
GX4314L Low Power, Wideband 4 x 1 Video Multiplexer

DATA SHEET

FEATURES

- low power; 12 mA ON current at ±5 volts
- · low differential gain and phase
- wide bandwidth: 100 MHz at -1 dB
- ±4.5 to ±11 volt power supplies
- available in 14 pin PDIP as well as 14 and 16 pin SOIC packaging
- identical functions and pin outs to GX4314 with lower power

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

cs	A1	A0	Output
0	0	0	Input 0
0	0	1	Input 1
0	1	0	Input 2
0	1	1	Input 3
1	X	X	High - Z

X = don't care

DESCRIPTION

The GX4314L is a low power, wideband video multiplexer implemented in bipolar technology. This device is characterized by excellent differential gain and phase in the enabled state, very high off-isolation in the disabled state and a fully buffered, unilateral signal path.

Make-before-break switching assures virtually glitch-free switching. The GX4314L features a very high, nearly constant input impedance coupled with high output impedance in the disabled state. This allows multiple devices to be paralleled at the inputs and outputs without additional circuitry.

Logic inputs are TTL and 5 V CMOS compatible, providing address and chip select functions. The operation of the device is described in the Truth Table below.

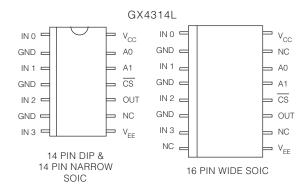
The GX4314L offers pin for pin compatibility with Gennum's other 4x1 multipliers such as GX414, GX414A and GX434 with greatly improved bandwidth and slew rate. Since the GX4314L is capable of operation at ± 5 V supplies, system power can be reduced.

Typically, the ON current is only 12 mA while the chip disabled current drops to less than 260 μ A. This feature allows the use of many devices in high density situations without excessive power dissipation.

APPLICATIONS

- Multimedia
- Computer graphics.
- Very high density video switching.
- PCM / data routing.

ORDERING INFORMATION


Part Number	Package Type	Temperature Range		
GX4314LCDB	14 pin PDIP	0°C to 70°C		
GX4314LCKB	14 pin SOIC	0°C to 70°C		
GX4314LCKC	16 pin SOIC	0°C to 70°C		
GX4314LCTC	Tape16 pin SO	IC 0°C to 70°C		

Revision Date: February 1994 Document No. 520 - 54 - 2

ABSOLUTE MAXIMUM RATINGS

Parameter	Value			
Supply Voltage	±13.5V			
Operating Temperature Range	$0^{\circ}\text{C} \le \text{T}_{\text{A}} \le 70^{\circ}\text{ C}$			
Storage Temperature Range	-65°C ≤ T _S ≤ 150° C			
Lead Temperature (Soldering, 10 Sec)	260° C			
Analog Input Voltage (V _{EE} - 1.4) (or -7.5 <v<sub>A< (V_{cc}+ 0.3) or (V_{EE}+ 15) V</v<sub>			
Logic Input Voltage	$-0.5V \le V_{L} \le +5.5V$			

PIN CONNECTIONS

$\textbf{ELECTRICAL CHARACTERISTICS} \qquad \textbf{V}_{S} = \pm 8 \text{ V DC, } 0^{\circ}\text{C} \leq \textbf{T}_{A} \leq 70^{\circ}\text{C, } \textbf{R}_{L} = 10\text{k}\Omega, \textbf{C}_{L} = 30 \text{ pF, unless otherwise shown } \textbf{C}_{L} = 10\text{k}\Omega, \textbf{C$

	PARAMETER	SYMBOL	CON	NDITIONS	MIN	TYP	MAX	UNITS
	Supply Voltage	±V _S	Operating Range		±4.5	-	±11	V
DC SUPPLY		I ⁺	$\overline{\text{CS}} = 0$	-	12	15	mA	
	Supply Current	I_	$\overline{CS} = 0$	-	12	15	mA	
		I ⁺	CS = 1		_	270	350	μА
		I	CS = 1		-	350	600	μΑ
STATIC	Analog Output Voltage Swing	V _{OUT}	Extremes before clipping occurs		-2.4	-	+3.6	V
	Analog Input Bias Current	I _{BIAS}			-	5	-	μА
	Output Offset Voltage	V _{os}	T _A = 25°C		-10	-3	+4	mV
	Output Offset Voltage Drift	ΔV _{OS}		_ ··		15	60	μV/°C
LOGIC	Chip Enable Time t _O		Enable input to appearance of signal		-	350	500	ns
	Chip Disable Time	t _{OFF}	Enable input to disappearance of signal at output.		0.6	1.0	-	μs
	Logic Input Thresholds	V _{IH}	V _{IH} = 1		2.0	-	-	V
		V _{IL}	$V_{IL} = 0$	V _{IL} = 0		-	0.8	V
	Logic Input Current	IL			-	-	4	μΑ
	Insertion Loss	I.L.	1V p-p sine or sq. wave at 100 kHz		0.035	0.047	0.060	dB
	Bandwidth (-3dB)	B.W.	Small signal $C_L = 0 pF$		-	200	-	MHz
	Frequency Response		At -1 dB flattened, $R_S = 27\Omega$		100	-	-	MHz
DYNAMIC	Input Resistance	R _{IN}	Chip enabled		1.0	-	-	MΩ
DINAMIC	Input Capacitance	C _{IN}	Chip enabled		-	1.5	-	pF
	Output Resistance	R _{OUT}	Chip enabled		-	18	-	Ω
	Output Capacitance	C _{OUT}	Chip enabled		-	-	5	pF
	Differential Gain	dg	At 3.58 MHz		-	-	0.03	%
	ifferential Phase dp		At 3.58 MHz		-	-	0.02	deg
	All Hostile Crosstalk	XTLK _{AH}	$30 \text{ MHz R}_{IN} = 10Ω$		70	-	-	dB
	Chip Disabled Crosstalk	XTLK _{CD}	At 100 MHz) MHz		80	-	dB
	Slew Rate	+SR	$V_{IN} = 1V p-p (C_L = 10 pF)$		600	900	-	V/µs
		-SR	$V_{IN} = 1V p-p (C_L = 10 pF)$		225	300	-	V/µs
	Gain Spread at 30 MHz	ΔA_{V}			-	-	±0.05	dB
	Crosspoint Scatter		R _S = 75 Ω	$T_A = 25^{\circ}C$	-	-	±0.15	deg
			f = 3.58 MHz	0°C< T _A < 70°C	-	-	±0.25	deg

TYPICAL PERFORMANCE CURVES FOR GX4314L

(V $_{\rm S}$ = ±5V DC, T $_{\rm A}$ \leq 25°C, C $_{\rm L}$ = 30 pF, unless otherwise shown.)

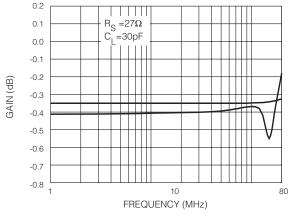


Fig. 1 Flattened Frequency Response

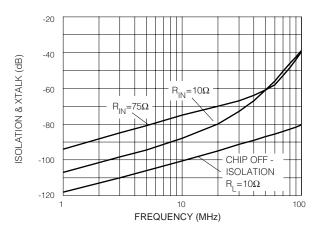


Fig. 2 All Hostile Crosstalk & Isolation

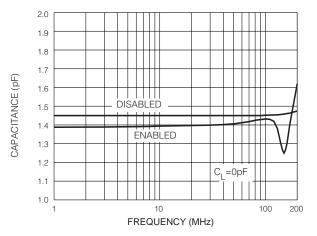


Fig. 3 Input Capacitance

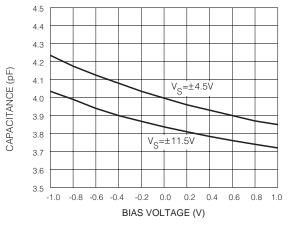


Fig. 4 Output Capacitance

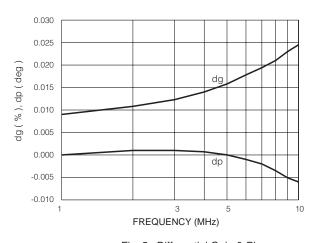
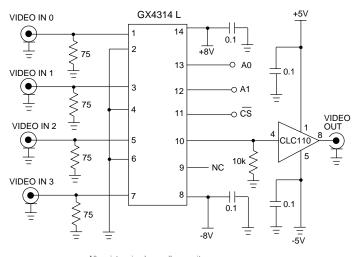



Fig. 5 Differential Gain & Phase

All resistors in ohms. all capacitors in microfarads unless otherwise stated.

Fig. 6 Test Circuit

3 520 - 54 - 2

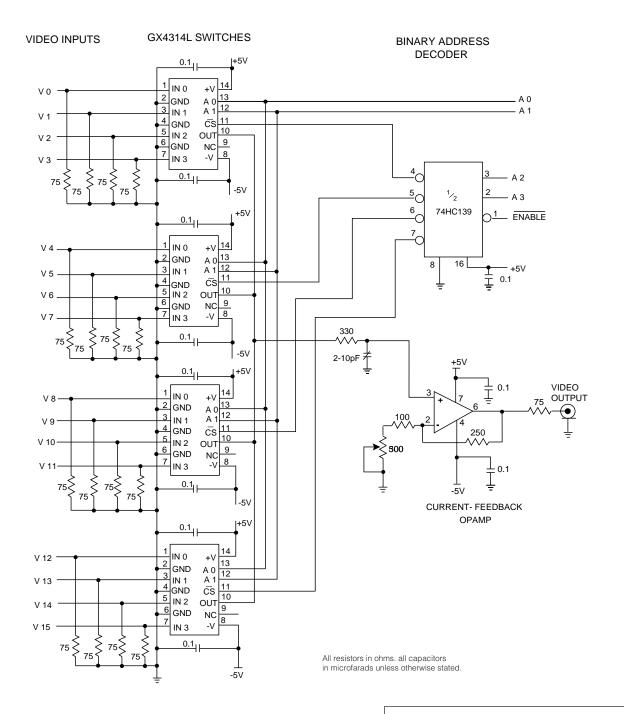


Fig. 7 16 x 1 Video Multiplexer Circuit

DOCUMENT IDENTIFICATION

PRODUCT PROPOSAL

This data has been compiled for market investigation purposes only, and does not constitute an offer for sale.

ADVANCE INFORMATION NOTE

This product is in development phase and specifications are subject to change without notice. Gennum reserves the right to remove the product at any time. Listing the product does not constitute an offer for sale.

PRELIMINARY DATA SHEET

The product is in a preproduction phase and specifications are subject to change without notice.

DATA SHEET

The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible.

CAUTION
ELECTROSTATIC
SENSITIVE DEVICES
DO NOT OPEN PACKAGES OR HANDLE
EXCEPT AT A STATIC-FREE WORKSTATION

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.