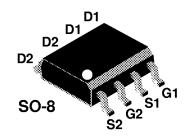


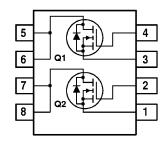
December 1999 ADVANCE INFORMATION

FDS9926A

Dual N-Channel 2.5V Specified PowerTrench MOSFET

General Description


These N-Channel 2.5V specified MOSFETs use Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V – 10V).


Applications

- Battery protection
- Load switch
- Power management

Features

- 6.5 A, 20 V. $R_{DS(ON)} = 0.030 \ \Omega \ @V_{GS} = 4.5 \ V$ $R_{DS(ON)} = 0.043 \ \Omega \ @V_{GS} = 2.5 \ V.$
- · Optimized for use in battery protection circuits
- ±10 V_{GSS} allows for wide operating voltage range
- · Low gate charge

Absolute Maximum Ratings TA=25°C unless otherwise noted

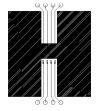
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage		±10	V
I _D	Drain Current - Continuous	(Note 1a)	6.5	A
	- Pulsed		20	
P _D	Power Dissipation for Dual Operation		2	W
	Power Dissipation for Single Operation	(Note 1a)	1.6	
		(Note 1b)	1	
		(Note 1c)	0.9	
T_J , T_{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
Rejc	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity	
FDS9926A	FDS9926A	13"	12mm	2500 units	


Electrical Characteristics

T_A = 25 °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics				•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	20			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			1	μА
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -8 V V _{DS} = 0 V			-100	nA
On Char V _{GS(th)}	Cacteristics (Note 2) Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.5		1.5	V
	· · · · · · · · · · · · · · · · · · ·	$V_{DS} = V_{GS}, I_D = 250 \mu A$ $V_{GS} = 4.5 V. I_D = 6.5 A$	0.5		1.5 0.030	V Ω
T DS(on)	On-Resistance	$V_{GS} = 4.5 \text{ V},$ $I_D = 5.4 \text{ A}$			0.043	32
I _{D(on)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	15			Α
Drain-S	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source Diode Forward Current				1.3	Α
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.3 A (Note 2)			1.2	٧

Notes:

1. R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BJC} is guaranteed by design while R_{BCA} is determined by the user's board design.

a) 78°/W when mounted on a 0.5in² pad of 2 oz copper

b) 125°/W when mounted on a 0.02 in² pad of 2 oz copper

c) 135°/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

 $\boldsymbol{2}.$ Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%