

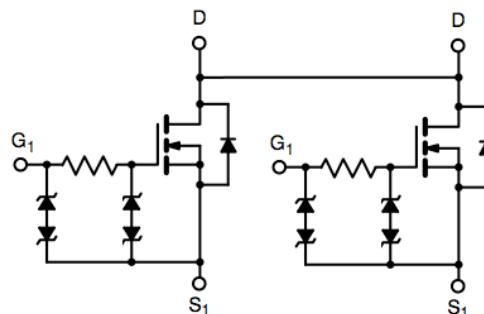
TSSOP-8
Pin Definition:

1. Drain 1	8. Drain 2
2. Source 1	7. Source 2
3. Source 1	6. Source 2
4. Gate 1	5. Gate 2

PRODUCT SUMMARY

V_{DS} (V)	R_{DS(on)}(mΩ)	I_D (A)
20	21 @ V _{GS} = 4.5V	8
	25 @ V _{GS} = 2.5V	7
	33 @ V _{GS} = 1.8V	6

Features


- Advance Trench Process Technology
- High Density Cell Design for Ultra Low On-resistance
- ESD Protect 2KV

Application

- Load Switch
- PA Switch

Ordering Information

Part No.	Package	Packing
TSM6970DCA RV	TSSOP-8	3Kpcs / 13" Reel

Block Diagram

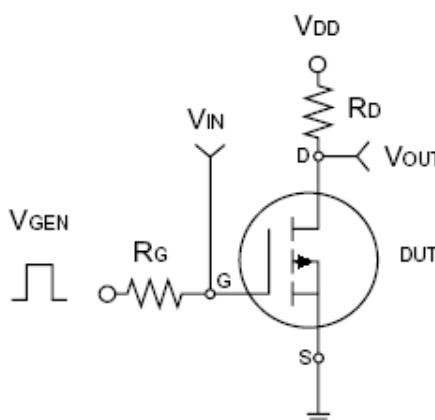
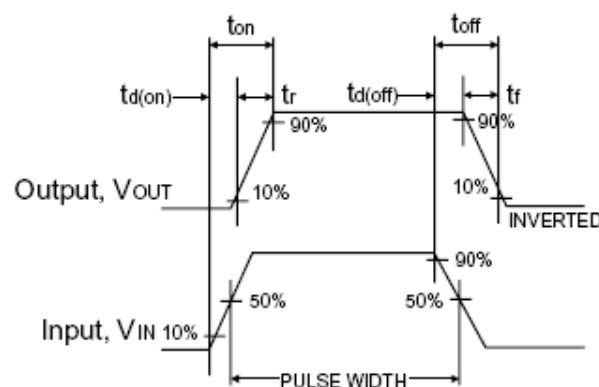
Dual N-Channel MOSFET
Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	V _{GS}	±8	V
Continuous Drain Current, V _{GS} @4.5V	I _D	8	A
Pulsed Drain Current, V _{GS} @4.5V	I _{DM}	30	A
Continuous Source Current (Diode Conduction) ^{a,b}	I _S	2.5	A
Maximum Power Dissipation	P _D	2	W
		1.28	
Operating Junction Temperature	T _J	+150	°C
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

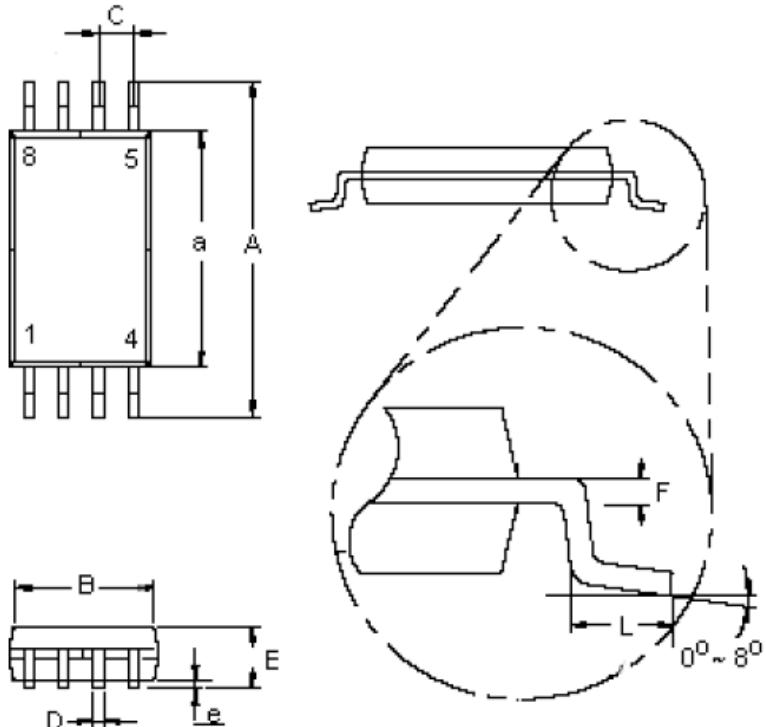
Thermal Performance

Parameter	Symbol	Limit	Unit
Junction to Case Thermal Resistance	R _{θ_{JC}}	30	°C/W
Junction to Ambient Thermal Resistance (PCB mounted)	R _{θ_{JA}}	62.5	°C/W

Notes:



- Pulse width limited by the Maximum junction temperature
- Surface Mounted on FR4 Board, t ≤ 5 sec.

Electrical Specifications


Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV_{DSS}	20	--	--	V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250\mu A$	$V_{GS(TH)}$	0.4	--	1	V
Gate Body Leakage	$V_{GS} = \pm 8V, V_{DS} = 0V$	I_{GSS}	--	--	± 10	μA
Zero Gate Voltage Drain Current	$V_{DS} = 16V, V_{GS} = 0V$	I_{DSS}	--	--	1	μA
On-State Drain Current	$V_{DS} = 5V, V_{GS} = 4.5V$	$I_{D(on)}$	10	--	--	A
Drain-Source On-State Resistance	$V_{GS} = 4.5V, I_D = 8A$	$R_{DS(on)}$	--	18	21	$m\Omega$
	$V_{GS} = 2.5V, I_D = 7A$		--	21	25	
	$V_{GS} = 1.8V, I_D = 6A$		--	26	33	
Forward Transconductance	$V_{DS} = 5V, I_D = 8A$	g_{fs}	--	13	--	S
Diode Forward Voltage	$I_S = 2.5A, V_{GS} = 0V$	V_{SD}	--	--	1.7	V
Dynamic^b						
Total Gate Charge	$V_{DS} = 10V, I_D = 8A, V_{GS} = 4.5V$	Q_g	--	13.8	--	nC
Gate-Source Charge		Q_{gs}	--	4.1	--	
Gate-Drain Charge		Q_{gd}	--	5.6	--	
Input Capacitance	$V_{DS} = 10V, V_{GS} = 0V, f = 1.0MHz$	C_{iss}	--	1160	--	pF
Output Capacitance		C_{oss}	--	104	--	
Reverse Transfer Capacitance		C_{rss}	--	29	--	
Switching^c						
Turn-On Delay Time	$V_{DD} = 10V, I_D = 1A, V_{GEN} = 4.5V, R_G = 3\Omega$	$t_{d(on)}$	--	140	200	ns
Turn-On Rise Time		t_r	--	210	250	
Turn-Off Delay Time		$t_{d(off)}$	--	3700	4800	
Turn-Off Fall Time		t_f	--	2000	2600	

Notes:

- pulse test: PW $\leq 300\mu s$, duty cycle $\leq 2\%$
- For DESIGN AID ONLY, not subject to production testing.
- Switching time is essentially independent of operating temperature.

Switching Test Circuit

Switching Waveforms

TSSOP-8 Mechanical Drawing

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	6.20	6.60	0.244	0.260
a	4.30	4.50	0.170	0.177
B	2.90	3.10	0.114	0.122
C	0.65 (typ)		0.025 (typ)	
D	0.25	0.30	0.010	0.019
E	1.05	1.20	0.041	0.049
e	0.05	0.15	0.002	0.009
F	0.127		0.005	
L	0.50	0.70	0.020	0.028

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Taiwan Semiconductor:](#)

[TSM6970DCA](#)