

SOP-8

Pin Definition:

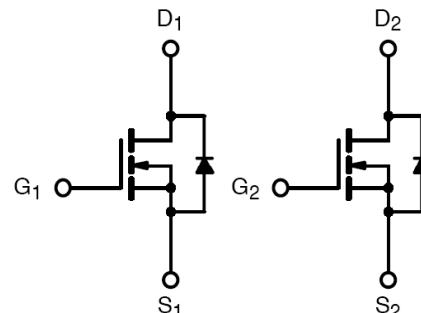
1. Source 1	8. Drain 1
2. Gate 1	7. Drain 1
3. Source 2	6. Drain 2
4. Gate 2	5. Drain 2

PRODUCT SUMMARY

V_{DS} (V)	R_{DS(on)}(Ω)	I_D (A)
450	4.25 @ V _{GS} = 10V	0.25

General Description

The TSM1N45 is N-Channel enhancement mode power field effect transistors are produced using planar DMOS technology process.


This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand higher energy pulse in the avalanche and commutation mode. These devices are well suited for electronic ballasts base and half bridge configuration.

Features

- Low gate charge @ typical 6.5nC
- Low Crss @ typical 6.5pF
- Avalanche energy specified
- Improved dv/dt capability
- Gate-Source Voltage ± 50 V guaranteed

Ordering Information

Part No.	Package	Packing
TSM1N45DCS RL	SOP-8	2.5Kpcs / 13" Reel

Block Diagram

Dual N-Channel MOSFET
Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	450	V
Gate-Source Voltage	V _{GS}	± 50	V
Continuous Drain Current	I _D	0.5	A
Pulsed Drain Current (Note 1)	I _{DM}	4	A
Single Pulse Drain to Source Avalanche Energy (Note 2)	E _{AS}	108	mJ
Avalanche Current (Note 1)	I _{AR}	0.5	A
Repetitive Avalanche Energy (Note 1)	E _{AR}	0.25	mJ
Peak Diode Recovery dv/dt (Note 3)	dv/dt	5.5	V/ns
Maximum Power Dissipation @Ta = 25°C	P _D	0.9	W
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

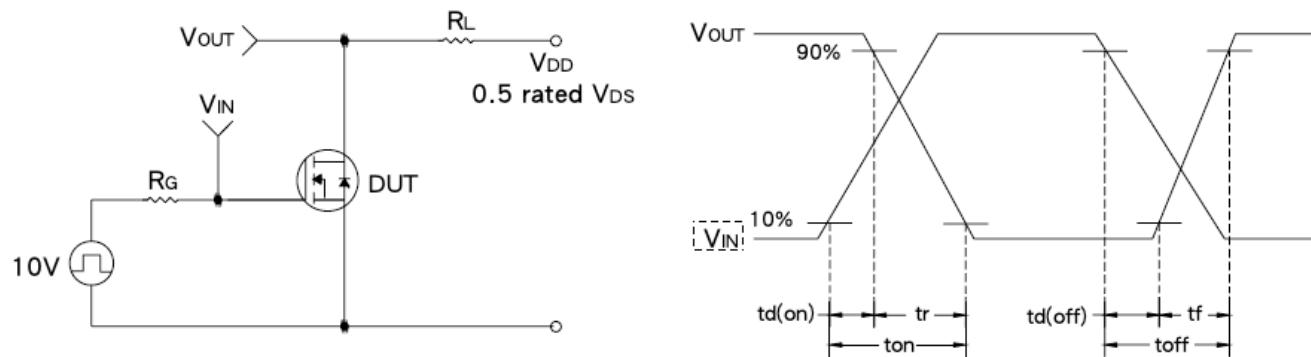
Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Ambient	R _{θ_{JA}}	80	°C/W

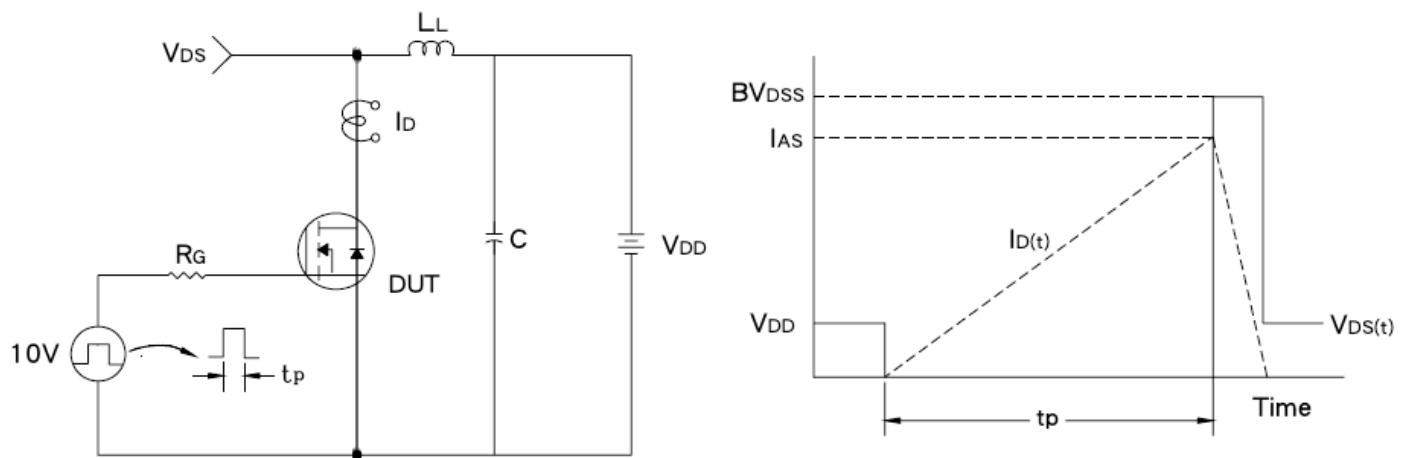
Notes: Surface mounted on FR4 board t \leq 10sec

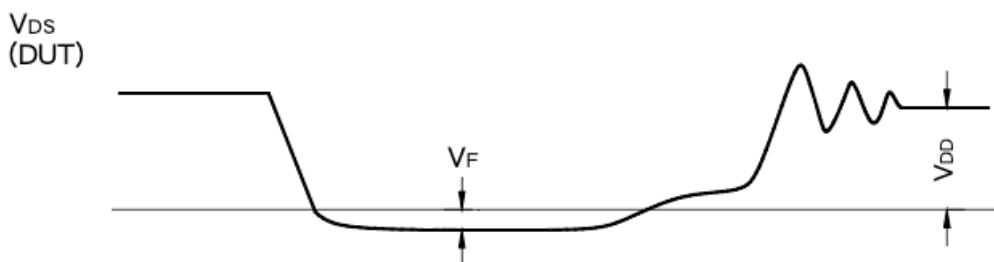
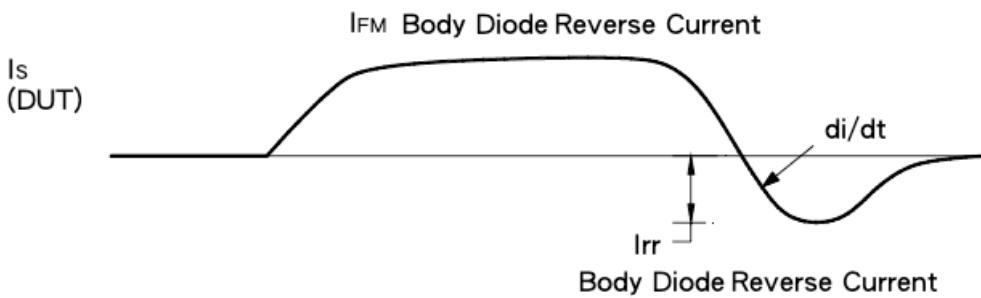
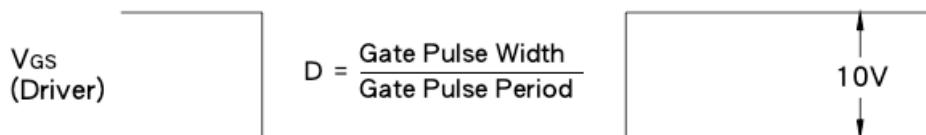
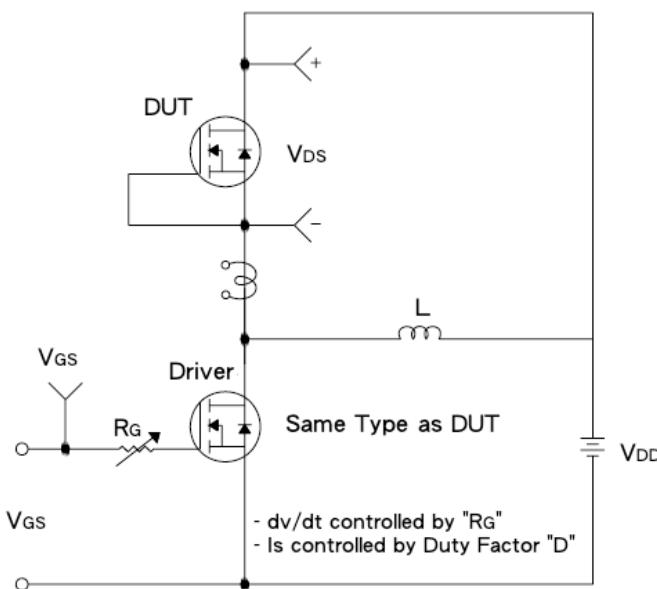

Electrical Specifications (Ta=25°C, unless otherwise noted)

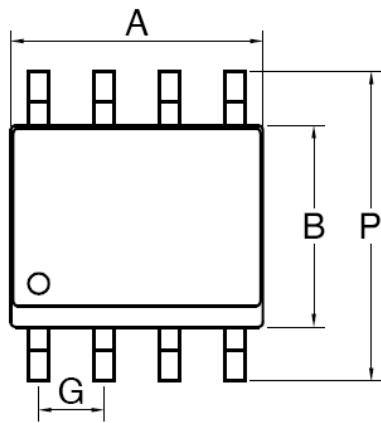
Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV_{DSS}	450	--	--	V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 0.25A$	$R_{DS(ON)}$	--	3.4	4.25	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250\mu A$	$V_{GS(TH)}$	2.3	3.0	3.7	V
	$V_{DS} = V_{GS}, I_D = 250mA$		3.5	4.2	4.9	
Zero Gate Voltage Drain Current	$V_{DS} = 450V, V_{GS} = 0V$	I_{DSS}	--	--	10	μA
Gate Body Leakage	$V_{GS} = \pm 50V, V_{DS} = 0V$	I_{GSS}	--	--	± 100	nA
Forward Transconductance	$V_{DS} = 50V, I_D = 0.25A$	g_{fs}	--	0.7	--	S
Diode Forward Voltage	$I_S = 1A, V_{GS} = 0V$	V_{SD}	--	--	1.5	V
Dynamic^b						
Total Gate Charge	$V_{DS} = 360V, I_D = 0.5A, V_{GS} = 10V$ (Note 4,5)	Q_g	--	6.5	--	nC
Gate-Source Charge		Q_{gs}	--	0.9	--	
Gate-Drain Charge		Q_{gd}	--	3.2	--	
Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0MHz$	C_{iss}	--	185	--	pF
Output Capacitance		C_{oss}	--	29	--	
Reverse Transfer Capacitance		C_{rss}	--	6.5	--	
Switching^c						
Turn-On Delay Time	$V_{GS} = 25V, I_D = 0.5A, V_{DS} = 225V, R_G = 25\Omega$ (Note 4,5)	$t_{d(on)}$	--	7.5	--	nS
Turn-On Rise Time		t_r	--	21	--	
Turn-Off Delay Time		$t_{d(off)}$	--	23	--	
Turn-Off Fall Time		t_f	--	36	--	
Drain-Source Diode Characteristics and Maximum Ratings						
Maximum Continuous Drain-Source Diode Forward Current	I_S	--	--	0.5	--	A
Maximum Pulsed Drain-Source Diode Forward Current	I_{SM}	--	--	4.0	--	A
Drain-Source Diode Forward Voltage	$V_{GS} = 25V, I_S = 0.5A$	V_{SD}	--	--	1.4	V
Reverse Recovery Time	$V_{GS} = 25V, I_S = 0.5A, dI_F/dt = 100A/\mu S$ (Note 4)	t_{rr}	--	102	--	nS
Reverse Recovery Charge		Q_{rr}	--	0.26	--	μC


Notes:

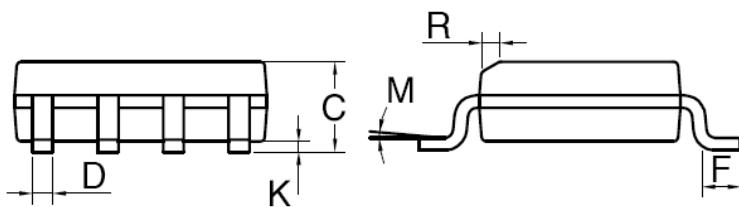
1. Repetitive Rating: Pulse width limited by maximum junction temperature
2. $L=75mH, I_{AS}=1.6A, V_{DD}=50V, R_G=25\Omega$, Starting $T_J=25^\circ C$
3. $I_{SD} \leq 0.5A, di/dt \leq 300A/\mu S, V_{DD} \leq BV_{DSS}$, Starting $T_J=25^\circ C$
4. Pulse test: pulse width $\leq 300\mu S$, duty cycle $\leq 2\%$
5. Essentially independent of operating temperature
6. a) Reference point of the is the drain $R\Theta_{JL}$ lead
b) When mounted on 3"x4.5" FR-4 PCB without any pad copper in a still air environment
($R\Theta_{JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance. $R\Theta_{CA}$ is determined by the user's board design)


Gate Charge Test Circuit & Waveform





Resistive Switching Test Circuit & Waveform



E_{AS} Test Circuit & Waveform



Diode Reverse Recovery Time Test Circuit & Waveform

SOP-8 Mechanical Drawing

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.196
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27BSC		0.05BSC	
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Taiwan Semiconductor:](#)

[TSM1N45DCS RL](#)