

Four Output Differential Buffer for PCI Express

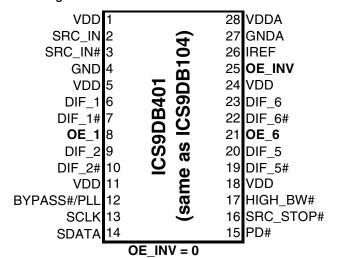
Recommended Application:

DB800 Version 2.0 Yellow Cover part with PCI Express support with extended bypass mode frequency range.

Output Features:

- 4 0.7V current-mode differential output pairs
- Supports zero delay buffer mode and fanout mode
- · Bandwidth programming available

Key Specifications:


- Outputs cycle-cycle jitter: < 50ps
- Outputs skew: < 50ps
- Extended frequency range in bypass mode: Revision B: up to 333.33MHz

Revision C: up to 400MHz

Features/Benefits:

- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread
- Supports undriven differential outputs in PD# and SRC_STOP# modes for power management.

Pin Configurations

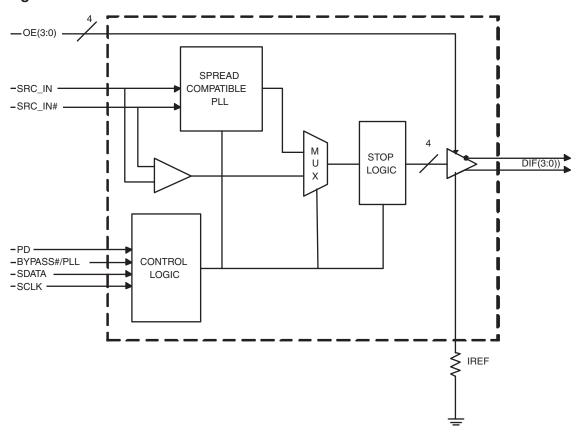
VDD 1 28 VDDA SRC IN 2 **GNDA** 27 SRC IN# 3 26 **IREF** GND 4 25 OE INV VDD 5 24 VDD DIF 16 DIF 6 DIF_1# 7 DIF_6# 21 **OE6**# **OE1#** 8 DIF_2 9 20 DIF_5 DIF 2# 10 19 DIF 5# 18 VDD VDD 11 BYPASS#/PLL 12 HIGH BW# SRC STOP SCLK 13 16 ΙPD SDATA 14 15 $OE_INV = 1$

28-pin SSOP & TSSOP

Pin Decription When OE_INV = 0

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDD	PWR	Power supply, nominal 3.3V
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock output
7	DIF_1#	OUT	0.7V differential complement clock output
8	OE_1	IN	Active high input for enabling output 1. 0 = tri-state outputs, 1= enable outputs
9	DIF 2	OUT	0.7V differential true clock output
10	DIF_2#	OUT	0.7V differential complement clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1= PLL mode
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
15	PD#	IN	Asynchronous active low input pin used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.
16	SRC_STOP#	IN	Active low input to stop SRC outputs.
17	HIGH_BW#	IN	3.3V input for selecting PLL Band Width 0 = High, 1= Low
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential complement clock output
20	DIF_5	OUT	0.7V differential true clock output
21	OE_6	IN	Active high input for enabling output 6. 0 = tri-state outputs, 1= enable outputs
22	DIF_6#	OUT	0.7V differential complement clock output
23	DIF_6	OUT	0.7V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	OE_INV	IN	This latched input selects the polarity of the OE pins. 0 = OE pins active high, 1 = OE pins active low (OE#)
26	IREF	OUT	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Pin Decription When OE_INV = 1


PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDD	PWR	Power supply, nominal 3.3V
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock output
7	DIF_1#	OUT	0.7V differential complement clock output
8	OE1#	IN	Active low input for enabling DIF pair 1. 1 = tri-state outputs, 0 = enable outputs
9	DIF 2	OUT	0.7V differential true clock output
10	DIF 2#	OUT	0.7V differential complement clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1= PLL mode
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
			Asynchronous active high input pin used to power down the device. The
15	PD	IN	internal clocks are disabled and the VCO is stopped.
16	SRC_STOP	IN	Active high input to stop SRC outputs.
			3.3V input for selecting PLL Band Width
17	HIGH_BW#	IN	0 = High, 1= Low
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential complement clock output
20	DIF_5	OUT	0.7V differential true clock output
0.1	OE6#	INI	Active low input for enabling DIF pair 6.
21	OE6#	IN	1 = tri-state outputs, 0 = enable outputs
22	DIF_6#	OUT	0.7V differential complement clock output
23	DIF_6	OUT	0.7V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	OE INV	IN	This latched input selects the polarity of the OE pins.
25	OE_IINV	IIN	0 = OE pins active high, 1 = OE pins active low (OE#)
			This pin establishes the reference current for the differential current-
26	IREF	OUT	mode output pairs. This pin requires a fixed precision resistor tied to
20	INEF	001	ground in order to establish the appropriate current. 475 ohms is the
			standard value.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

General Description

The ICS9DB401 follows the Intel DB400 Differential Buffer Specification v2.0. This buffer provides four PCI-Express SRC clocks. The ICS9DB401 is driven by a differential input pair from a CK409/CK410/CK410M main clock generator, such as the ICS952601, ICS954101 or ICS954201. It provides ouputs meeting tight cycle-to-cycle jitter (50ps) and output-to-output skew (50ps) requirements.

Block Diagram

Note: Polarities shown for OE INV = 0.

Power Groups

Pin N	lumber	Description			
VDD	GND	•			
1	4	SRC_IN/SRC_IN#			
5,11,18, 24	4	DIF(1,2,5,6)			
N/A	27	IREF			
28	27	Analog VDD & GND for PLL core			

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		4.6	V
VDD_In	3.3V Logic Supply Voltage		4.6	V
V_{IL}	Input Low Voltage	GND-0.5		V
V_{IH}	Input High Voltage		V _{DD} +0.5V	V
Ts	Storage Temperature	-65	150	°C
Tambient	Ambient Operating Temp	0	70	°C
Tcase	Case Temperature		115	°C
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V_{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input Low Voltage	V_{IL}	3.3 V +/-5%	GND - 0.3		0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	
Input Low Current	I _{IL2}	$V_{IN} = 0 \text{ V}$; Inputs with pull-up resistors	-200			uA	
Operation Cumply Current	I _{DD3.3PLL}	Full Active, C _L = Full load;		175	200	mΑ	
Operating Supply Current	I _{DD3.3ByPass}	Full Active, $O_L = Full load,$		160	175	mA	
Powerdown Current		all diff pairs driven			40	mΑ	
Powerdown Current	I _{DD3.3PD}	all differential pairs tri-stated			4	mA	
Input Frequency	F_{iPLL}	PLL Mode	50		200	MHz	
Input Frequency	F _{iBypass}	Bypass Mode (Revision B/REV ID = 1H)	0		333.33	MHz	
Input Frequency	F _{iBypass}	Bypass Mode (Revision C/REV ID = 2H)	0		400	MHz	
Pin Inductance ¹	L_{pin}				7	nΗ	1
1	C _{IN}	Logic Inputs	1.5		4	pF	1
Input Capacitance ¹	C _{OUT}	Output pin capacitance			4	V UA UA UA WA MA MA MA MHZ MHZ MHZ	1
DI I. Donahuidth		PLL Bandwidth when PLL_BW=0	2.4	3	3.4	MHz	1
PLL Bandwidth	BW	PLL Bandwidth when PLL_BW=1	0.7	1	1.4	uA u	1
Clk Stabilization ^{1,2}	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock		0.5	1	ms	1,2
Modulation Frequency	fMOD	Triangular Modulation	30		33	kHz	1
Tdrive_SRC_STOP#		DIF output enable after SRC_Stop# de-assertion		10	15	ns	1,3
Tdrive_PD#		DIF output enable after PD# de-assertion			300	us	1,3
Tfall		Fall time of PD# and SRC_STOP#			5	ns	1
Trise		Rise time of PD# and SRC_STOP#		_	5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

1014B--09/07/06

²See timing diagrams for timing requirements.

³Time from deassertion until outputs are >200 mV

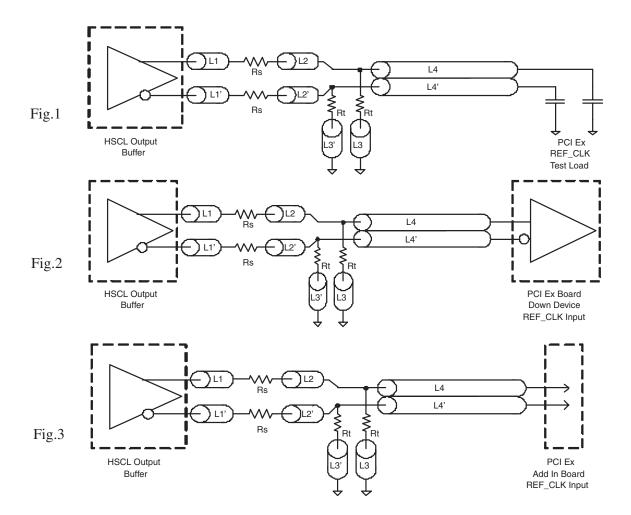
Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 T_{A} = 0 - 70°C; V_{DD} = 3.3 V +/-5%; C_{L} =2pF, R_{S} =33.2 Ω , R_{P} =49.9 Ω , I_{REF} = 475 Ω

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope	660		850	mV	1,3
Voltage Low	VLow	math function.	-150		150	1117	1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525 V V_{OL} = 0.175 V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode, Measurement from differential wavefrom			50	ps	1
		BYPASS mode as additive jitter			50	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410 accuracy requirements


 $^{{}^{3}}I_{REF} = V_{DD}/(3xR_{R}). \ \ \text{For} \ R_{R} = 475\Omega \ (1\%), \ I_{REF} = 2.32\text{mA}. \ I_{OH} = 6 \ x \ I_{REF} \ \text{and} \ V_{OH} = 0.7V \ @ \ Z_{O} = 50\Omega.$

SRC Reference Clock								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, Route as non -coupled 50 ohm trace.	0.5 max	inch	2, 3					
L2 length, Route as non -coupled 50 ohm trace.	0.2 max	inch	2, 3					
L3 length, Route as non -coupled 50 ohm trace.	0.2 max	inch	2, 3					
Rs	33	ohm	2, 3					
Rt	49.9	ohm	2, 3					

Down Device Differential Routing	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm	2 min to 16 max	inch	2
differential trace.			
L4 length, Route as coup led stripline 100 ohm	1.8 min to 14.4 max	inch	2
differential trace.			

Differential Routing to PCI Express Connector	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	0.25 to 14 max	inch	3
L4 length, Rout e as coupled stripline 100 ohm	0.225 min to 12.6	inch	3
differential trace.	max		

General SMBus serial interface information for the ICS9DB401

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

Ind	Index Block Write Operation							
Cor	ntroller (Host)		ICS (Slave/Receiver)					
Т	starT bit							
Slave	e Address DC _(H)							
WR	WRite							
			ACK					
Begi	nning Byte = N							
			ACK					
Data	Byte Count = X							
			ACK					
Begin	ning Byte N							
			ACK					
	0	ıte						
	0	X Byte	0					
	0	$ \times $	0					
			0					
Byte	e N + X - 1							
			ACK					
Р	stoP bit							

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address DC (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	Index Block Read Operation							
Con	troller (Host)	IC	S (Slave/Receiver)					
Т	starT bit							
Slave	Address DC _(H)							
WR	WRite							
			ACK					
Begii	nning Byte = N							
			ACK					
RT	Repeat starT							
Slave	Address DD _(H)							
RD	ReaD							
			ACK					
		D	ata Byte Count = X					
	ACK							
			Beginning Byte N					
	ACK							
		X Byte	0					
	0	B.	0					
	0	×	0					
	0		D. (N.)					
			Byte N + X - 1					
N	Not acknowledge							
Р	stoP bit							

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

Byt	te 0	Pin #	Name	Control Function	Туре	e 0 1		PWD
Bit 7		-	PD_Mode	PD# drive mode	RW	driven	Hi-Z	0
Bit 6		-	STOP_Mode	SRC_Stop# drive mode	RW	driven	Hi-Z	0
Bit 5		-	PD_SRC_INV	Power Down and SRC Invert	RW	Normal	Invert	0
Bit 4		-	Reserved	Reserved	RW	Reserved		Χ
Bit 3		-	Reserved	Reserved	RW	Rese	erved	Χ
Bit 2		-	PLL_BW#	Select PLL BW	RW	High BW	Low BW	1
Bit 1		-	BYPASS#	BYPASS#/PLL	RW	fan-out	ZDB	1
Bit 0		-	SRC_DIV#	SRC Divide by 2 Select	RW	x/2	1x	1

SMBus Table: Output Control Register

Byt	te 1	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		-	Reserved	Reserved	RW	Res	erved	Х
Bit 6	22	,23	DIF_6	Output Control	RW	Disable	Enable	1
Bit 5	19	,20	DIF_5	Output Control	RW	Disable	Enable	1
Bit 4		-	Reserved	Reserved	RW	Res	erved	Х
Bit 3		-	Reserved	Reserved	RW	Res	erved	Х
Bit 2	9,	10	DIF_2	Output Control	RW	Disable	Enable	1
Bit 1	6	,7	DIF_1	Output Control	RW	Disable	Enable	1
Bit 0		-	Reserved	Reserved	RW	Res	erved	Χ

SMBus Table: Output Control Register

Byt	e 2	Pin#	Name	Control Function	Туре	0	1	PWD
Bit 7	-		Reserved	Reserved	RW	V Reserved		Χ
Bit 6	22,	23	DIF_6	Output Control	RW	Free-run	Stoppable	0
Bit 5	19,	20	DIF_5	Output Control	RW	Free-run	Stoppable	0
Bit 4	-		Reserved	Reserved	RW	Res	erved	Χ
Bit 3	-		Reserved	Reserved	RW	Res	erved	Χ
Bit 2	9,	10	DIF_2	Output Control	RW	Free-run	Stoppable	0
Bit 1	6,	7	DIF_1	Output Control	RW	Free-run	Stoppable	0
Bit 0	-		Reserved	Reserved	RW	Res	erved	Χ

SMBus Table: Output Control Register

Byt	te 3	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7				Reserved	RW	Res	erved	Χ
Bit 6				Reserved	RW	Res	erved	Χ
Bit 5				Reserved	RW	Res	erved	Χ
Bit 4			Reserved RW Reserve		erved	Х		
Bit 3				Reserved	RW	Res	erved	Χ
Bit 2				Reserved	RW	Res	erved	Х
Bit 1				Reserved	RW	Res	erved	Χ
Bit 0	·			Reserved	RW	Res	erved	Χ

SMBus Table: Vendor & Revision ID Register

	ompao rabioi romao. a nomoron ip nogroto.							
Byt	te 4	Pin#	Name	Control Function	Туре	0	1	PWD
Bit 7	-	-	RID3		R	ı	•	Χ
Bit 6	-		RID2	REVISION ID	R	-	-	Х
Bit 5	-		RID1		R	-	-	Χ
Bit 4	-	-	RID0		R	-	-	Χ
Bit 3	-		VID3		R	-	-	0
Bit 2	-	-	VID2	VENDOR ID	R	ı	•	0
Bit 1	-	-	VID1	VENDORID	R	-	-	0
Bit 0	-		VID0		R	-	-	1

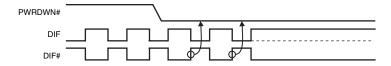
SMBus Table: DEVICE ID

Byte 5 Pin #		Name	Control Function	Туре	0	1	PWD	
Bit 7		-	Dev	rice ID 7 (MSB)	RW	Reserved		0
Bit 6		-		Device ID 6	RW	Res	erved	1
Bit 5	t 5 -			Device ID 5	RW	Reserved		0
Bit 4	t 4 -		Device ID 4		RW	Res	erved	0
Bit 3		-		Device ID 3	RW	Res	erved	0
Bit 2	2 -			Device ID 2	RW	Res	erved	0
Bit 1	t 1 -			Device ID 1		Res	erved	0
Bit 0	0 -			Device ID 0	RW	Res	erved	1

SMBus Table: Byte Count Register

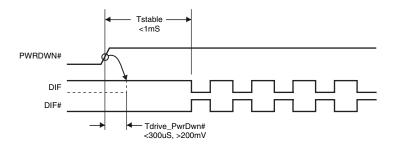
SIVIDU	SMBus Table: Byte Count Register							
Byt	te 6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		BC7	l –	RW	-	-	0
Bit 6	-		BC6		RW	-	-	0
Bit 5	-		BC5	Muiting to this vegictor	RW	-	-	0
Bit 4	-		BC4	Writing to this register configures how many	RW	-	-	0
Bit 3	-		BC3	bytes will be read back.	RW	-	-	0
Bit 2	-		BC2	bytes will be read back.	RW	-	-	1
Bit 1	-		BC1		RW	-	-	1
Bit 0	-		BC0		RW	-	-	1

1014B--09/07/06



PD#

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

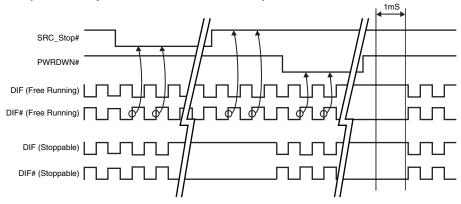
PD# De-assertion

Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 ms of PD# de-assertion.

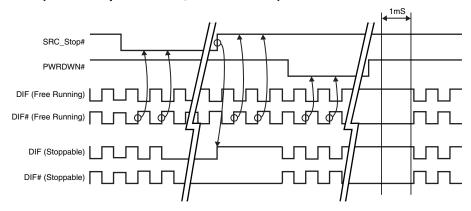
Note: Polarities in timing diagrams are shown OE_INV = 0. They are similar to OE_INV = 1.

SRC_STOP#

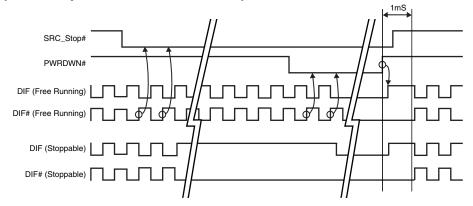
The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

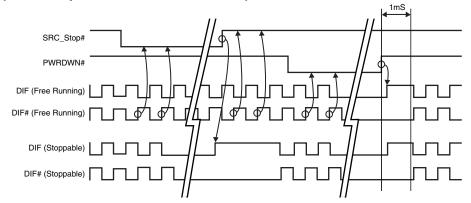

SRC_STOP# - Assertion (transition from '1' to '0')

Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xI_{REF} DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.


SRC_STOP# - De-assertion (transition from '0' to '1')

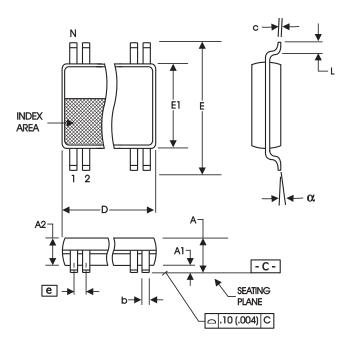
All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.


SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)


SRC_STOP_2 (SRC_Stop =Tristate, PD = Driven)

SRC_STOP_3 (SRC_Stop = Driven, PD = Tristate)

SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)



0.0256 BASIC

SEE VARIATIONS

.037

209 mil SSOP									
In Mill	imeters	In Inches							
COMMON [DIMENSIONS	COMMON [DIMENSIONS						
MIN	MAX	MIN	MAX						
	2.00		.079						
0.05		.002							
1.65	1.85	.065	.073						
0.22	0.38	.009	.015						
0.09	0.25	.0035	.010						
SEE VAI	RIATIONS	SEE VAI	RIATIONS						
7.40	8.20	.291	.323						
5.00	5.60	.197	.220						

α VARIATIONS

SYMBOL

A A1 A2 b

> c D

E E1

е

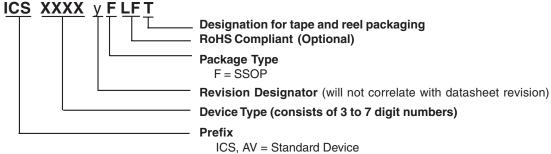
Ν

	N	D	mm.	D (D (inch)		
		MIN	MAX	MIN	MAX		
	28	9.90	10.50	.390	.413		

0.65 BASIC

SEE VARIATIONS

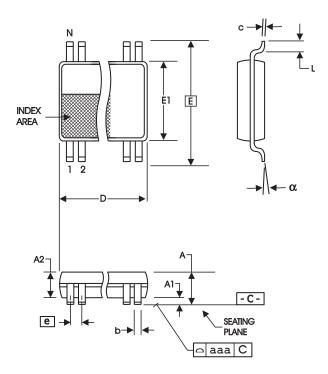
Reference Doc.: JEDEC Publication 95, MO-150


0.55

10-0033

Ordering Information

ICS9DB401yFLFT


Example:

1014B-09/07/06

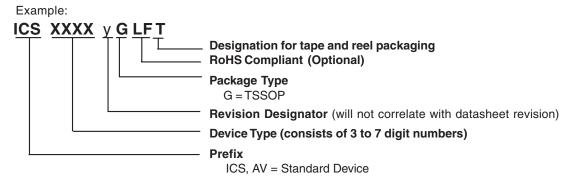
.004

4.40 mm. Body, 0.65 mm. Pitch TSSOP

	(173 mil)	(25.6 mil)			
	In Milli	meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS	
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VAF	RIATIONS	SEE VAF	RIATIONS	
E	6.40 E	BASIC	0.252	BASIC	
E1	4.30	4.50	.169	.177	
е	0.65 E	BASIC	0.0256	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VAF	RIATIONS	SEE VAF	RIATIONS	
а	0°	8°	0°	8°	

aaa VARIATIONS

N	D n	D mm.		D (inch)		
N	MIN	MAX	MIN	MAX		
28	9.60	9.80	.378	.386		


0.10

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

ICS9DB401yGLFT

1014B-09/07/06

Revision History

Rev.	Issue Date	Issue Date Description	
0.1	4/21/2005	/21/2005 Changed Ordering Information from "LN" to "LF".	
		Updated LF Ordering Information to RoHS Compliant.	
Α	8/15/2005	2. Release to web.	14-15
В	9/7/2006	Updated Electrical Characteristics.	5