

< Dual-In-Line Package Intelligent Power Module >
PSM03S93E5-A

TRANSFER MOLDING TYPE
INSULATED TYPE

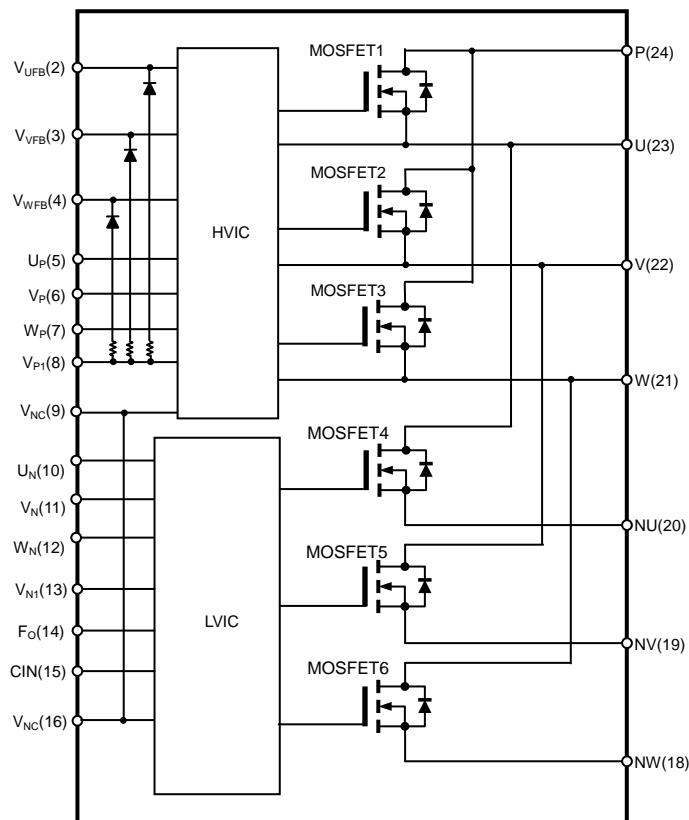
OUTLINE

MAIN FUNCTION AND RATINGS

- 3 phase DC/AC inverter
- 500V / 3A (MOSFET)
- N-side MOSFET open source
- Built-in bootstrap diodes with current limiting resistor

APPLICATION

- AC 100~240Vrms(DC voltage:400V or below) class low power motor control


TYPE NAME

PSM03S93E5-A	With over temperature protection
--------------	----------------------------------

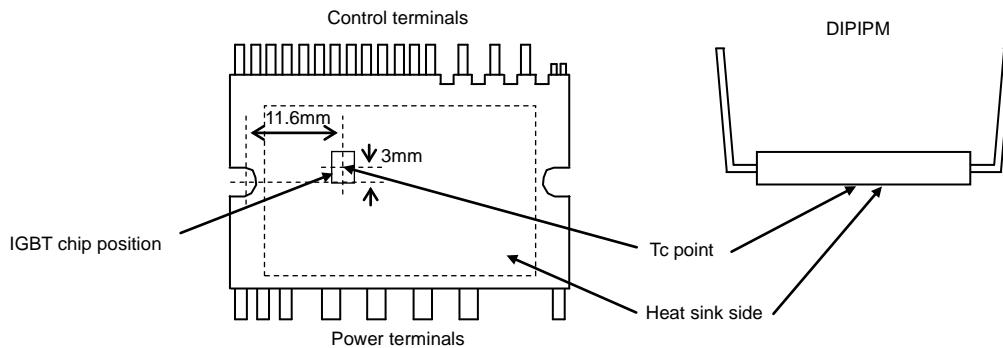
INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For P-side : Drive circuit, High voltage high-speed level shifting, Control supply under-voltage (UV) protection
- For N-side : Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC), Over temperature protection (OT)
- Fault signaling : Corresponding to SC fault (N-side MOSFET), UV fault (N-side supply) and OT fault
- Input interface : 3, 5V line, Schmitt trigger receiver circuit (High Active)
- UL Recognized : UL1557 File E323585

INTERNAL CIRCUIT

MAXIMUM RATINGS ($T_{ch} = 25^\circ\text{C}$, unless otherwise noted)**INVERTER PART**

Symbol	Parameter	Condition	Ratings	Unit
V_{DD}	Supply voltage	Applied between P-NU,NV,NW	400	V
$V_{DD(\text{surge})}$	Supply voltage (surge)	Applied between P-NU,NV,NW	450	V
V_{DSS}	Drain-source voltage		500	V
$\pm I_D$	Each MOSFET drain current	$T_C = 25^\circ\text{C}$	3	A
$\pm I_{DP}$	Each MOSFET drain current (peak)	$T_C = 25^\circ\text{C}$, less than 1ms	6	A
P_D	Drain dissipation	$T_C = 25^\circ\text{C}$, per 1 chip	29.4	W
T_{ch}	Channel temperature	(Note 1)	-20~+150	$^\circ\text{C}$


Note1: The maximum junction temperature of built-in power chips is 150°C (@ $T_C \leq 100^\circ\text{C}$). However, to ensure safe operation of DIPIPM, the average channel temperature should be limited to $T_{ch}(\text{Ave}) \leq 125^\circ\text{C}$ (@ $T_C \leq 100^\circ\text{C}$).

CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
V_D	Control supply voltage	Applied between $V_{P1}-V_{NC}, V_{N1}-V_{NC}$	20	V
V_{DB}	Control supply voltage	Applied between $V_{UFB-U}, V_{VFB-V}, V_{WFB-W}$	20	V
V_{IN}	Input voltage	Applied between $U_P, V_P, W_P-V_{PC}, U_N, V_N, W_N-V_{NC}$	-0.5~ $V_D+0.5$	V
V_{FO}	Fault output supply voltage	Applied between F_O-V_{NC}	-0.5~ $V_D+0.5$	V
I_{FO}	Fault output current	Sink current at F_O terminal	1	mA
V_{SC}	Current sensing input voltage	Applied between $CIN-V_{NC}$	-0.5~ $V_D+0.5$	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
$V_{DD(\text{PROT})}$	Self protection supply voltage limit (Short circuit protection capability)	$V_D = 13.5\text{~}16.5\text{V}$, Inverter Part $T_{ch} = 125^\circ\text{C}$, non-repetitive, less than $2\mu\text{s}$	400	V
T_C	Module case operation temperature	Measurement point of T_C is provided in Fig.1	-20~+100	$^\circ\text{C}$
T_{stg}	Storage temperature		-40~+125	$^\circ\text{C}$
V_{iso}	Isolation voltage	60Hz, Sinusoidal, AC 1min, between connected all pins and heat sink plate	1500	V_{rms}

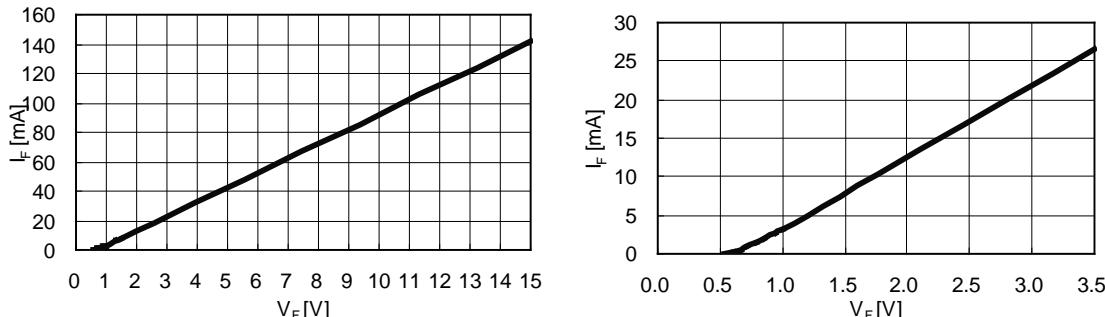
Fig. 1: T_C MEASUREMENT POINT**THERMAL RESISTANCE**

Symbol	Parameter	Condition	Limits			Unit
			Min.	Typ.	Max.	
$R_{th(ch-c)Q}$	Junction to case thermal resistance (Note2)	1/6 module	-	-	3.4	K/W

Note 2: Grease with good thermal conductivity and long-term endurance should be applied evenly with about $+100\mu\text{m} \sim +200\mu\text{m}$ on the contacting surface of DIPIPM and heat sink. The contacting thermal resistance between DIPIPM case and heat sink $R_{th(c-f)}$ is determined by the thickness and the thermal conductivity of the applied grease. For reference, $R_{th(c-f)}$ is about 0.3K/W (per 1/6 module, grease thickness: $20\mu\text{m}$, thermal conductivity: $1.0\text{W/m}\cdot\text{K}$).

ELECTRICAL CHARACTERISTICS ($T_{ch} = 25^\circ\text{C}$, unless otherwise noted)
INVERTER PART

Symbol	Parameter	Condition	Limits			Unit
			Min.	Typ.	Max.	
$V_{DS(on)}$	Drain-source on-state resistance	$V_D = V_{DB} = 15V, V_{IN} = 5V, I_D = 3A$	$T_{ch} = 25^\circ\text{C}$	-	1.50	2.00
			$T_{ch} = 125^\circ\text{C}$	-	3.40	4.50
V_{SD}	Source-drain voltage drop	$V_{IN} = 0V, -I_D = 3A$	-	0.90	1.30	V
t_{on} $t_{C(on)}$ t_{off} $t_{C(off)}$ t_{rr}	Switching times	$V_{DD} = 300V, V_D = V_{DB} = 15V$ $I_D = 3A, T_{ch} = 125^\circ\text{C}, V_{IN} = 0\text{ to }5V$ Inductive Load (upper-lower arm)	0.65	1.15	1.65	μs
			-	0.35	0.55	μs
			-	1.00	1.50	μs
			-	0.10	0.20	μs
			-	0.25	-	μs
			-	-	1	mA
I_{DSS}	Drain-source cut-off current	$V_{DS} = V_{DSS}$	$T_{ch} = 25^\circ\text{C}$	-	-	mA
			$T_{ch} = 125^\circ\text{C}$	-	-	

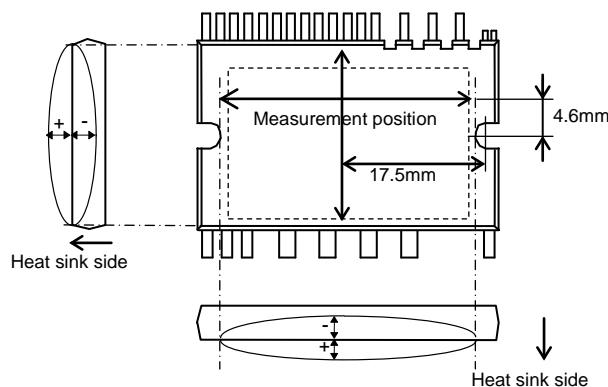

CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Limits			Unit	
			Min.	Typ.	Max.		
I_D	Circuit current	Total of $V_{P1}-V_{NC}, V_{N1}-V_{NC}$	$V_D = 15V, V_{IN} = 0V$	-	-	2.80	
			$V_D = 15V, V_{IN} = 5V$	-	-	2.80	
		Each part of $V_{UFB-U}, V_{VFB-V}, V_{WFB-W}$	$V_D = V_{DB} = 15V, V_{IN} = 0V$	-	-	0.10	
			$V_D = V_{DB} = 15V, V_{IN} = 5V$	-	-	0.10	
$V_{SC(ref)}$	Short circuit trip level	$V_D = 15V$	(Note 3)		0.43	0.48	
UV_{DBt}	P-side Control supply under-voltage protection(UV)	$T_{ch} \leq 125^\circ\text{C}$	Trip level	7.0	10.0	12.0	
UV_{DBr}	N-side Control supply under-voltage protection(UV)		Reset level	7.0	10.0	12.0	
UV_{Dt}			Trip level	10.3	-	12.5	
UV_{Dr}			Reset level	10.8	-	13.0	
OT_t	Over temperature protection (OT)	$V_D = 15V$	Trip level	100	120	140	
OT_{rh}			Detect LVIC temperature	-	10	-	
V_{FOH}	Fault output voltage	$V_{SC} = 0V, F_O$ terminal pulled up to 5V by 10k Ω			4.9	-	
V_{FOL}		$V_{SC} = 1V, I_{FO} = 1mA$			-	0.95	
t_{FO}	Fault output pulse width	(Note 5)			20	-	
I_{IN}	Input current	$V_{IN} = 5V$	-	1.00	1.50	mA	
$V_{th(on)}$	ON threshold voltage	Applied between $U_P, V_P, W_P, U_N, V_N, W_N-V_{NC}$	-	2.10	2.60		
$V_{th(off)}$	OFF threshold voltage		0.80	1.30	-		
$V_{th(hys)}$	ON/OFF threshold hysteresis voltage		0.35	0.65	-		
V_F	Bootstrap Di forward voltage	$I_F = 10mA$ including voltage drop by limiting resistor	(Note 6)		1.1	1.7	
R	Built-in limiting resistance	Included in bootstrap Di	-	80	100	120	

Note 3 : SC protection works for N-side only. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating.

4 : When the LVIC temperature exceeds OT trip temperature level(OT_t), OT protection works and F_O outputs. In that case if the heat sink dropped off or fixed loosely, don't reuse that DIPIM. (There is a possibility that channel temperature of power chips exceeded maximum $T_{ch}(150^\circ\text{C})$.)5 : Fault signal F_O outputs when SC, UV or OT protection works. F_O pulse width is different for each protection modes. At SC failure, F_O pulse width is a fixed width (=minimum 20 μs), but at UV or OT failure, F_O outputs continuously until recovering from UV or OT state. (But minimum F_O pulse width is 20 μs .)

6 : The characteristics of bootstrap Di is described in Fig.2.


Fig. 2 Characteristics of bootstrap Di V_F-I_F curve (@ $T_a=25^\circ\text{C}$) including voltage drop by limiting resistor (Right chart is enlarged chart.)

MECHANICAL CHARACTERISTICS AND RATINGS

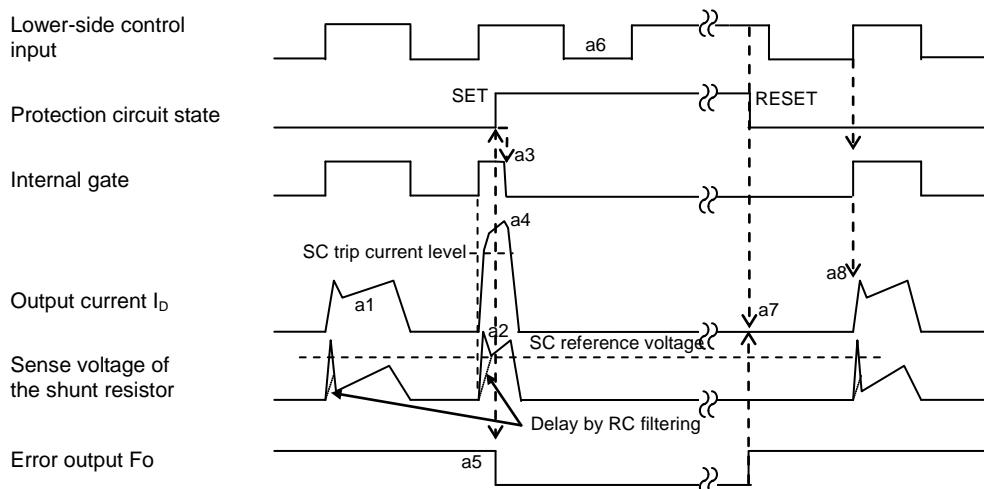
Parameter	Condition		Limits			Unit
			Min.	Typ.	Max.	
Mounting torque	Mounting screw : M3 (Note 8)	Recommended	0.69N·m	0.59	0.69	0.78 N·m
Terminal pulling strength	Control terminal: Load 4.9N Power terminal: Load 9.8N	EIAJ-ED-4701	10	-	-	s
Terminal bending strength	Control terminal: Load 2.45N Power terminal: Load 4.9N 90deg. bend	EIAJ-ED-4701	2	-	-	times
Weight			-	8.5	-	g
Heat-sink flatness		(Note 9)	-50	-	100	μm

Note 8: Plain washers (ISO 7089~7094) are recommended.

Note 9: Measurement point of heat sink flatness

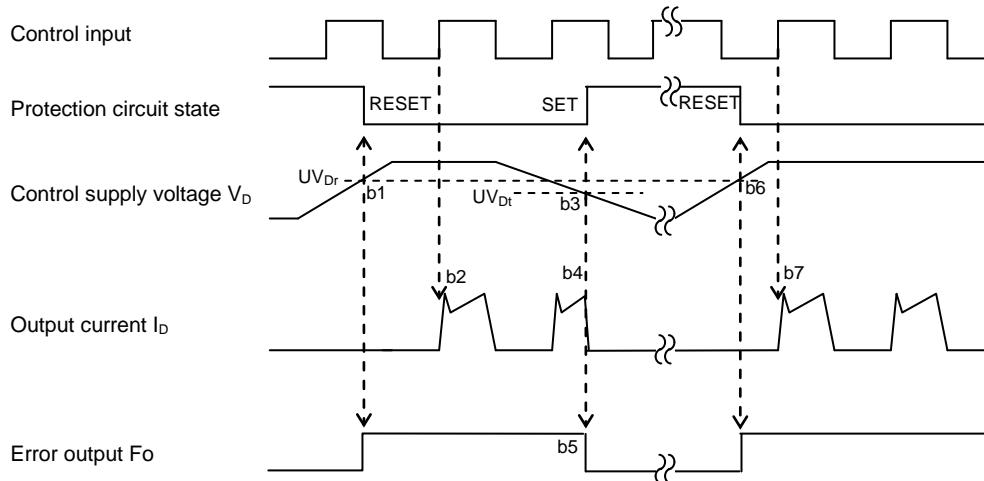
RECOMMENDED OPERATION CONDITIONS

Symbol	Parameter	Condition	Limits			Unit
			Min.	Typ.	Max.	
V_{CC}	Supply voltage	Applied between P-NU, NV, NW	0	300	400	V
V_D	Control supply voltage	Applied between $V_{P1}-V_{NC}$, $V_{N1}-V_{NC}$	13.5	15.0	16.5	V
V_{DB}	Control supply voltage	Applied between V_{UFB-U} , V_{VFB-V} , V_{WFB-W}	13.0	15.0	18.5	V
ΔV_D , ΔV_{DB}	Control supply variation		-1	-	+1	V/μs
t_{dead}	Arm shoot-through blocking time	For each input signal	1.0	-	-	μs
f_{PWM}	PWM input frequency	$T_c \leq 100^\circ\text{C}$, $T_{ch} \leq 125^\circ\text{C}$	-	-	20	kHz
I_o	Allowable r.m.s. current	$V_{DD} = 300V$, $V_D = 15V$, P.F = 0.8, Sinusoidal PWM $T_c \leq 100^\circ\text{C}$, $T_{ch} \leq 125^\circ\text{C}$ (Note 10)	$f_{PWM} = 5\text{kHz}$	-	-	1.5
			$f_{PWM} = 15\text{kHz}$	-	-	1.2
PWIN(on) PWIN(off)	Minimum input pulse width	(Note 11)	0.7	-	-	μs
			0.7	-	-	
V_{NC}	V_{NC} variation	Between V_{NC-NU} , NV , NW (including surge)	-5.0	-	+5.0	V
Tch	Channel temperature		-20	-	+125	°C

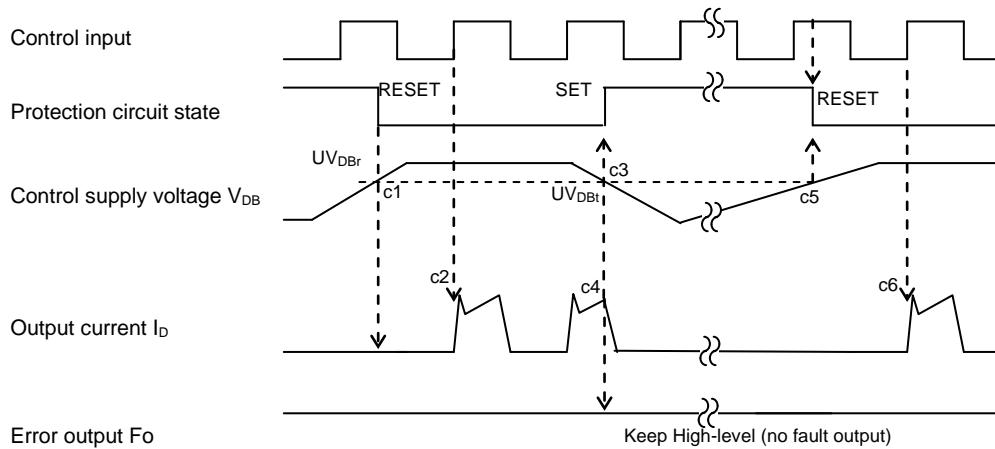

Note 10: Allowable r.m.s. current depends on the actual application conditions.

11: DIPIPM might not make response if the input signal pulse width is less than PWIN(on), PWIN(off).

Fig. 3 Timing Charts of The DIPIPM Protective Functions


[A] Short-Circuit Protection (N-side only with the external shunt resistor and RC filter)

- a1. Normal operation: MOSFET ON and outputs current.
- a2. Short circuit current detection (SC trigger)
 - (It is recommended to set RC time constant 1.5~2.0 μ s so that MOSFET shut down within 2.0 μ s when SC.)
- a3. All N-side MOSFET's gates are hard interrupted.
- a4. All N-side MOSFETs turn OFF.
- a5. F_o outputs for $t_{F_o}=\text{minimum } 20\mu\text{s}$.
- a6. Input = "L": MOSFET OFF
- a7. F_o finishes output, but MOSFETs don't turn on until inputting next ON signal (L \rightarrow H).
- (MOSFET of each phase can return to normal state by inputting ON signal to each phase.)
- a8. Normal operation: MOSFET ON and outputs current.


[B] Under-Voltage Protection (N-side, UV_D)

- b1. Control supply voltage V_D exceeds under voltage reset level (UV_{Dr}), but MOSFET turns ON by next ON signal (L \rightarrow H).
 - (MOSFET of each phase can return to normal state by inputting ON signal to each phase.)
- b2. Normal operation: MOSFET ON and outputs current.
- b3. V_D level drops to under voltage trip level. (UV_{Dt}).
- b4. All N-side MOSFETs turn OFF in spite of control input condition.
- b5. F_o outputs for $t_{F_o}=\text{minimum } 20\mu\text{s}$, but output is extended during V_D keeps below UV_{Dr} .
- b6. V_D level reaches UV_{Dr} .
- b7. Normal operation: MOSFET ON and outputs current.

[C] Under-Voltage Protection (P-side, V_{DB})

- c1. Control supply voltage V_{DB} rises. After the voltage reaches under voltage reset level UV_{DBr} , MOSFET turns on by next ON signal (L→H).
- c2. Normal operation: MOSFET ON and outputs current.
- c3. V_{DB} level drops to under voltage trip level (UV_{DBt}).
- c4. MOSFET of the correspond phase only turns OFF in spite of control input signal level, but there is no F_o signal output.
- c5. V_{DB} level reaches UV_{DBr} .
- c6. Normal operation: MOSFET ON and outputs current.

[D] Over Temperature Protection (N-side, Detecting LVIC temperature)

- d1. Normal operation: MOSFET ON and outputs current.
- d2. LVIC temperature exceeds over temperature trip level(OT_t).
- d3. All N-side MOSFETs turn OFF in spite of control input condition.
- d4. F_o outputs for $t_{F_o}=\text{minimum } 20\mu\text{s}$, but output is extended during LVIC temperature keeps over OT_t .
- d5. LVIC temperature drops to over temperature reset level.
- d6. Normal operation: MOSFET turns on by next ON signal (L→H).

(MOSFET of each phase can return to normal state by inputting ON signal to each phase.)

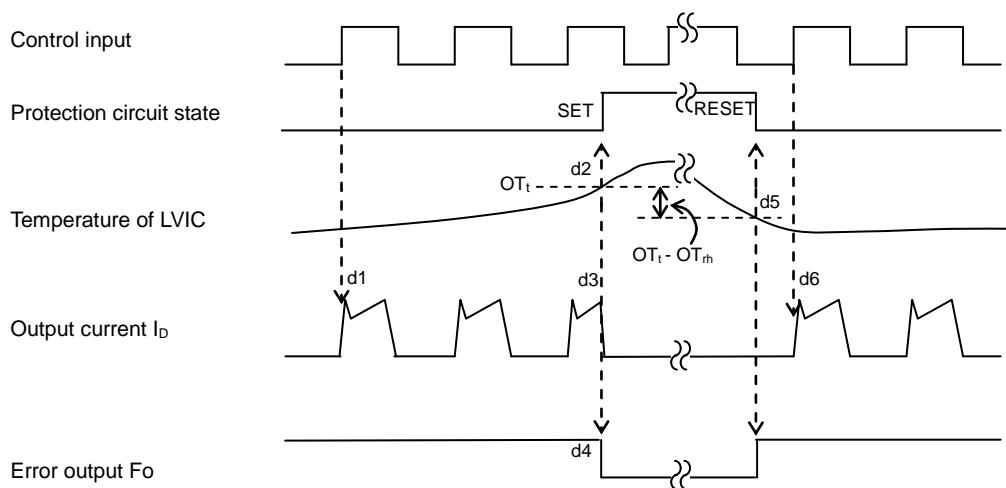
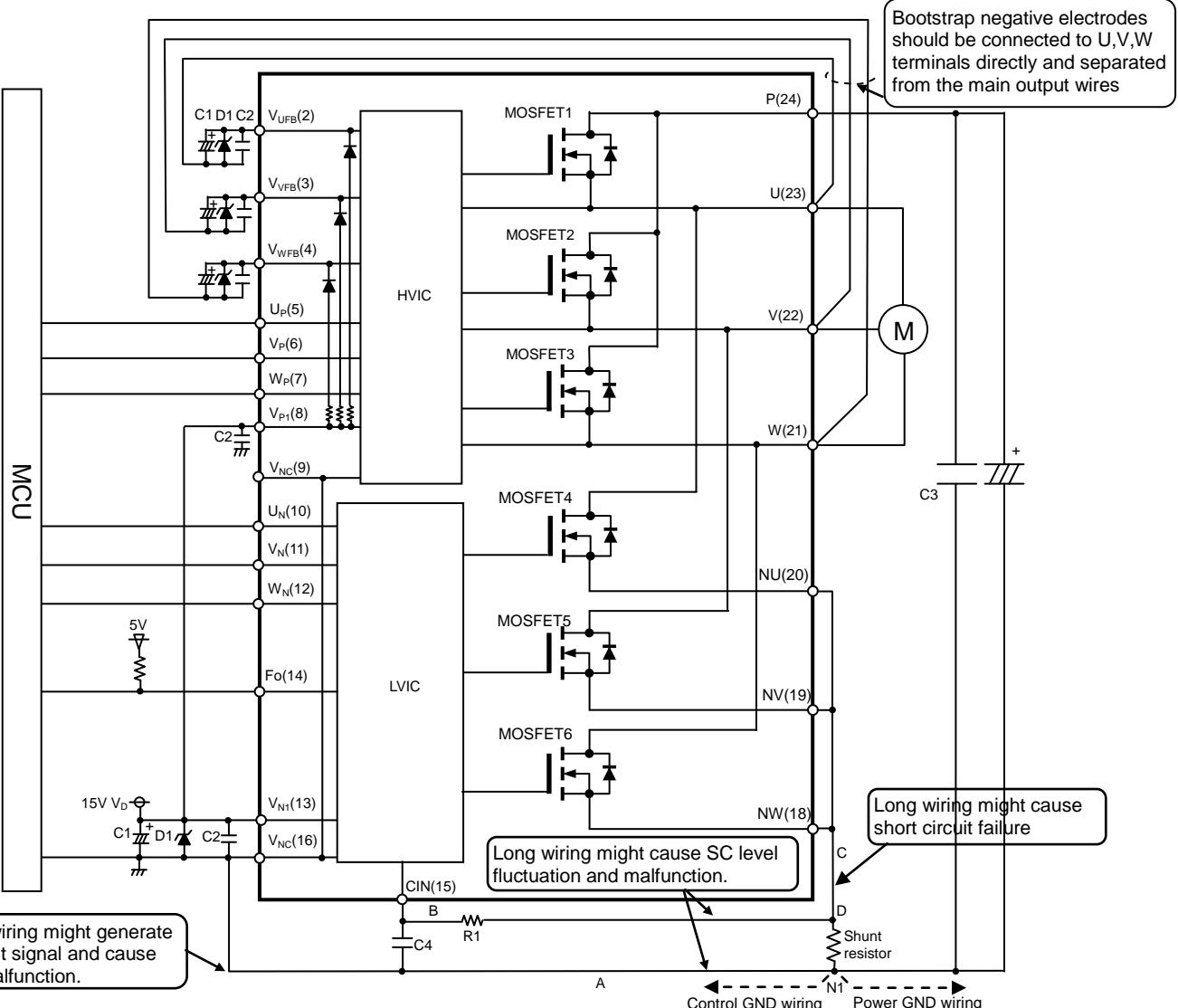
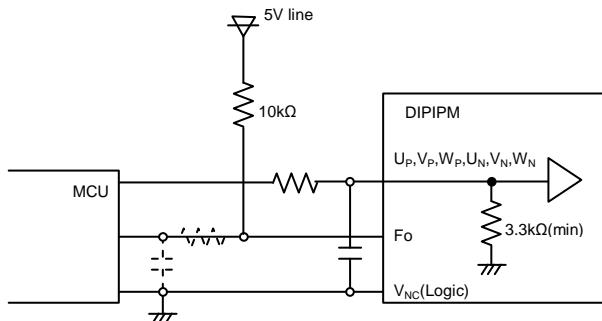
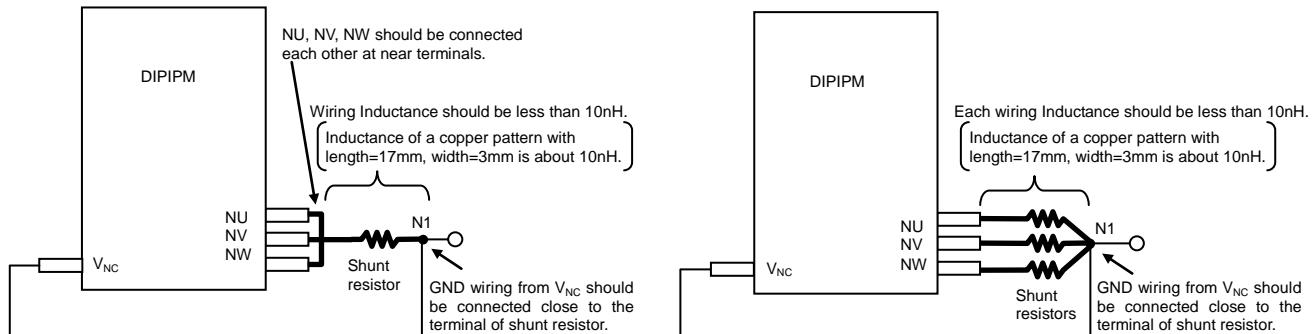




Fig. 4 Example of Application Circuit

- (1) If control GND is connected with power GND by common broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND and power GND at only a point N1 (near the terminal of shunt resistor).
- (2) It is recommended to insert a Zener diode D1(24V/1W) between each pair of control supply terminals to prevent surge destruction.
- (3) To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 terminals should be as short as possible. Generally a 0.1-0.22μF snubber capacitor C3 between the P-N1 terminals is recommended.
- (4) R1, C4 of RC filter for preventing protection circuit malfunction is recommended to select tight tolerance, temp-compensated type. The time constant R1C4 should be set so that SC current is shut down within 2μs. (1.5μs~2μs is general value.) SC interrupting time might vary with the wiring pattern, so the enough evaluation on the real system is necessary.
- (5) To prevent malfunction, the wiring of A, B, C should be as short as possible.
- (6) The point D at which the wiring to CIN filter is divided should be near the terminal of shunt resistor. NU, NV, NW terminals should be connected at near NU, NV, NW terminals.
- (7) All capacitors should be mounted as close to the terminals as possible. (C1: good temperature, frequency characteristic electrolytic type and C2:0.22μ-2μF, good temperature, frequency and DC bias characteristic ceramic type are recommended.)
- (8) Input drive is High-active type. There is a minimum 3.3kΩ pull-down resistor in the input circuit of IC. To prevent malfunction, the wiring of each input should be as short as possible. When using RC coupling circuit, make sure the input signal level meet the turn-on and turn-off threshold voltage.
- (9) Fo output is open drain type. It should be pulled up to MCU or control power supply (e.g. 5V,15V) by a resistor that makes I_{FO} up to 1mA. (I_{FO} is estimated roughly by the formula of control power supply voltage divided by pull-up resistance. In the case of pulled up to 5V, 10kΩ (5kΩ or more) is recommended.)
- (10) Thanks to built-in HVIC, direct coupling to MCU without any opto-coupler or transformer isolation is possible.
- (11) Two V_{NC} terminals (9 & 16 pin) are connected inside DIPIPM, please connect either one to the 15V power supply GND outside and leave another one open.
- (12) If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet $dV/dt \leq +/-1V/\mu s$, $V_{ripple} \leq 2V_{p-p}$.
- (13) For DIPIPM, it isn't recommended to drive same load by parallel connection with other phase MOSFET or other DIPIPM.

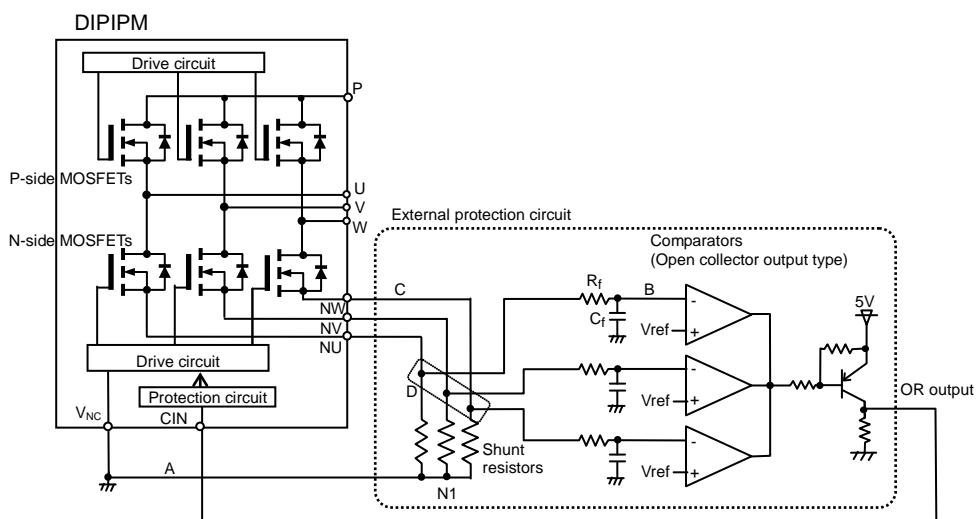
Fig. 5 MCU I/O Interface Circuit



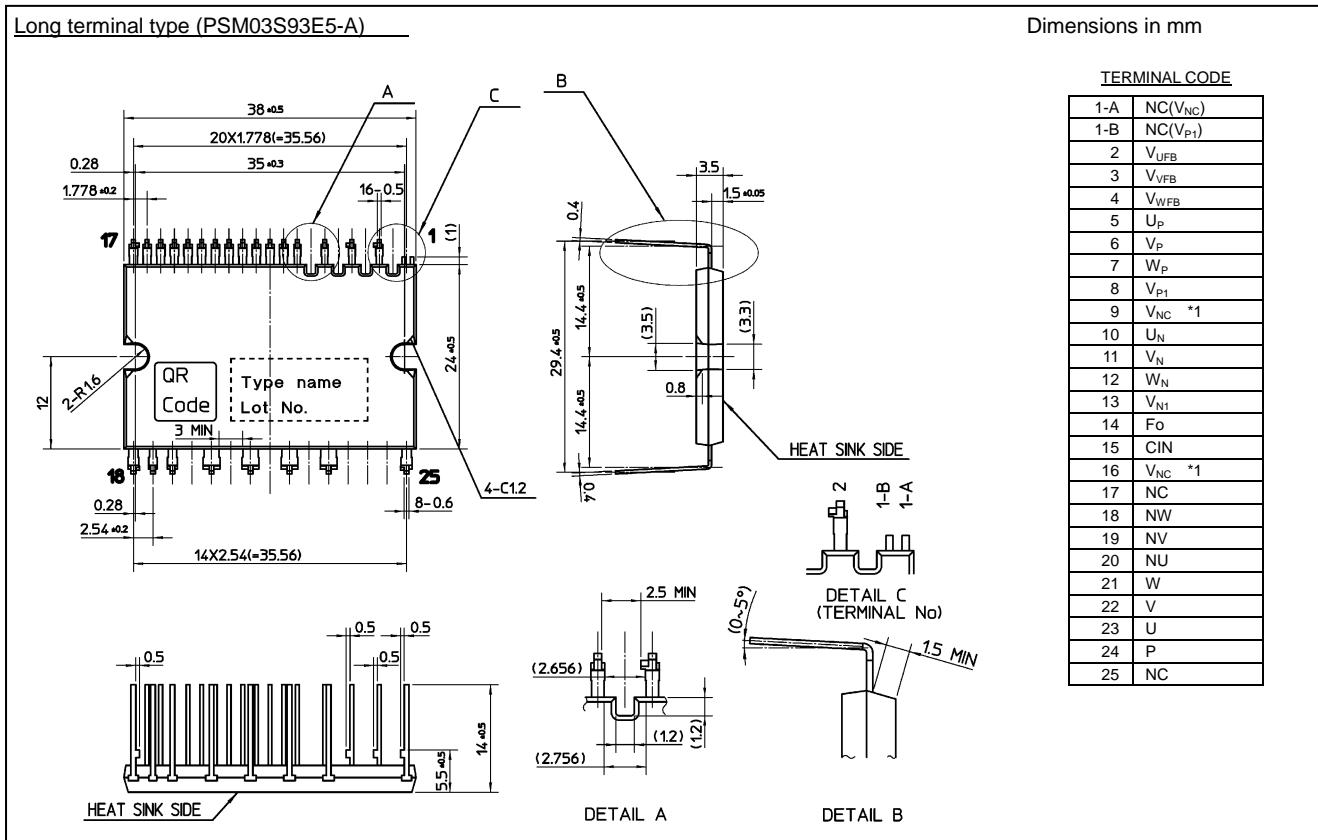
Note)

Design for input RC filter depends on PWM control scheme used in the application and wiring impedance of the printed circuit board. DIPIM input signal interface integrates a minimum 3.3kΩ pull-down resistor. Therefore, when inserting RC filter, it is necessary to satisfy turn-on threshold voltage requirement.

F_O output is open drain type. It should be pulled up to control power supply (e.g. 5V, 15V) with a resistor that makes F_O sink current I_{F_O} 1mA or less. In the case of pulled up to 5V supply, 10kΩ (5kΩ or more) is recommended.


Fig. 6 Pattern Wiring Around the Shunt Resistor

Low inductance shunt resistor like surface mounted (SMD) type is recommended.


Fig. 7 Pattern Wiring Around the Shunt Resistor (for the case of open source)

When DIPIM is operated with three shunt resistors, voltage of each shunt resistor cannot be input to CIN terminal directly. In that case, it is necessary to use the external protection circuit as below.

- (1) It is necessary to set the time constant R_fC_f of external comparator input so that MOSFET stops within 2μs when short circuit occurs. SC interrupting time might vary with the wiring pattern, comparator speed and so on.
- (2) It is recommended for the threshold voltage V_{ref} to set to the same rating of short circuit trip level (V_{sc(ref)}: typ. 0.48V).
- (3) Select the external shunt resistance so that SC trip-level is less than specified value (=1.7 times of rating current).
- (4) To avoid malfunction, the wiring A, B, C should be as short as possible.
- (5) The point D at which the wiring to comparator is divided should be close to the terminal of shunt resistor.
- (6) OR output high level when protection works should be over 0.53V (=maximum V_{sc(ref)} rating).

Fig. 8 Package Outlines

1) 9 & 16 pins (V_{NC}) are connected inside DIPIM, please connect either one to the control power supply GND outside and leave another one open.

QR Code is registered trademark of DENSO WAVE INCORPORATED in JAPAN and other countries.

< Dual-In-Line Package Intelligent Power Module >

PSM03S93E5-A

TRANSFER MOLDING TYPE

INSULATED TYPE

Revision Record

Rev.	Date	Page	Revised contents
1	10/15/2013	-	New

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (<http://www.MitsubishiElectric.com/>).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.