

FEATURES

- Member of the Texas Instruments Widebus™ Family
- Output Ports Have Equivalent $26\text{-}\Omega$ Series Resistors, So No External Resistors Are Required
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

This 1-bit to 4-bit address register/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The device is ideal for use in applications in which a single address bus is driving four separate memory locations. The SN74ALVCH162831 can be used as a buffer or a register, depending on the logic level of the select (\overline{SEL}) input.

When \overline{SEL} is logic high, the device is in the buffer mode. The outputs follow the inputs and are controlled by the two output-enable (\overline{OE}) inputs. Each \overline{OE} controls two groups of nine outputs.

When \overline{SEL} is logic low, the device is in the register mode. The register is an edge-triggered D-type flip-flop. On the positive transition of the clock (CLK) input, data set up at the A inputs is stored in the internal registers. \overline{OE} controls operate the same as in buffer mode.

When \overline{OE} is logic low, the outputs are in a normal logic state (high or low logic level). When \overline{OE} is logic high, the outputs are in the high-impedance state.

\overline{SEL} and \overline{OE} do not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to sink up to 12 mA, include equivalent $26\text{-}\Omega$ resistors to reduce overshoot and undershoot.

DBB PACKAGE
(TOP VIEW)

4Y1	1	80	1Y2
3Y1	2	79	2Y2
GND	3	78	GND
2Y1	4	77	3Y2
1Y1	5	76	4Y2
V_{CC}	6	75	V_{CC}
NC	7	74	1Y3
A1	8	73	2Y3
GND	9	72	GND
NC	10	71	3Y3
A2	11	70	4Y3
GND	12	69	GND
NC	13	68	1Y4
A3	14	67	2Y4
V_{CC}	15	66	V_{CC}
NC	16	65	3Y4
A4	17	64	4Y4
GND	18	63	GND
CLK	19	62	1Y5
$\overline{OE1}$	20	61	2Y5
$\overline{OE2}$	21	60	3Y5
\overline{SEL}	22	59	4Y5
GND	23	58	GND
A5	24	57	1Y6
A6	25	56	2Y6
V_{CC}	26	55	V_{CC}
A7	27	54	3Y6
NC	28	53	4Y6
GND	29	52	GND
A8	30	51	1Y7
NC	31	50	2Y7
GND	32	49	GND
A9	33	48	3Y7
NC	34	47	4Y7
V_{CC}	35	46	V_{CC}
4Y9	36	45	1Y8
3Y9	37	44	2Y8
GND	38	43	GND
2Y9	39	42	3Y8
1Y9	40	41	4Y8

NC – No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

SN74ALVCH162831
1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER
WITH 3-STATE OUTPUTS

SCES084H—AUGUST 1996—REVISED SEPTEMBER 2004

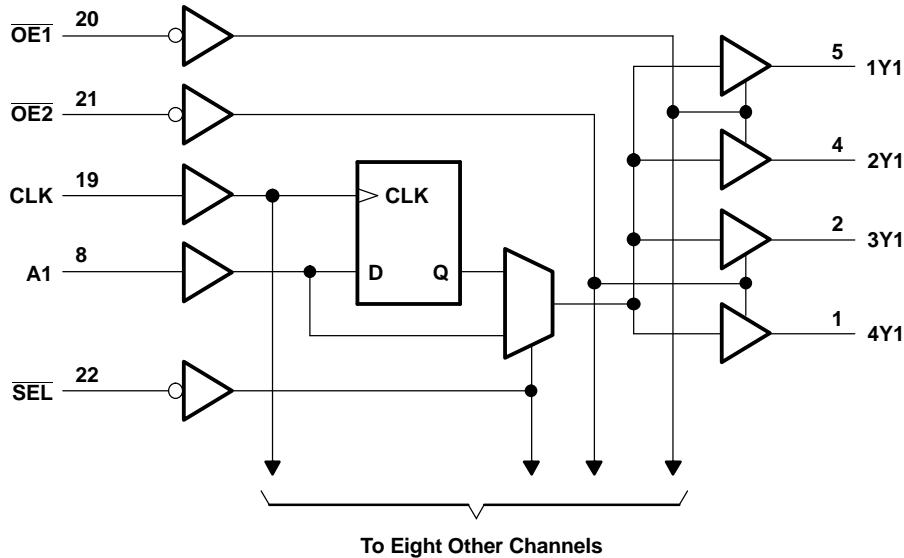
 TEXAS
INSTRUMENTS
www.ti.com

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION


T_A	PACKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	TVSOP - DBB	SN74ALVCH162831GR	ALVCH162831

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

INPUTS				OUTPUT Y
\overline{OE}	\overline{SEL}	CLK	A	
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	↑	L	L
L	L	↑	H	H

LOGIC DIAGRAM (POSITIVE LOGIC)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Supply voltage range	-0.5	4.6	V
V_I	Input voltage range ⁽²⁾	-0.5	4.6	V
V_O	Output voltage range ⁽²⁾⁽³⁾	-0.5	$V_{CC} + 0.5$	V
I_{IK}	Input clamp current	$V_I < 0$		-50 mA
I_{OK}	Output clamp current	$V_O < 0$		-50 mA
I_o	Continuous output current			± 50 mA
Continuous current through each V_{CC} or GND				± 100 mA
θ_{JA}	Package thermal impedance ⁽⁴⁾			64 °C/W
T_{stg}	Storage temperature range	-65	150	°C

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- This value is limited to 4.6 V maximum.
- The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

		MIN	MAX	UNIT
V_{CC}	Supply voltage	1.65	3.6	V
V_{IH}	High-level input voltage	$V_{CC} = 1.65$ V to 1.95 V	$0.65 \times V_{CC}$	V
		$V_{CC} = 2.3$ V to 2.7 V	1.7	
		$V_{CC} = 2.7$ V to 3.6 V	2	
V_{IL}	Low-level input voltage	$V_{CC} = 1.65$ V to 1.95 V	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3$ V to 2.7 V	0.7	
		$V_{CC} = 2.7$ V to 3.6 V	0.8	
V_I	Input voltage	0	V_{CC}	V
V_O	Output voltage	0	V_{CC}	V
I_{OH}	High-level output current	$V_{CC} = 1.65$ V	-2	mA
		$V_{CC} = 2.3$ V	-6	
		$V_{CC} = 2.7$ V	-8	
		$V_{CC} = 3$ V	-12	
I_{OL}	Low-level output current	$V_{CC} = 1.65$ V	2	mA
		$V_{CC} = 2.3$ V	6	
		$V_{CC} = 2.7$ V	8	
		$V_{CC} = 3$ V	12	
$\Delta t/\Delta v$	Input transition rise or fall rate			10 ns/V
T_A	Operating free-air temperature	-40	85	°C

- All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74ALVCH162831

1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS

SCES084H—AUGUST 1996—REVISED SEPTEMBER 2004

 **TEXAS
INSTRUMENTS**
www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{CC}	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{OH}	$I_{OH} = -100 \mu A$	1.65 V to 3.6 V	$V_{CC} - 0.2$			V
	$I_{OH} = -2 \text{ mA}$	1.65 V	1.2			
	$I_{OH} = -4 \text{ mA}$	2.3 V	1.9			
	$I_{OH} = -6 \text{ mA}$	2.3 V	1.7			
	$I_{OH} = -8 \text{ mA}$	3 V	2.4			
	$I_{OH} = -12 \text{ mA}$	2.7 V	2			
V_{OL}	$I_{OL} = 100 \mu A$	1.65 V to 3.6 V		0.2		V
	$I_{OL} = 2 \text{ mA}$	1.65 V		0.45		
	$I_{OL} = 4 \text{ mA}$	2.3 V		0.4		
	$I_{OL} = 6 \text{ mA}$	2.3 V		0.55		
	$I_{OL} = 8 \text{ mA}$	3 V		0.55		
	$I_{OL} = 12 \text{ mA}$	2.7 V		0.6		
I_I	$V_I = V_{CC}$ or GND	3.6 V		± 5	μA	
$I_{I(hold)}$	$V_I = 0.58 \text{ V}$	1.65 V	25			μA
	$V_I = 1.07 \text{ V}$	1.65 V	-25			
	$V_I = 0.7 \text{ V}$	2.3 V	45			
	$V_I = 1.7 \text{ V}$	2.3 V	-45			
	$V_I = 0.8 \text{ V}$	3 V	75			
	$V_I = 2 \text{ V}$	3 V	-75			
	$V_I = 0$ to $3.6 \text{ V}^{(2)}$	3.6 V		± 500		
I_{OZ}	$V_O = V_{CC}$ or GND	3.6 V		± 10	μA	
I_{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V		40	μA	
ΔI_{CC}	One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND	3 V to 3.6 V		750	μA	
C_i	Control inputs	$V_I = V_{CC}$ or GND	3.3 V	4.5		pF
	Data inputs			5		
C_o	Outputs	$V_O = V_{CC}$ or GND	3.3 V	7.5	pF	

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$.

(2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		$V_{CC} = 1.8 \text{ V}$		$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$		$V_{CC} = 2.7 \text{ V}$		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f_{clock}	Clock frequency	(1)		150		150		150		MHz
t_w	Pulse duration, CLK high or low	(1)		3.3		3.3		3.3		ns
t_{su}	Setup time, A data before CLK↑	(1)		2		2		1.6		ns
t_h	Hold time, A data after CLK↑	(1)		0.7		0.5		1.1		ns

(1) This information was not available at the time of publication.

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

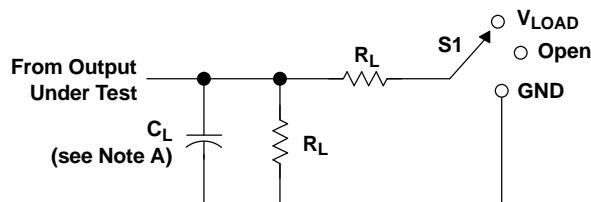
PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 1.8\text{ V}$		$V_{CC} = 2.5\text{ V}$ $\pm 0.2\text{ V}$		$V_{CC} = 2.7\text{ V}$		$V_{CC} = 3.3\text{ V}$ $\pm 0.3\text{ V}$		
			MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f_{max}			(1)		150		150		150		MHz
t_{pd}	A	Y	(1)		1.1	4.7		4.8	1.5	4.3	ns
	CLK		(1)		1	5.3		5.3	1.4	4.7	
	SEL		(1)		1.1	6		6.2	1.5	4.8	
t_{en}	\overline{OE}	Y	(1)		1	5.9		5.9	1.1	5.1	ns
t_{dis}	\overline{OE}	Y	(1)		1.4	6.3		5.4	1.6	5.1	ns

(1) This information was not available at the time of publication.

SWITCHING CHARACTERISTICS

from 0°C to 65°C, $C_L = 50\text{ pF}$

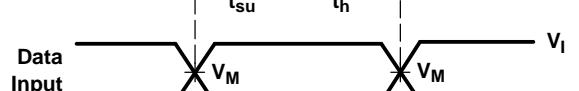
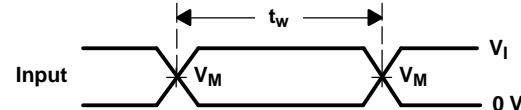
PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 3.3\text{ V}$ $\pm 0.15\text{ V}$		UNIT
			MIN	MAX	
t_{pd}	CLK	Y	1.9	4.5	ns


OPERATING CHARACTERISTICS

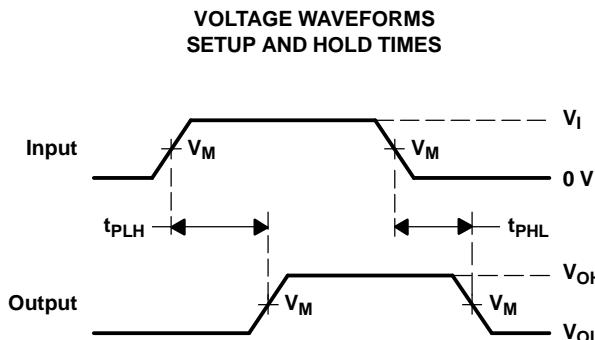
$T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS	$V_{CC} = 1.8\text{ V}$	$V_{CC} = 2.5\text{ V}$	$V_{CC} = 3.3\text{ V}$	UNIT
		TYP	TYP	TYP	
C_{pd} Power dissipation capacitance per bit (four outputs switching)	All outputs enabled	(1)	119	132	pF
	All outputs disabled	(1)	22	25	

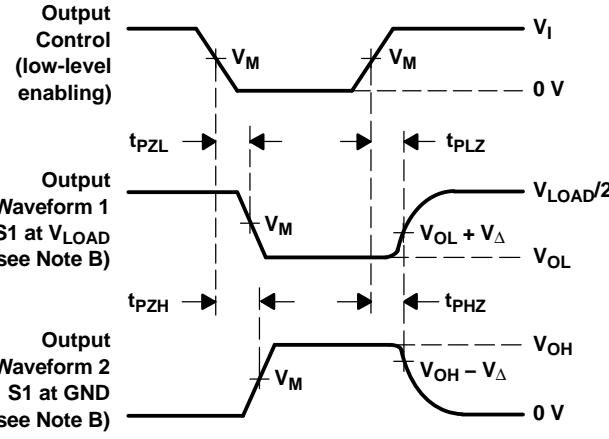
(1) This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION


TEST	S1
t_{pd}	Open
t_{PLZ}/t_{PZL}	V_{LOAD}
t_{PHZ}/t_{PZH}	GND

LOAD CIRCUIT


V_{CC}	INPUT		V_M	V_{LOAD}	C_L	R_L	V_Δ
	V_I	t_r/t_f					
1.8 V	V_{CC}	≤ 2 ns	$V_{CC}/2$	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
$2.5 V \pm 0.2$ V	V_{CC}	≤ 2 ns	$V_{CC}/2$	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤ 2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
$3.3 V \pm 0.3$ V	2.7 V	≤ 2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

Output Waveform 1
S1 at V_{LOAD}
(see Note B)

Output Waveform 2
S1 at GND
(see Note B)

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

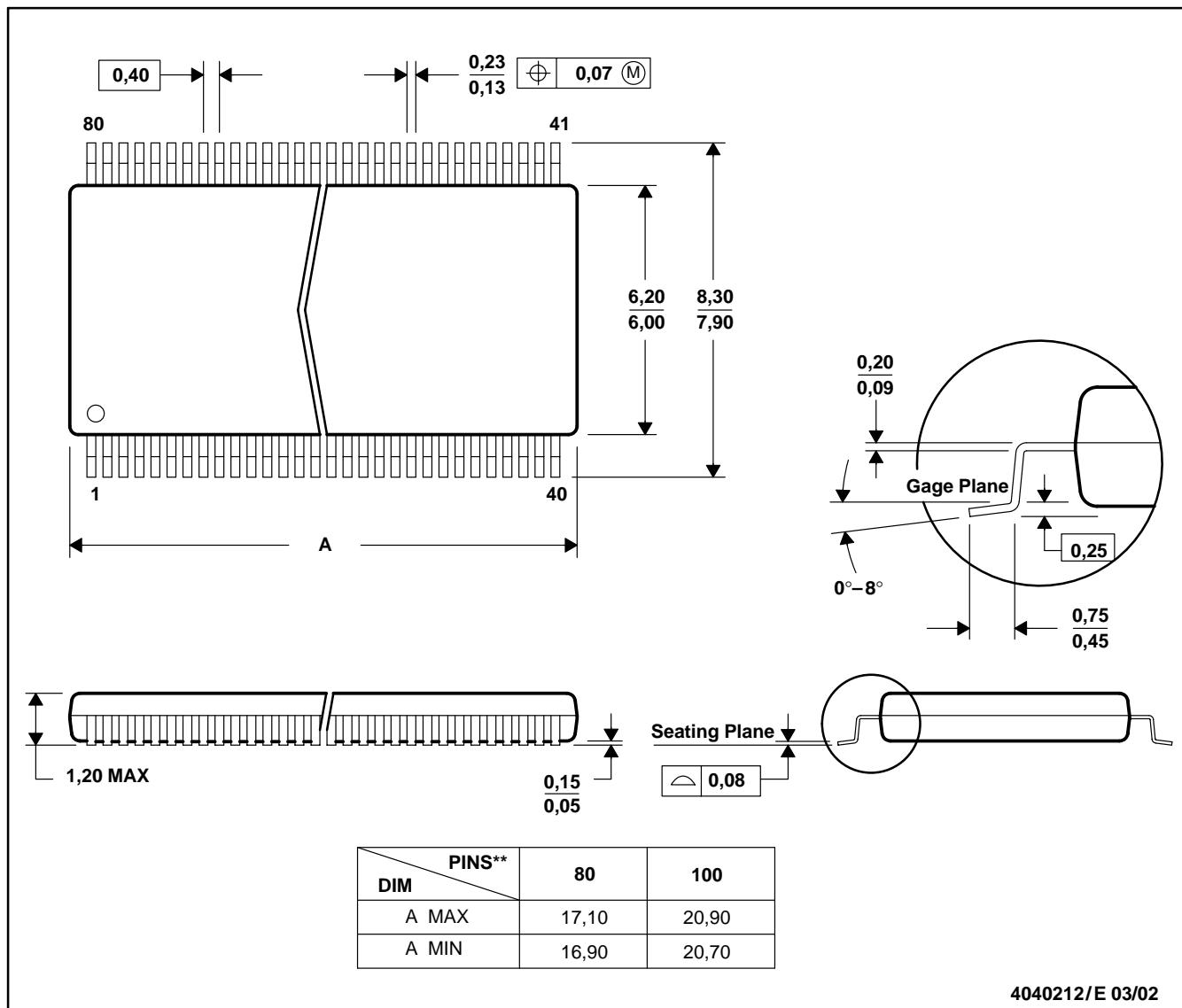

NOTES: A. C_L includes probe and jig capacitance.
 B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$.
 D. The outputs are measured one at a time, with one transition per measurement.
 E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 F. t_{PZL} and t_{PZH} are the same as t_{en} .
 G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

DBB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

80 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Falls within JEDEC : 80 Pin – MO-153 Variation FF
 100 Pin – MO-194 Variation BB

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated