Post amplifier applicable with 1-bit D / A converter

BH3562F

The BH3562F is a post amplifier applicable with 1-bit D/A converter for compact disc players.

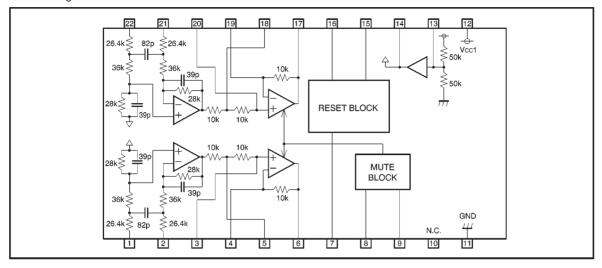
Applications

Portable CD players, etc.

Features

- 1) 2-chancel analog filter IC for 1-bit D/A converts.
- Internal partial CR for two channels (left and right)
 LPF.
- 3) Operates on a single power supply.
- 4) Operates on a power supply voltage as low as 3.1V.

● Absolute maximum ratings (Ta = 25°C)


Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	5.5	V
Power dissipation	Pd	450*	mW
Operating temperature	Topr	−35~+85	°C
Storage temperature	Tstg	− 55∼ + 150	°C

[★] Reduced by 4.5 mW for each increase in Ta of 1°C over 25°C.

•Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage 1	Vcc1	3.1~5.5	V
Power supply voltage 2	Vcc2	2.0~5.5	V

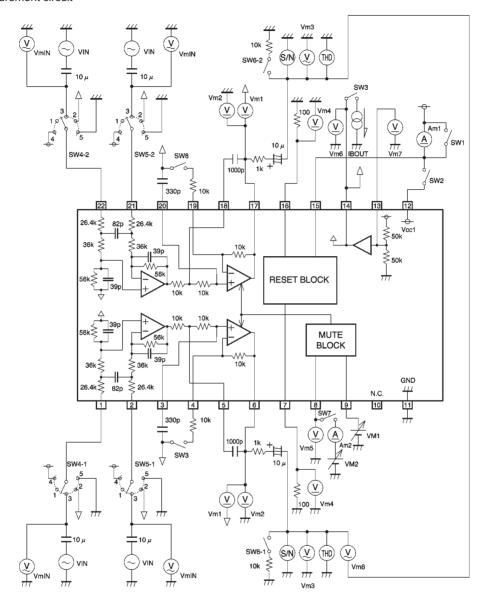
Block diagram

Pin descriptions

Pin No.	Pin name	Function		
1	IN1 (+)	Channel 1 positive input		
2	IN1 (—)	Channel 1 negative input		
3	FILTER 1 - 1	Filter setting (1-1)		
4	GAIN 1	Gain adjustment (1)		
5	FILTER 2-1	Filter setting (2-1)		
6	OUT 1	Channel 1 output		
7	OUTMUTE 1	Output mute transistor drive (1)		
8	Ст	Attached capacitor for setting the mute time constant		
9	MUTE	Mute control		
10	N.C.	_		
11	GND	Ground		
12	Vcc1	Power supply		
13	BIAS IN	Bias input		
14	BIAS OUT	Bias output		
15	Vcc2	Reset block idling power supply		
16	OUTMUTE 2	Output mute transistor drive (2)		
17	OUT 2	Channel 2 output		
18	FILTER 2-2	Filter setting (2-2)		
19	GAIN 2	Gain adjustment (2)		
20	FILTER 1 - 2	Filter setting (1-2)		
21	IN2 (-)	Channel 2 negative input		
22	IN2 (+)	Channel 2 positive input		

Optical disc ICs BH3562F

• Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc1 = 25°C, Vcc2 = 3.5V, RL = $10k\Omega$)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current (1)	l Q1	3.0	4.5	6.0	mA	MUTE OFF, RL=∞
Quiescent current (2)	IQ2	7	10	13	mA	MUTE ON, R₁=∞
Standby current (1)	ls ₁	_	0	1	μΑ	MUTE OFF, R _L =∞, V _{CC1} OFF
Standby current (2)	ls ₂	_	0	1	μΑ	MUTE ON, R _L =∞, V _{CC1} OFF
Offset voltage (1)	V _{off2}	-15	0	15	mV	MUTE OFF, reference BIAS OUTPUT
Offset voltage (2)	V _{off2}	-15	0	15	mV	MUTE ON, reference BIAS OUTPUT
Bias voltage	Vво	1.60	1.75	1.90	٧	
Bias voltage, load regulation 1	Δ V _{BO1}	_	_	50	mV	I _B =+5mA (discharge)
Bias voltage, load regulation 2	ΔV_{BO2}	_	_	50	mV	I _B =-5mA (intake)
C τ source current	l _{Min} .	10.5	14.0	17.5	μΑ	C τ = 1.4 V, MUTE OFF
C τ sink current	IMout	10.5	14.0	17.5	μΑ	C τ = 1.4 V, MUTE ON
C τ sink / source current ratio	OUT / IN	0.8	1	1.2	_	
MUTE ON voltage	V _{thON1}	1.6	_	_	٧	Verifies : output voltage is at BIAS level.
MUTE OFF voltage	V _{thOFF1}	_	_	1.2	٧	Verifies : output voltage is at HIGH level.
C τ ON voltage (1)	V _{thON2}	0.7	_	_	V	Verifies : ext. mute trans. drive current is ON.
C τ OFF voltage (1)	VthOFF2	_	_	1.3	٧	Verifies : ext. mute trans. drive current in OFF.
C τ ON voltage (2)	V _{thON3}	_	_	1.10	٧	Verifies : output voltage is at BIAS level.
C τ voltage (2)	VthOFF3	1.64	_	_	٧	Verifies : output voltage is at HIGH level.
External mute transistor current	Імите	1.0	1.5	2.0	mA	Converted from current at 100 Ω
Output high level voltage	Vон	2.55	2.70	_	٧	GAIN = 6 dB UP (10 kΩ external) Pos. phase input =3.5 V, neg. phase input 0 V Opposite side = BIAS OUT
Output low level voltage	Vol	_	0.75	0.90	٧	GAIN = 6 dB UP (10 kΩ external) Pos. phase input =0 V, neg. phase input 3.5 V Opposite side = BIAS OUT
Close loop voltage gain	Gvc	-10.8	— 7.8	-4.8	dB	V _{IN} =1kHz, 0.5V _{rms}
Frequency characteristics (1)	fc1	-10.8	— 7.8	-4.8	dB	V _{IN} =15kHz, 0.5V _{rms}
Frequency characteristics (2)	fc2	-21	— 16	-11	dB	V _{IN} =40kHz, 0.5V _{rms}
Mute attenuation	ATT	80	-	_	dB	V _{IN} =1kHz, 0.5V _{rms}
Crosstalk	CT	_	90	_	dB	V _{IN} =1kHz, 0.5V _{rms}
Total harmonic distortion	THD	_	0.01	0.02	%	V _{IN} =1kHz, 0.5V _{rms}
Signal to noise ratio	S/N	90	100	_	dB	0 dB at 1 V _{rms} output
L-R Channel balance (1)	CB1	-1	0	1	dB	Positive phase input, V _{IN} = 1 kHz, 0.5 V _{rms}
L-R Channel balance (2)	CB2	-1	0	1	dΒ	Negative phase input, V _{IN} = 1 kHz, 0.5 V _{rms}
Differential balance	Gvв	45	55	_	dB	Common mode input, V _{IN} = 1 kHz, 0.5 V _{rms}

 $\label{thm:continuous} \mbox{Note: A weighing filter is used when measuring AC parameters (excluding frequency characteristics)}.$

ONot designed for radiation resistance.

Optical disc ICs BH3562F

Measurement circuit

Note 1: Arrows indicate the positive current direction.

Note 2: Unless otherwise noted, AC input (VIN) = 1 kHz sine waves.

Note 3: Unless otherwise noted, SW8 = Off.

Fig. 1

Optical disc ICs BH3562F

Application example

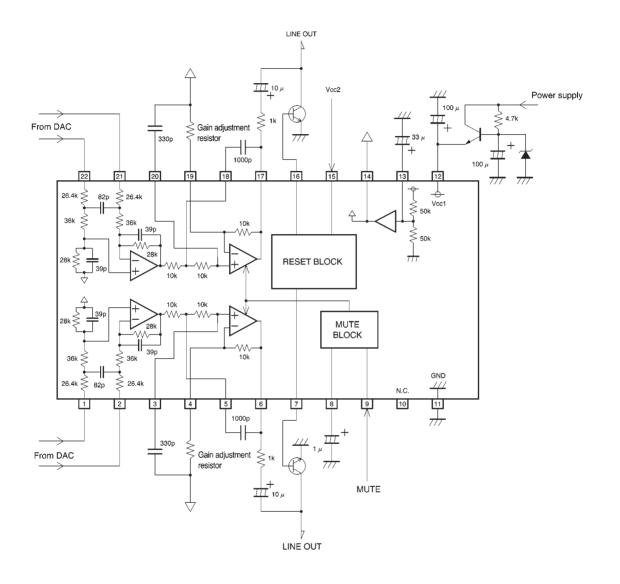


Fig. 2

Operation notes

- (1) When the MUTE pin voltage reaches 1.5V or higher, the output voltage is muted and the bias level is output.
- (2) Frequency characteristics can be changed by adjusting the capacitor attached to pin 3 (20 pin) or pin 5 (18 pin).
- (3) Gain can be changed by attaching a resistor to pin 4 (19 pin).
- (4) Attach a transistor to pin 7 (16 pin) to mute popping sounds. Recommended transistor: 2SD1781K
- Electrical characteristic curve

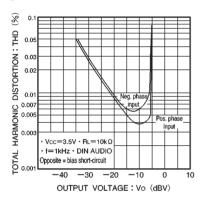
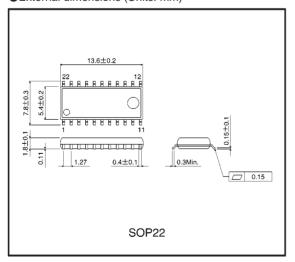



Fig. 3 Output voltage vs. distortion

External dimensions (Units: mm)

- (5) The reset block idling power supply for pin 15 should be left on as it prevents popping sounds.
- (6) To prevent popping sounds due to sudden fluctuation in the power supply voltage, attach a ripple filter.
- (7) To prevent popping sounds due to sudden changes in the mute pin voltage, connect pin 8 to $1\mu F$ (approx.) capacitor.
- (8) Attach a by-pass capacitor (approx. $0.1\mu F$) at the base of the IC between the power supply.