100 qualified parts, refer to DSA11xx Family
 - Ext. Industrial: -40°C to $+105^{\circ}\text{C}$
 - Industrial: -40°C to $+85^{\circ}\text{C}$
 - Commercial: -20°C to $+70^{\circ}\text{C}$
- High Supply Noise Rejection: -50 dBc
- Wide Freq. Range: 2.3 MHz to 170 MHz
- Small Industry Standard Footprints
 - 2.5 mm x 2.0 mm, 3.2 mm x 2.5 mm, 5.0 mm x 3.2 mm, and 7.0 mm x 5.0 mm
- Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- High Reliability
 - 20x Better MTF than Quartz Oscillators
- Low Current Consumption
- Supply Range of 2.25 to 3.6V
- Standby and Output Enable Function
- Lead-Free and RoHS Compliant

Applications


- Storage Area Networks
 - SATA, SAS, Fibre Channel
- Passive Optical Networks
 - EPON, 10G-EPON, V GPON, 10G-PON
- Ethernet
 - 1G, 10GBASE-T/KR/LR/SR, and FCoE
- HD/SD/SDI Video and Surveillance
- PCI Express
- Display Port

General Description

The DSC1101 and DSC1121 series of high performance oscillators utilize a proven silicon MEMS technology to provide excellent jitter and stability over a wide range of supply voltages and temperatures. By eliminating the need for quartz or SAW technology, MEMS oscillators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of communications, storage, and networking applications.

DSC1101 has a standby feature that allows it to completely power-down when EN pin is pulled low; whereas for DSC1121, only the outputs are disabled when EN is low. Both oscillators are available in industry standard packages, including the small 2.5 mm x 2.0 mm, and are “drop-in” replacements for standard 4-pin CMOS quartz oscillators.

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage, V_{IN}	–0.3V to V_{DD} + 0.3V
Supply Voltage	–0.3V to +4.0V
ESD Protection On All Pins	4000V HBM, 1500V CDM (max.)

† **Notice:** Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: 1000+ years of data retention on internal memory.

DC CHARACTERISTICS

Electrical Characteristics						
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Supply Voltage (Note 1)	V_{DD}	2.25	—	3.6	V	—
Supply Current	I_{DD}	—	—	0.095	mA	DSC1101, EN pin low, output is disabled
		—	20	22		DSC1121, EN pin low, output is disabled
		—	31	35		Output enabled, $C_L = 15 \text{ pF}$, $f_0 = 100 \text{ MHz}$
Frequency Stability (Including frequency variations due to initial tolerance, temp. and power supply voltage.)	Δf	—	—	± 10	ppm	Ext Comm. & Ind. only
		—	—	± 20		All temp ranges
		—	—	± 25		All temp ranges
		—	—	± 50		All temp ranges
Aging	Δf	—	—	± 5	ppm	1 year @ 25°C
Startup Time (Note 2)	t_{SU}	—	—	5	ms	$T = 25^\circ\text{C}$
Input Logic Levels Input Logic High Input Logic Low	V_{IH}	$0.75 \times V_{DD}$	—	—	V	—
	V_{IL}	—	—	$0.25 \times V_{DD}$		
Output Disable Time (Note 3)	t_{DS}	—	—	5	ns	—
Output Enable Time	t_{EN}	—	—	5	ms	DSC1101
		—	—	20	ns	DSC1121
Enable Pull-up Resistor (Note 4)	—	—	40	—	kΩ	Pull-up Resistor Exist
CMOS Output						
Output Logic Levels Output Logic High Output Logic Low	V_{OH}	$0.9 \times V_{DD}$	—	—	V	$I = \pm 6 \text{ mA}$
	V_{OL}	—	—	$0.1 \times V_{DD}$		

Note 1: Pin 6 V_{DD} should be filtered with 0.1 μF capacitor.

2: t_{SU} is time to 100 ppm of output frequency after V_{DD} is applied and outputs are enabled.

3: Output Waveform and Test Circuit figures define the parameters.

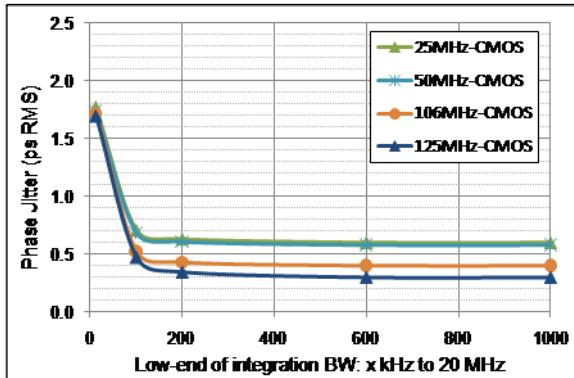
4: Output is enabled if pad is floated or not connected.

DC CHARACTERISTICS (CONTINUED)

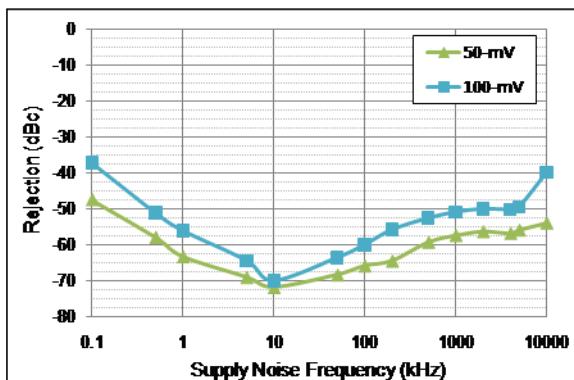
Electrical Characteristics						
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Output Transition Time Rise Time Fall Time	t_R	—	1.1	2	ns	20% to 80% $C_L = 15 \mu F$
	t_F	—	1.3	2		
		2.3	—	170		
Frequency	f_0	3.3	—	170	MHz	$C_L = 15 \mu F, -20^\circ C \text{ to } +70^\circ C$ $\text{and } -40^\circ C \text{ to } +85^\circ C$ $C_L = 15 \mu F, -40^\circ C \text{ to } +105^\circ C$ $\text{and } -55^\circ C \text{ to } +125^\circ C$
		—	0.3	—		
Output Duty Cycle	SYM	45	—	55	%	—
Period Jitter	J_{PER}	—	3	—	ps_{RMS}	$f_{\text{OUT}} = 125 \text{ MHz}$
Integrated Phase Noise	J_{PH}	—	0.38	—	ps_{RMS}	200 kHz to 20 MHz @ 125 MHz
		—	1.7	2		100 kHz to 20 MHz @ 125 MHz
		—	—	—		12 kHz to 20 MHz @ 125 MHz

Note 1: Pin 6 V_{DD} should be filtered with 0.1 μF capacitor.

- 2:** t_{SU} is time to 100 ppm of output frequency after V_{DD} is applied and outputs are enabled.
- 3:** Output Waveform and Test Circuit figures define the parameters.
- 4:** Output is enabled if pad is floated or not connected.


TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Temperature Ranges (Note 1)						
Operating Temperature Range	T_A	-20	—	+70	°C	Ordering Option E
	T_A	-40	—	+85	°C	Ordering Option I
	T_A	-40	—	+105	°C	Ordering Option L
	T_A	-55	—	+125	°C	Ordering Option M
Junction Operating Temperature	T_J	—	—	+150	°C	—
Storage Temperature Range	T_S	-55	—	+150	°C	—
Soldering Temperature Range	—	—	—	+260	°C	40 sec. max


Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 NOMINAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

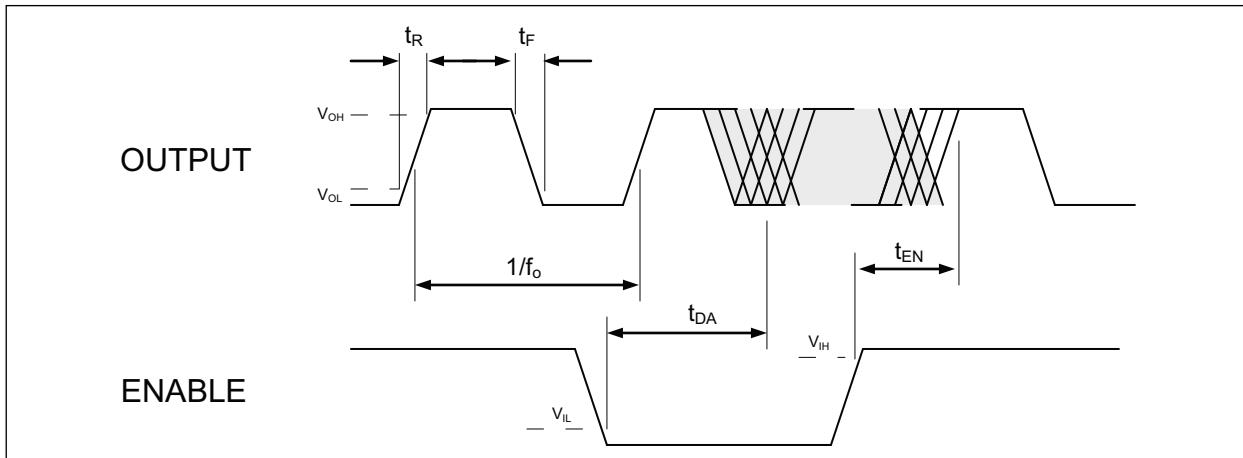
FIGURE 2-1: Phase Jitter (Integrated Phase Noise).

FIGURE 2-2: Power Supply Rejection Ratio.

DSC1101/21

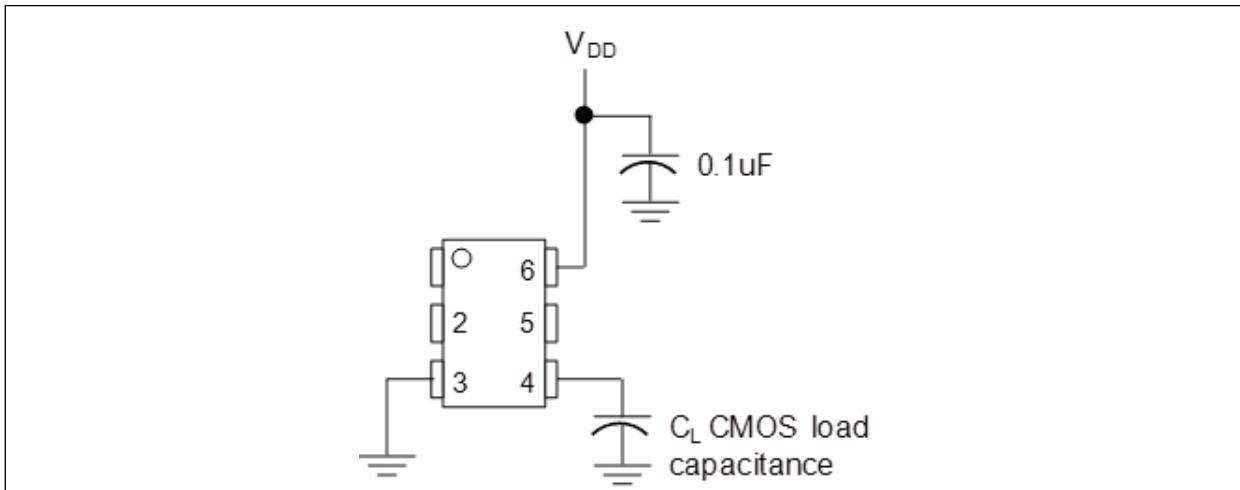
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in [Table 3-1](#). Pin order and descriptions apply across all package types.

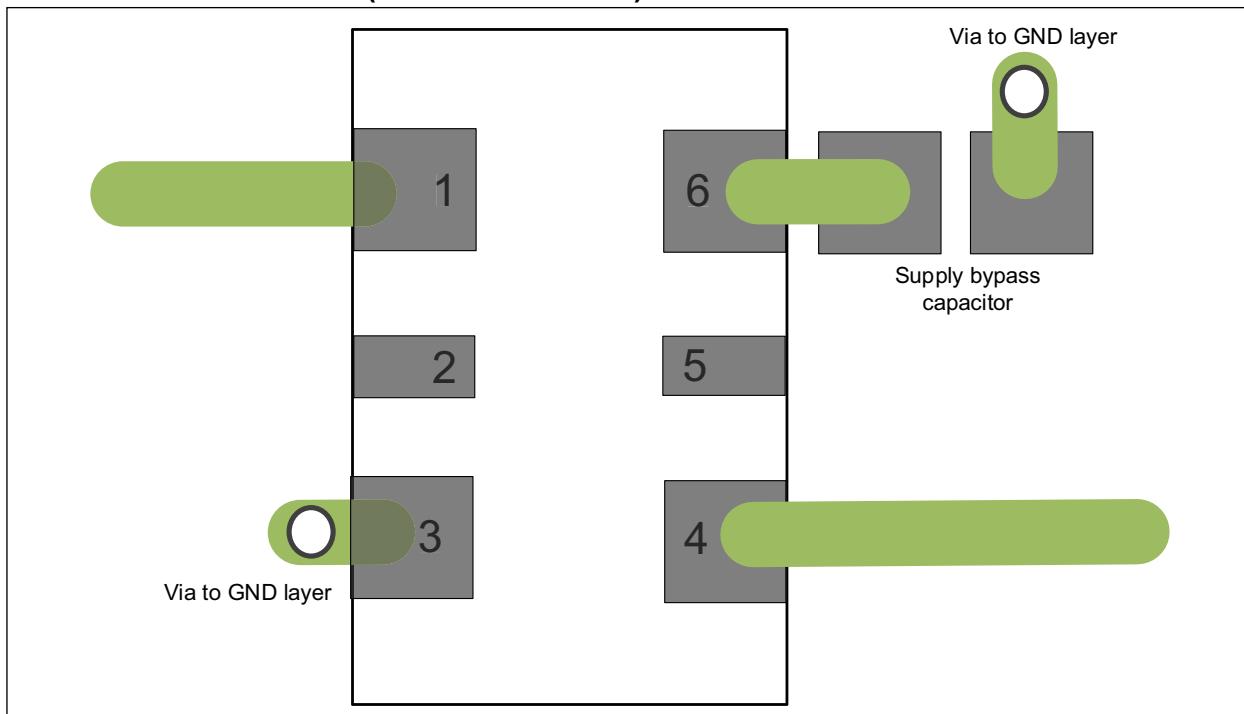

TABLE 3-1: PIN FUNCTION TABLE

Pin Number 7x5 w/ Pad	Pin Number 7x5 w/o Pad	Pin Number 5x3.2	Pin Number 3.2x2.5	Pin Number 2x2.5	Pin Name	Description
1	1	1	1	1	EN	Enable.
2	2	2	2	2	NC	Do not connect.
3	3	3	3	3	GND	Ground.
4	4	4	4	4	OUT	Output.
5	5	5	5	5	NC	Do not connect.
6	6	6	6	6	V _{DD}	Supply voltage.
PAD	—	—	—	—	PAD	Tie to ground.

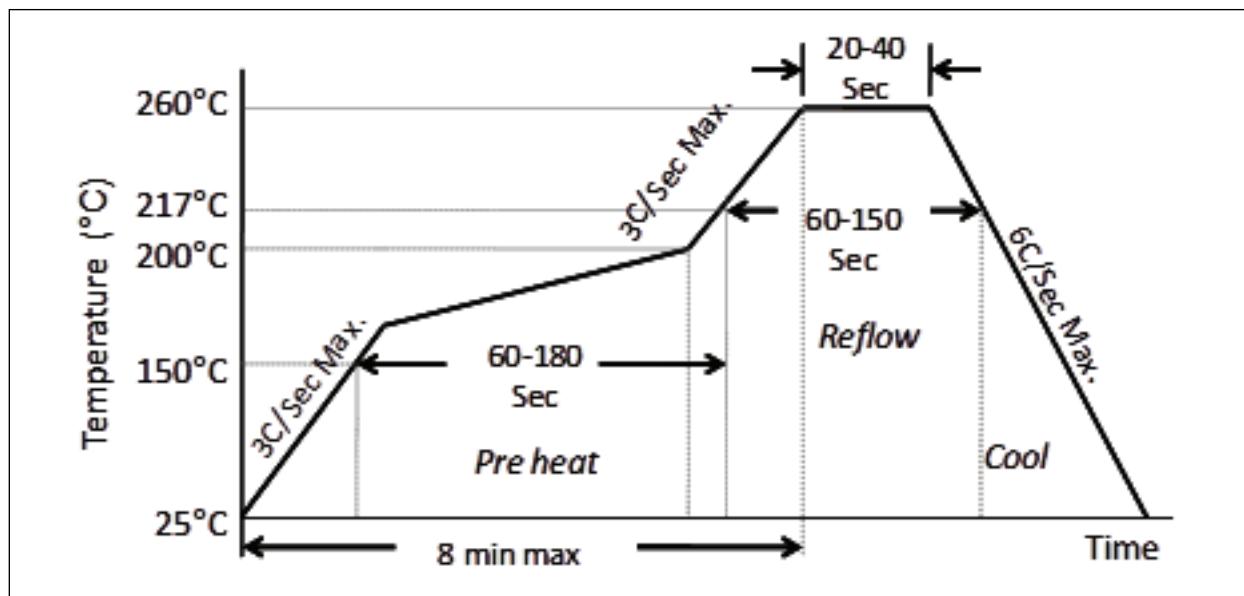
TABLE 3-2: OUTPUT ENABLE MODES


EN Pin	DSC1101	DSC1121
High	Output Active	Output Active
NC	Output Active	Output Active
Low	Standby	Output Disabled

4.0 OUTPUT WAVEFORM


FIGURE 4-1: DSC1101/21 Output Waveform.

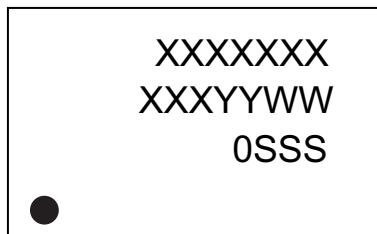
5.0 TYPICAL TERMINATION SCHEME


FIGURE 5-1: Typical Termination Scheme for DSC1101/21.

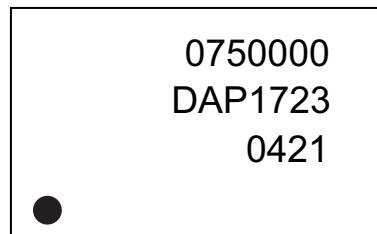
6.0 BOARD LAYOUT (RECOMMENDED)

FIGURE 6-1: DSC1101/21 Recommended Board Layout.

7.0 SOLDER REFLOW PROFILE

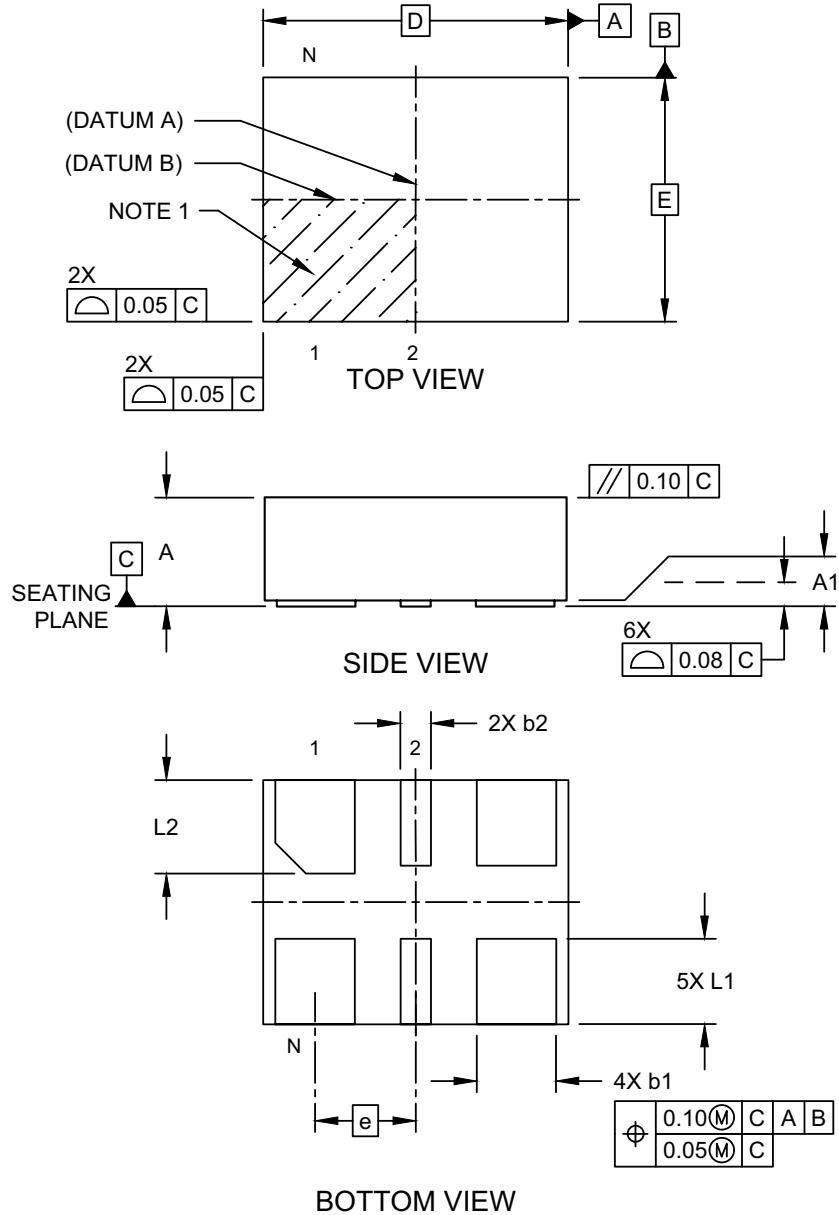

MSL 1 @ 260°C refer to JSTD-020C

Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec. Max.
Preheat Time 150°C to 200°C	60-180 Sec.
Time Maintained Above 217°C	60-150 Sec.
Peak Temperature	255-260°C
Time within 5°C of Actual Peak	20-40 Sec.
Ramp-Down Rate	6°C/Sec. Max.
Time 25°C to Peak Temperature	8 minutes Max.


8.0 PACKAGING INFORMATION

8.1 Package Marking Information

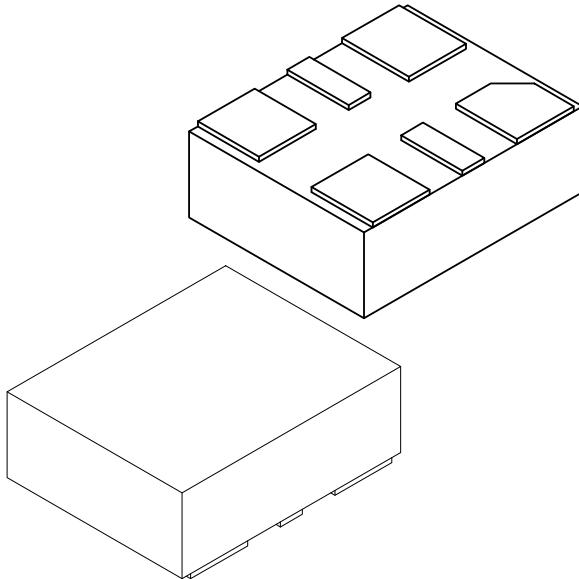
6-Lead VDFN*


Example

Legend:	XX...X Product code, customer-specific information, or frequency in MHz without printed decimal point
Y	Year code (last digit of calendar year)
YY	Year code (last 2 digits of calendar year)
WW	Week code (week of January 1 is week '01')
SSS	Alphanumeric traceability code
(e3)	Pb-free JEDEC® designator for Matte Tin (Sn)
*	This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
•, ▲, ▼	Pin one index is identified by a dot, delta up, or delta down (triangle)
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo. Underbar (_) and/or Overbar (˜) symbol may not be to scale.

6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>



Microchip Technology Drawing C04-1005-J7A Rev E Sheet 1 of 2

© 2024 Microchip Technology Inc.

6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

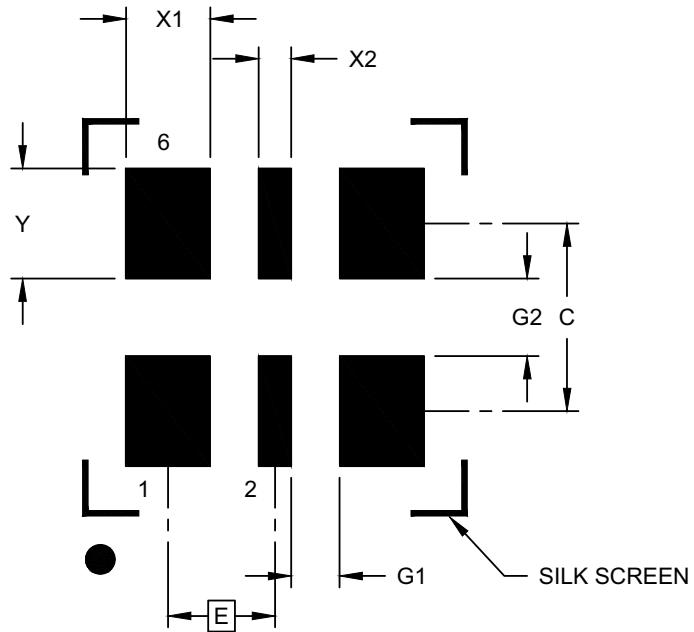
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N	6		
Pitch	e	0.825	BSC	
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Overall Length	D	2.50	BSC	
Overall Width	E	2.00	BSC	
Terminal Width	b1	0.60	0.65	0.70
Terminal Width	b2	0.20	0.25	0.30
Terminal Length	L1	0.60	0.70	0.80
Terminal Length	L2	0.665	0.765	0.865

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1005-J7A Rev E Sheet 2 of 2

© 2024 Microchip Technology Inc.

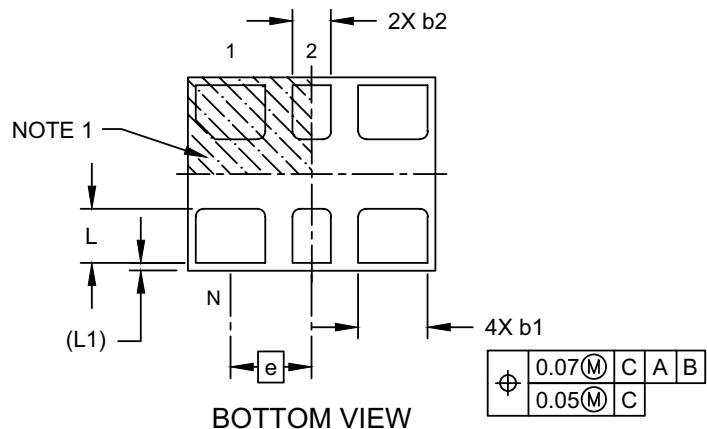
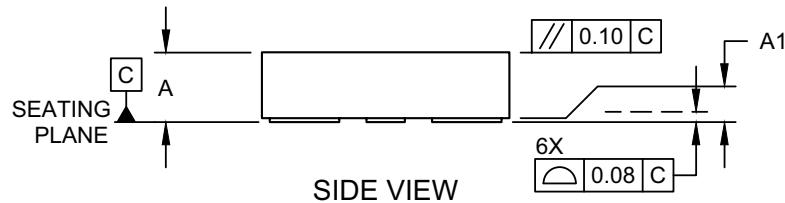
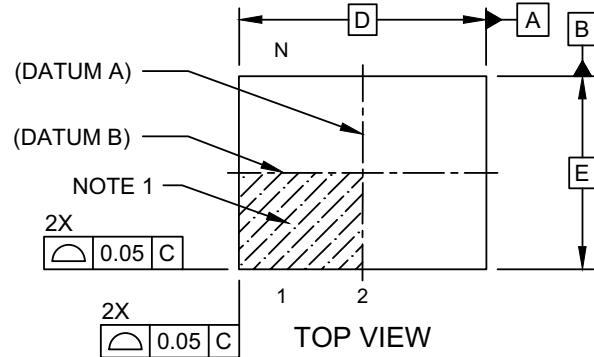
6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.825 BSC	
Contact Pad Width (X4)	X1			0.65
Contact Pad Width (X2)	X2			0.25
Contact Pad Length (X6)	Y			0.85
Contact Pad Spacing	C		1.45	
Space Between Contacts (X4)	G1	0.38		
Space Between Contacts (X3)	G2	0.60		

Notes:

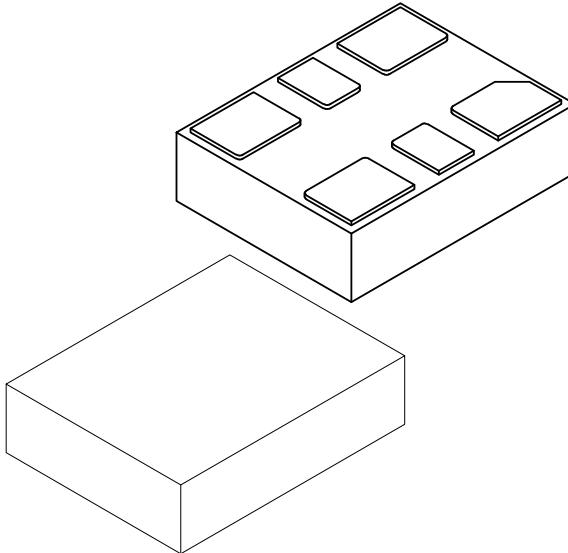



1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3005-J7A Rev E

© 2024 Microchip Technology Inc.

6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>



Microchip Technology Drawing C04-1007-H5A Rev C Sheet 1 of 2

© 2024 Microchip Technology Inc.

6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

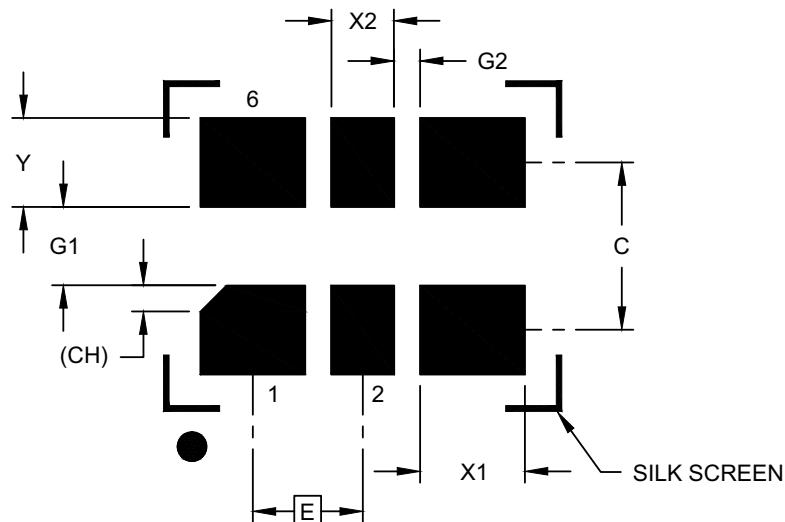
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension Limits	Units	MILLIMETERS		
		MIN	NOM	MAX
Number of Terminals	N		6	
Pitch	e		1.05 BSC	
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Overall Length	D		3.20 BSC	
Overall Width	E		2.50 BSC	
Terminal Width	b1	0.85	0.90	0.95
Terminal Width	b2	0.45	0.50	0.55
Terminal Length	L	0.65	0.70	0.75
Terminal Pullback	L1		0.10 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1007-H5A Rev C Sheet 2 of 2

© 2024 Microchip Technology Inc.

6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

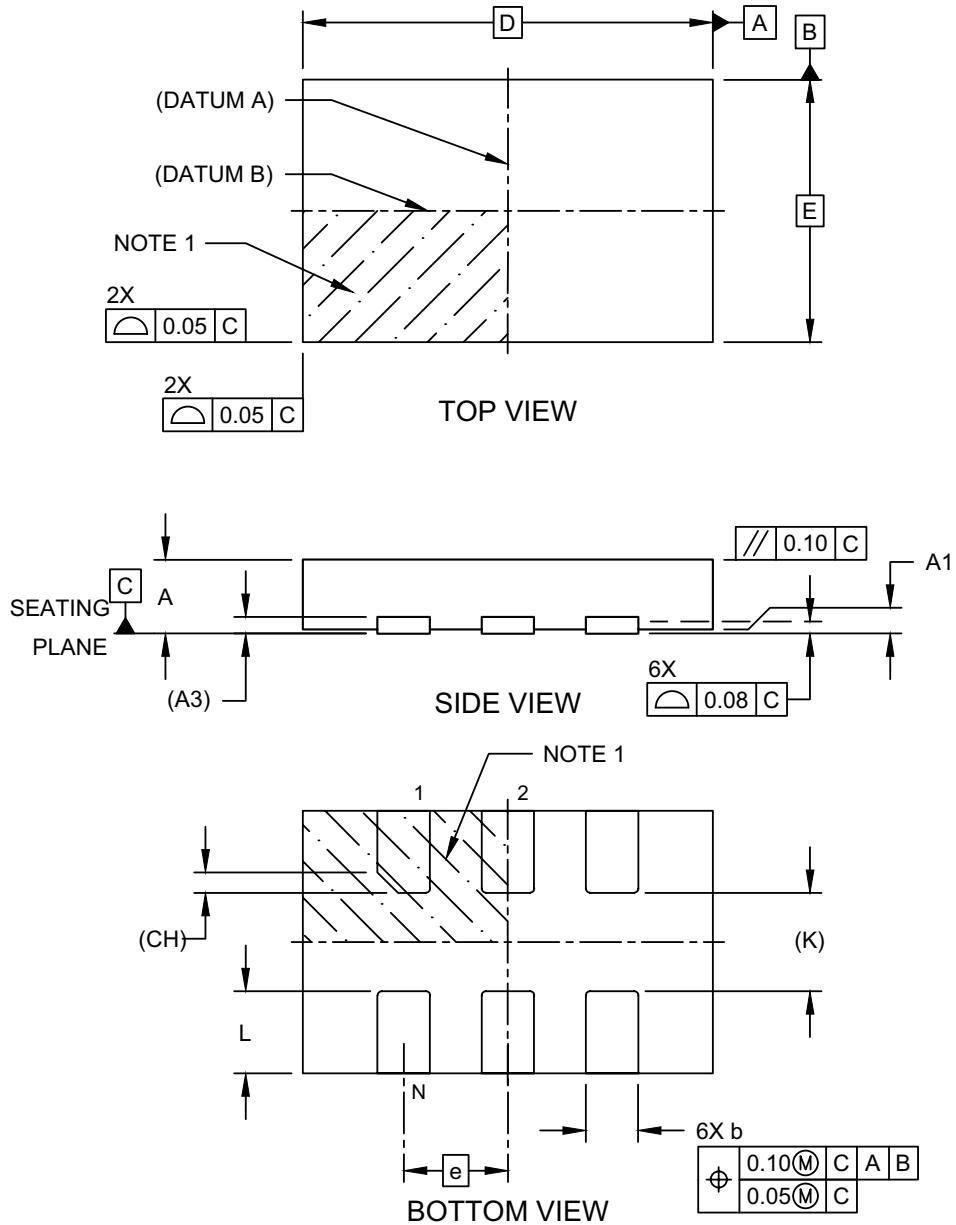
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch		1.05 BSC		
Contact Pad Spacing	C		1.60	
Contact Pad Width (X4)	X1			1.00
Contact Pad Width (X2)	X2			0.60
Contact Pad Length (X6)	Y			0.85
Space Between Contacts (X4)	G1	0.75		
Space Between Contacts (X3)	G2	0.25		
Pin 1 Index Chamfer (X4)	CH		0.25	

Notes:

- Dimensioning and tolerancing per ASME Y14.5M

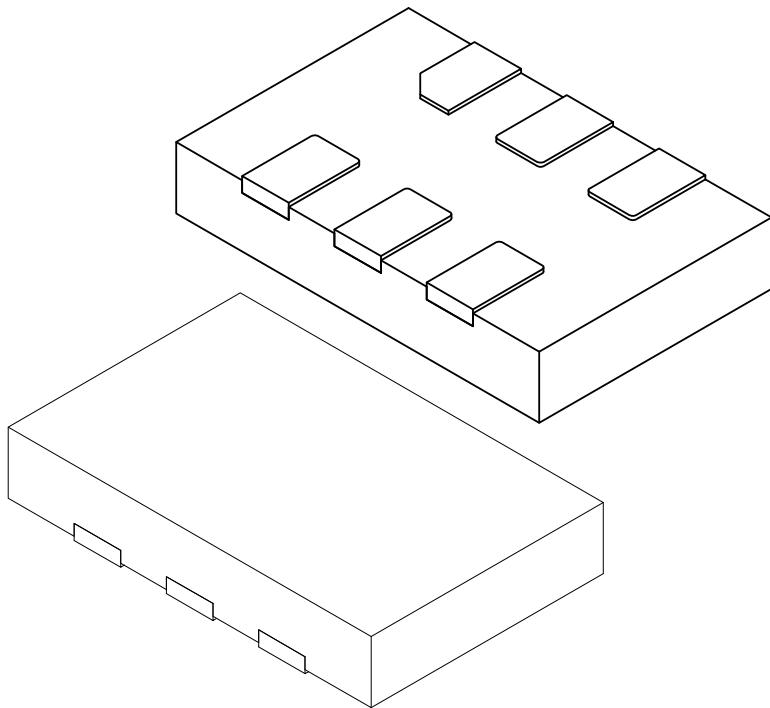

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3007-H5A Rev C

© 2024 Microchip Technology Inc.

6-Lead Very Thin Plastic Dual Flat, No Lead Package (H7A) - 3.2x5.0 x0.9 Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>



Microchip Technology Drawing C04-1009-H7A Rev B Sheet 1 of 2

© 2024 Microchip Technology Inc.

6-Lead Very Thin Plastic Dual Flat, No Lead Package (H7A) - 3.2x5.0 x0.9 Body [VDFN]

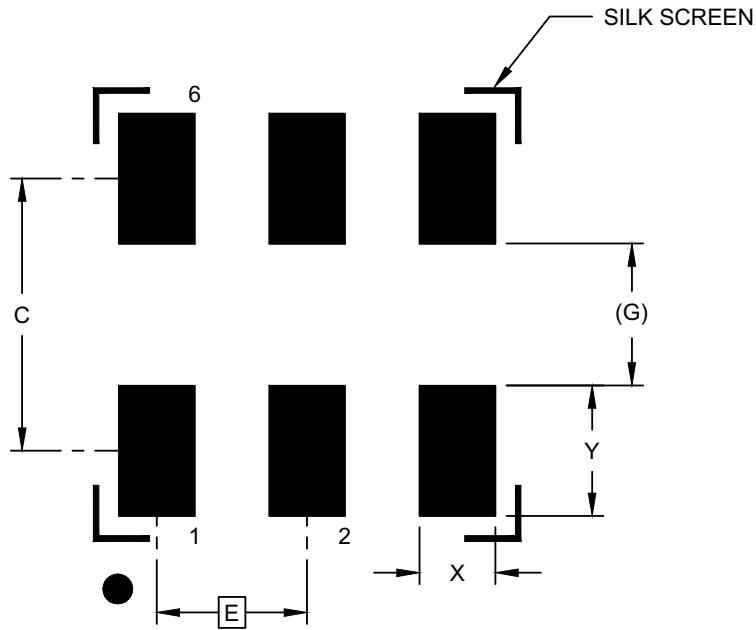
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Terminals	N		6	
Pitch	e		1.27 BSC	
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.203 REF	
Overall Length	D		5.00 BSC	
Overall Width	E		3.20 BSC	
Terminal Width	b	0.59	0.64	0.69
Terminal Length	L	0.90	1.00	1.10
Terminal 1 Index Chamfer	CH		0.25 REF	
Terminal-to-Terminal	K		1.20 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1009-H7A Rev B Sheet 2 of 2

© 2024 Microchip Technology Inc.

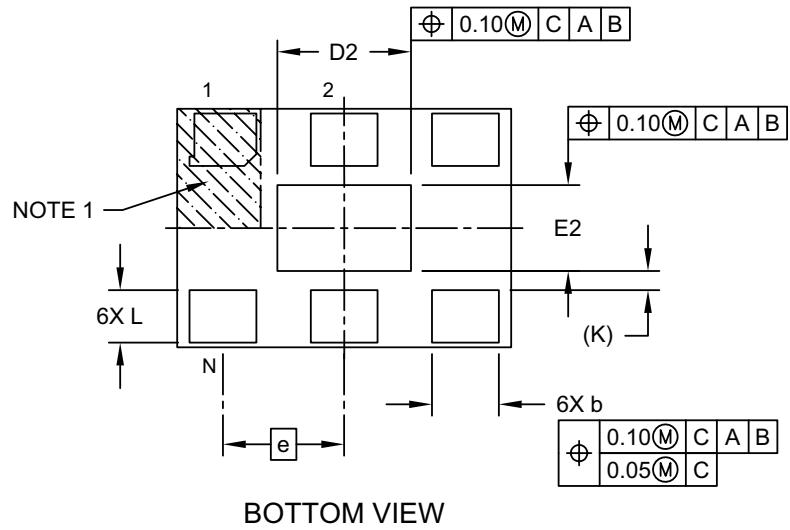
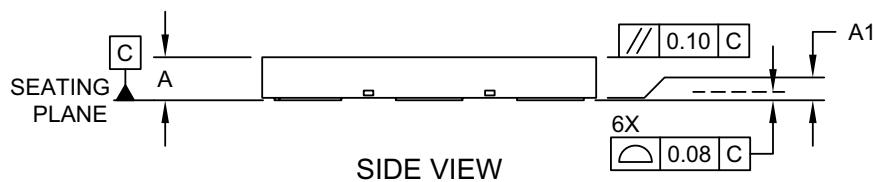
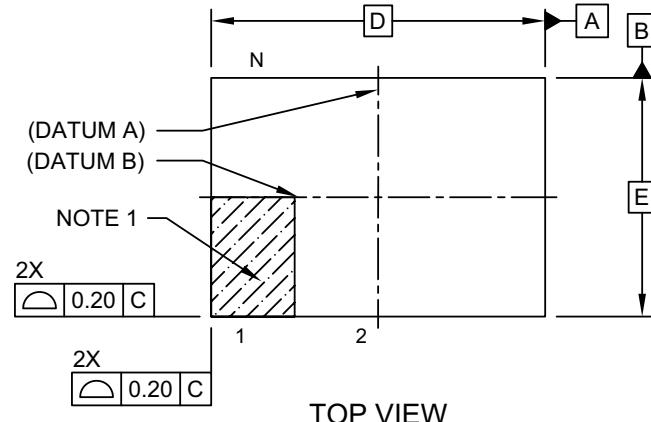
6-Lead Very Thin Plastic Dual Flat, No Lead Package (H7A) - 3.2x5.0 x0.9 Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	C		2.30	
Contact Pad Width (X6)	X			0.64
Contact Pad Length (X6)	Y			1.10
Contact Pad to Contact Pad (X4)	G		1.20 REF	

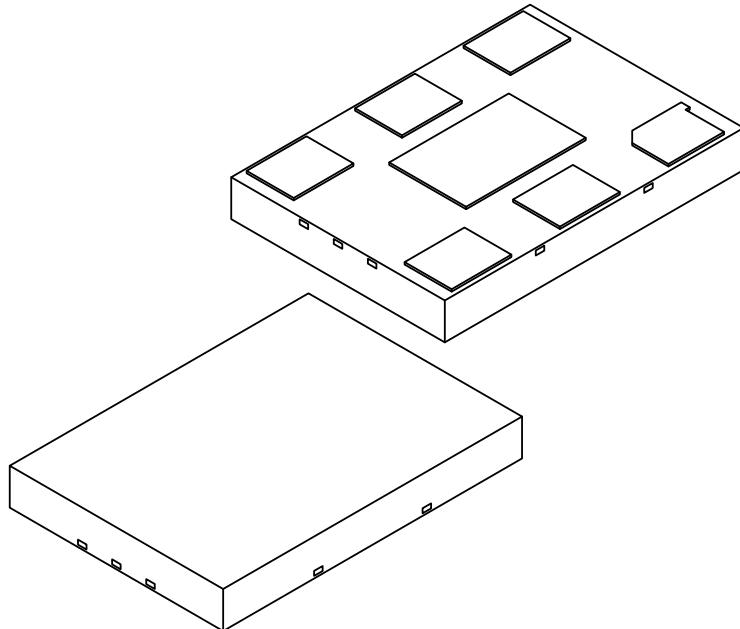
Notes:




1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3009-H7A Rev B

© 2024 Microchip Technology Inc.

**6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN]
With 2.8x1.8 mm Exposed Pad**


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

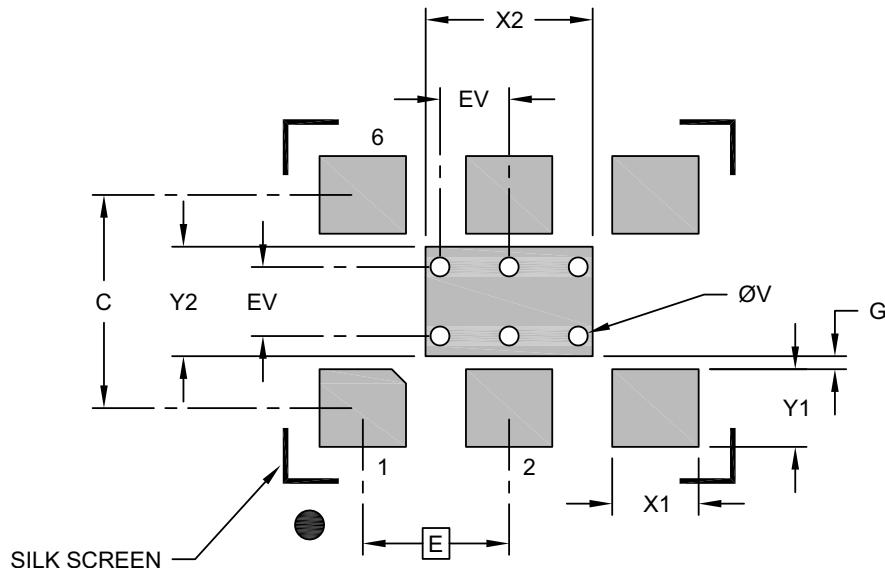
Microchip Technology Drawing C04-1010A Sheet 1 of 2

6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN] With 2.8x1.8 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Terminals		N		
Pitch		e		
Overall Height		A		
Standoff		A1		
Overall Length		D		
Exposed Pad Length		D2		
Overall Width		E		
Exposed Pad Width		E2		
Terminal Width		b		
Terminal Length		L		
Terminal-to-Exposed-Pad		K		

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

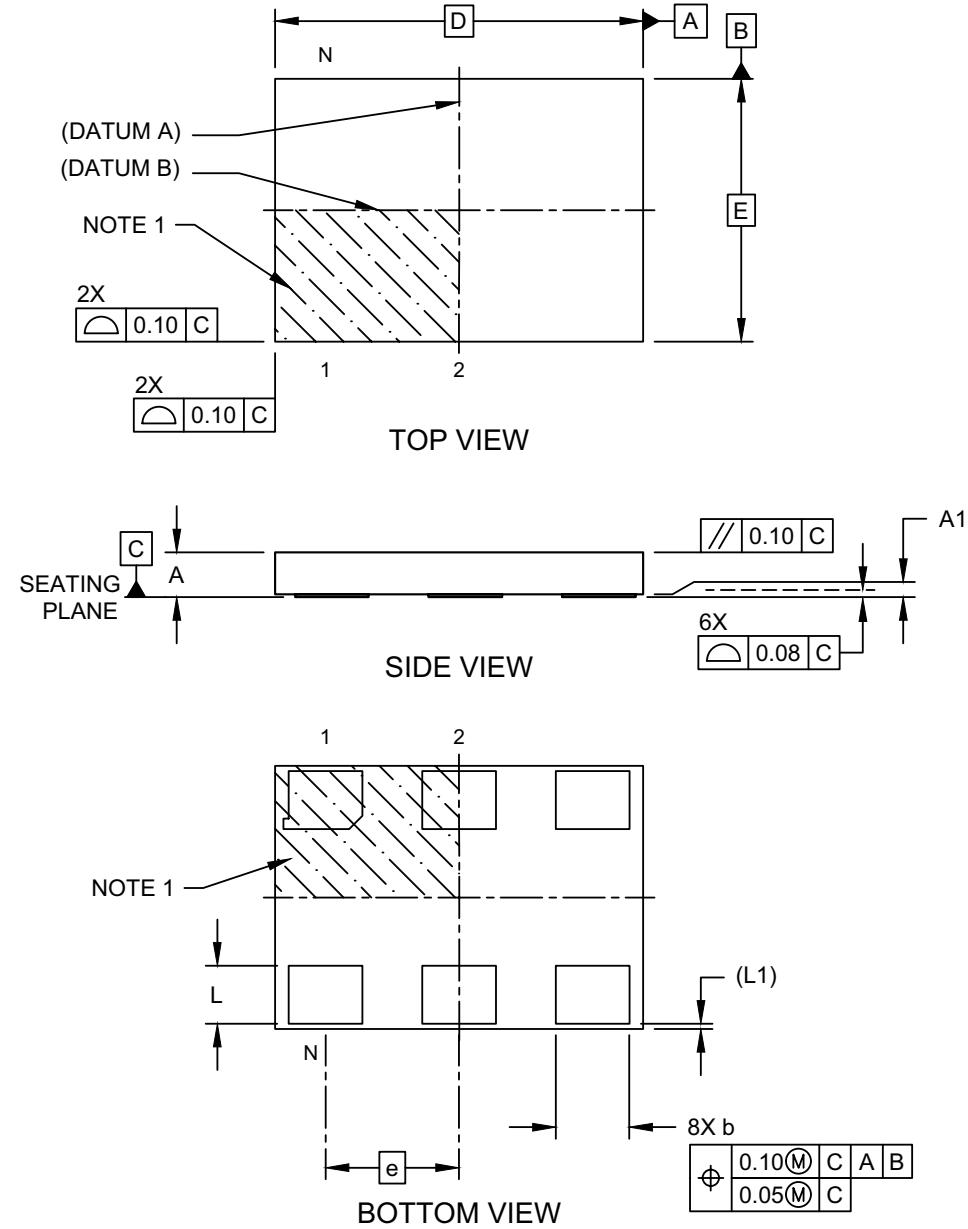
REF: Reference Dimension, usually without tolerance, for information purposes only.

**6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN]
With 2.8x1.8 mm Exposed Pad**

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	2.54 BSC		
Optional Center Pad Width	X2			2.90
Optional Center Pad Length	Y2			1.90
Contact Pad Spacing	C		3.70	
Contact Pad Width (X6)	X1			1.50
Contact Pad Length (X6)	Y1			1.35
Contact Pad to Center Pad (X2)	G	0.20		
Thermal Via Diameter (X6)	V		0.33	
Thermal Via Pitch	EV		1.20	

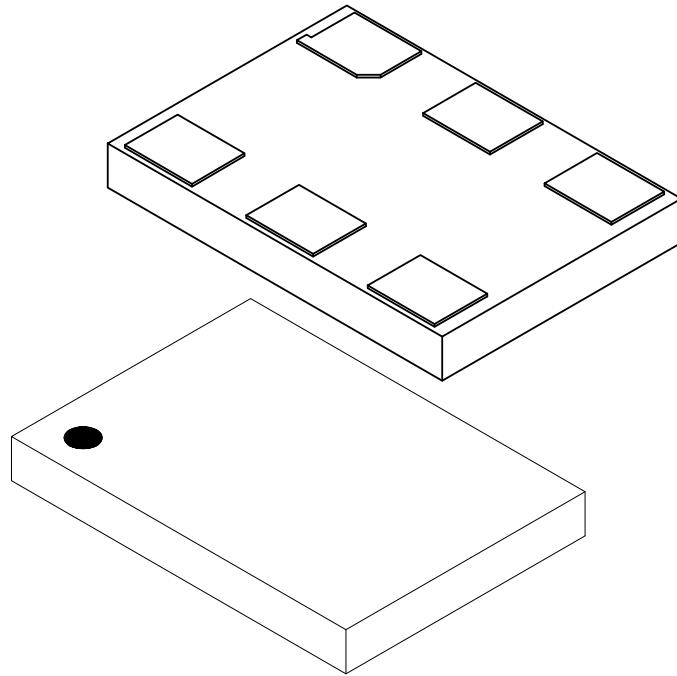

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3010A

6-Lead Very Thin Dual Flatpack, No Lead Package (HPA) - 7x5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>



Microchip Technology Drawing C04-1227-HPA Rev B Sheet 1 of 2

© 2024 Microchip Technology Inc.

6-Lead Very Thin Dual Flatpack, No Lead Package (HPA) - 7x5 mm Body [VDFN]

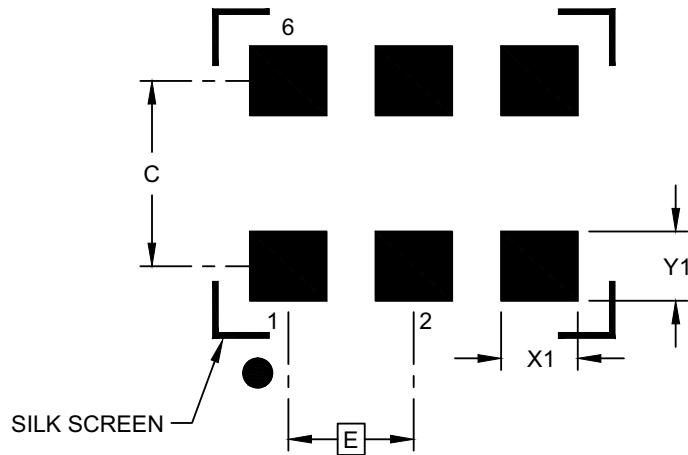
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		6	
Pitch	e		2.54 BSC	
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Overall Length	D		7.00 BSC	
Overall Width	E		5.00 BSC	
Terminal Width	b	1.30	1.40	1.50
Terminal Length	L	1.00	1.10	1.20
Pullback	L1		0.10 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1227-HPA Rev B Sheet 2 of 2

© 2024 Microchip Technology Inc.

6-Lead Very Thin Dual Flatpack, No Lead Package (HPA) - 7x5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch		E		2.54 BSC
Contact Pad Spacing	C		3.90	
Contact Pad Width (X6)	X1			1.55
Contact Pad Length (X6)	Y1			1.40

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3227-HPA Rev B

© 2024 Microchip Technology Inc.

APPENDIX A: REVISION HISTORY

Revision A (August 2017)

- Initial creation of document DSC1101/21 to Microchip data sheet template DS20005613A.
- Minor text changes throughout.

Revision B (December 2017)

- Military temperature range changed to Automotive in [Features](#) and [Product Identification System](#).
- Supply Current values updated in [DC Characteristics](#) table.
- Test Circuit section removed.
- Updated [Figure 6-1](#), Recommended Board Layout.

Revision C (December 2019)

- Corrected Input Logic Low value in [DC Characteristics](#) table.
- Updated 6-Lead VDFN 2.5 mm x 2.0 mm Package Outline and Recommended Land Pattern Package Drawing.

Revision D (September 2020)

- Updated the minimum storage temperature value in the [Temperature Specifications](#) table to correctly read -55°C .

Revision E (July 2025)

- Added DSA11xx reference to Features and the Product Identification System sections for customers seeking AEC-Q100 qualified parts.
- Updated all Package Outline Drawings with the most current versions.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	X	X	X	-XXX.XXXX	X	Examples:
Device	Package	Temperature Range	Stability	Frequency	Packaging Option	
Device: (Note 1)	DSC1101:	Low-Power Precision CMOS Oscillator with Standby				a) DSC1101AM1-010.0000T: Low-Power Precision CMOS Oscillator with Standby, 6-Ld 7.0X5.0 VDFN, Automotive Temperature Range, ± 50 ppm, 10 MHz Output Frequency, 1,000/Reel
	DSC1121:	Low-Power Precision CMOS Oscillator				b) DSC1101BL2-030.0000: Low-Power Precision CMOS Oscillator with Standby, 6-Ld 5.0X3.2 VDFN, Extended Industrial Temperature Range, ± 25 ppm, 30 MHz Output Frequency, 110/Tube
Package:	A	= 6-Lead 7.0 mm x 5.0 mm VDFN				c) DSC1101DE5-150.0000: Low-Power Precision CMOS Oscillator with Standby, 6-Ld 2.5X2.0 VDFN, Extended Commercial Temperature Range, ± 10 ppm, 150 MHz Output Frequency, 110/Tube
	B	= 6-Lead 5.0 mm x 3.2 mm VDFN				d) DSC1101AI2-075.0000T: Low-Power Precision CMOS Oscillator with Standby, 6-Ld 7.0X5.0 VDFN, Industrial Temperature Range, ± 25 ppm, 75 MHz Output Frequency, 1,000/Reel
	C	= 6-Lead 3.2 mm x 2.5 mm VDFN				
	D	= 6-Lead 2.5 mm x 2.0 mm VDFN				
	N	= 6-Lead 7.0 mm x 5.0 mm VDFN (no center pad)				
Temperature Range:	E	= -20°C to $+70^{\circ}\text{C}$ (Extended Commercial)				
	I	= -40°C to $+85^{\circ}\text{C}$ (Industrial)				
	L	= -40°C to $+105^{\circ}\text{C}$ (Extended Industrial)				
	M	= -55°C to $+125^{\circ}\text{C}$ (Automotive)				
Stability:	1	= ± 50 ppm				
	2	= ± 25 ppm				
	3	= ± 20 ppm				
	5	= ± 10 ppm				
Frequency:	xxx.xxxx	= 2.3 MHz to 170 MHz (user-defined)				
Packing Option:	<blank>	= 110/Tube				
	T	= 1,000/Reel				

Note 1: For AEC-Q100 qualified parts, please refer to the DSA11xx family.

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

DSC1101/21

NOTES:

Microchip Information

Trademarks

The "Microchip" name and logo, the "M" logo, and other names, logos, and brands are registered and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or subsidiaries in the United States and/or other countries ("Microchip Trademarks"). Information regarding Microchip Trademarks can be found at <https://www.microchip.com/en-us/about/legalinformation/microchip-trademarks>.

ISBN: 979-8-3371-1511-5

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.