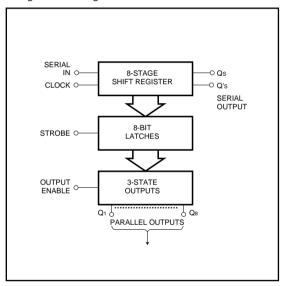
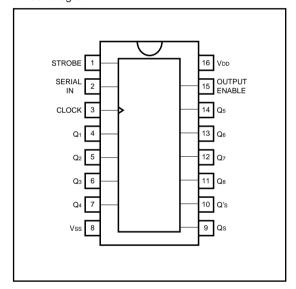
8-bit compatible shift / store register BU4094BC / BU4094BCF / BU4094BCFV


The BU4094BCF, and BU4094BCFV are shift / store registers, each consisting of an 8-bit register and an 8-bit latch.

As the data in the shift register can be latched by an asynchronous strobe input, it is possible to hold the output in the data transfer mode.


The tri-state parallel output can be connected directly with an 8-bit bus line.

These registers are suitable for in-line / parallel data conversion, data receivers and other similar applications.

Logic circuit diagram

Block diagram

Truth table

CLOCK	OUTPUT ENABLE	STROBE	SERIAL IN	Parallel output		Serial output	
			SERIAL IN	Q ₁	Qn	Qs	Q's
	Н	Н	L	L	Q _{n-1}	Q ₇	NC
	Н	Н	Н	Н	Q _{n-1}	Q ₇	NC
	Н	L	Х	NC	NC	Q ₇	NC
	L	Х	Х	Z	Z	Q ₇	NC
¬ _	Н	Х	Х	NC	NC	NC	Qs
—	L	Х	Х	Z	Z	NC	Qs

NC: No Change Z: High Impedance X: Irrelevant

●Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	V _{DD}	− 0.5 ~ + 20	V
Power dissipation	Pd	1000 (DIP), 500 (SOP) 400 (SSOP)	mW
Operating temperature	Topr	− 40 ~ + 85	°C
Storage temperature	Tstg	− 55 ~ + 150	°C
Input voltage	Vin	- 0.5 ~ V _{DD} + 0.5	V

Electrical characteristics

DC characteristics (unless otherwise noted, Vss = 0V, Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	V _{DD} (V)		
	Vıн	3.5	_	_	V	5		
Input high level voltage		7.0	_	_		10	_	
		11.0	_	_		15		
	VIL	_	_	1.5	V	5		
Input low level voltage		_	_	3.0		10	_	
		_	_	4.0		15		
Input high level current	Іін	_	_	0.3	μΑ	15	ViH = 15V	
Input low level current	Iı∟	_	_	- 0.3	μΑ	15	VIL = 0V	
		4.95	_	_	V	5		
Output high level voltage	Vон	9.95	_	_		10	Io = 0mA	
		14.95	_	_		15		
			_	0.05	V	5		
Output low level voltage	Vol		_	0.05		10	Io = 0mA	
		_	_	0.05		15		
	Іон	- 0.44	_	_	mA	5	Vон = 4.6V	
Output high level current		- 1.1	_	_		10	Vон = 9.5V	
		- 3.0	_	_		15	Vон = 13.5V	
		0.44	_	_	mA	5	Vol = 0.4V	
Output low level current	loL	1.1	_	_		10	Vol = 0.5V	
		3.0	_	_		15	Vol = 1.5V	
Output high level disable current	Ідн	_	_	1.0	μΑ	15	Vout = 15V	
Output low level disable current	ldl	_		- 1.0	μΑ	15	Vout = 0V	
	ааІ		_	20	μΑ	5		
Static current dissipation			_	40		10	$V_I = V_{DD}$, or GND	
			_	80		15		

Switching characteristics (unless otherwise noted, Vss = 0V, Ta = 25°C, CL = 50pF)

Parameter	Symbol	Min.	Тур.	Max.	Unit	V _{DD} (V)		Measurement circuit
	tтьн	_	100	_	ns	5		
Output rise time		_	50	_	ns	10	<u> </u>	Fig.1
		_	40	_	ns	15		
		_	100	_	ns	5		
Output fall time	tтнL	_	50	_	ns	10	<u> </u>	Fig.1
		_	40	_	ns	15		
Dropogotion doloy	tplh tphl	_	350	600	ns	5		Fig.1
Propagation delay		_	125	250	ns	10	_	
time, CLOCK to Qs	L PHL	_	95	190	ns	15		
		_	230	460	ns	5		
Propagation delay	t _{PLH}	_	110	220	ns	10	<u> </u>	Fig.1
time, CLOCK to Qs	t PHL	_	75	150	ns	15		
		_	420	840	ns	5		
Propagation delay	tplh tphl	_	195	390	ns	10	<u> </u>	Fig.1
time, CLOCK to Qn	LPHL	_	135	270	ns	15		
5	t _{PLH}	_	290	580	ns	5		Fig.1
Propagation delay		_	145	290	ns	10	<u> </u>	
time, STROBE to Qn	t PHL	_	100	200	ns	15		
3-state propagation	tpнz tpzн	_	140	280	ns	5		Fig.2
delay time,		_	75	150	ns	10	R∟ = 1kΩ	
Output Enable to Qn		_	55	110	ns	15		
3-state propagation	tplz tpzl	_	140	280	ns	5		Fig.2
delay time, Output		_	75	150	ns	10	R _L = 1kΩ	
Enable to Qn		_	55	110	ns	15		
Minimum actus times	tsu	_	20	125	ns	5	_	Fig.1
Minimum setup time, DATA to CLOCK		_	8	55	ns	10		
DATA IO CLOCK		_	6	35	ns	15		
NATIONAL DELLA CONTRACTOR	tн	_	10	40	ns	5		Fig.1
Minimum hold time,		_	10	20	ns	10	<u> </u>	
CLOCK to DATA		_	5	15	ns	15		
	tw	_	100	200	ns	5		Fig.1
Minimum clock		_	50	100	ns	10	<u> </u>	
pulse width		_	40	80	ns	15		
	tr (CL) tr (CL)		-		us	5		
Maximum clock rise		NO Limit		μs	10	_	Fig.1	
time and fall time					μs	15		
Mar Control	fcL	1.25	5	_	MHz	5		Fig.1
Maximum clock		2.5	10	_	MHz	10	1 –	
frequency		3.0	12.5	_	MHz	15		
Minimum atraka	twн	_	100	200	ns	5		
Minimum strobe		_	40	80	ns	10	1 _	Fig.1
pulse width		_	35	70	ns	15		
Input capacitance	Cin	_	5	_	pF	_	_	_

Measurement circuits

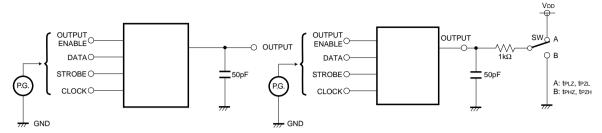


Fig. 1 Switching waveform

Fig. 2 3-state delay time

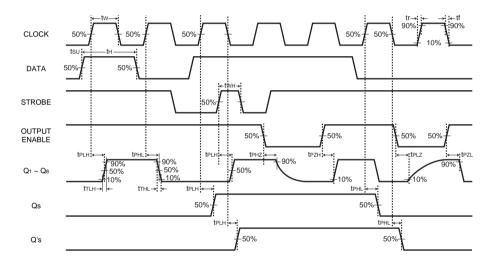


Fig. 3 Switching time test waveform

Electrical characteristic curve

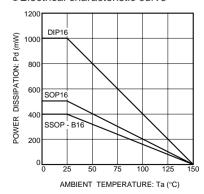
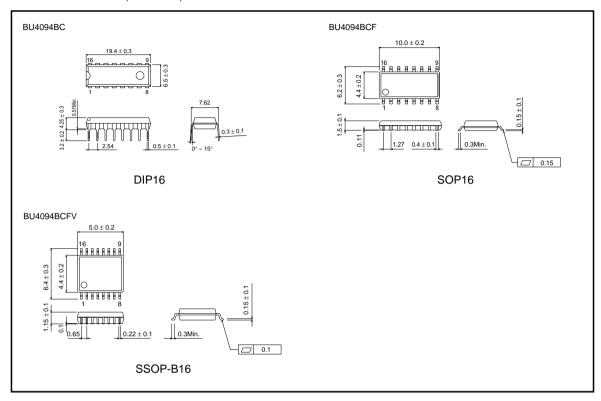



Fig. 4 Power dissipation vs. ambient temperature

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

