

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: <http://www.renesas.com>

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (<http://www.renesas.com>)

Send any inquiries to <http://www.renesas.com/inquiry>.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

GaAs INTEGRATED CIRCUIT μ PG2193T6E

GaAs MMIC SP8T SWITCH FOR MOBILE COMMUNICATIONS

DESCRIPTION

The μ PG2193T6E is a GaAs MMIC SP8T switch with SPI control function, which is developed for GSM triple band and W-CDMA triple band applications.

The μ PG2193T6E can operate with voltage from 2.5 to 3.0 V, with low insertion loss, high isolation, and high linearity.

This device is housed in a 20-pin plastic TQFN (Thin Quad Flat Non-leaded) package, and is suitable for high-density surface mounting.

FEATURES

- Supply Voltage : $V_{DD} = 2.5$ to 3.0 V (2.775V TYP.)
- Serial Peripheral Interface SPI Supply Voltage : $AUX\ SPI\ VDD\ (H) = 1.5$ to 3.0 V (1.8 V TYP.)
: $AUX\ SPI\ VDD\ (L) = -0.3$ to 0.3 V (0 V TYP.)
- Low Insertion Loss : $L_{ins} = 0.4$ dB TYP. @ GSM_LB_TX
: $L_{ins} = 0.6$ dB TYP. @ GSM_HB_TX
- Harmonics : $2f_0 = -80$ dBc TYP. @ GSM_LB/HB_TX , $50\ \Omega$
: $3f_0 = -80$ dBc TYP. @ GSM_LB/HB_TX , $50\ \Omega$
: $2f_0 = -70$ dBc TYP. @ GSM_LB_TX , 34.5 dBm, VSWR = 4:1
: $3f_0 = -70$ dBc TYP. @ GSM_LB_TX , 34.5 dBm, VSWR = 4:1
- High-density surface mounting : 20-pin TQFN package ($3.5 \times 3.5 \times 0.6$ mm)

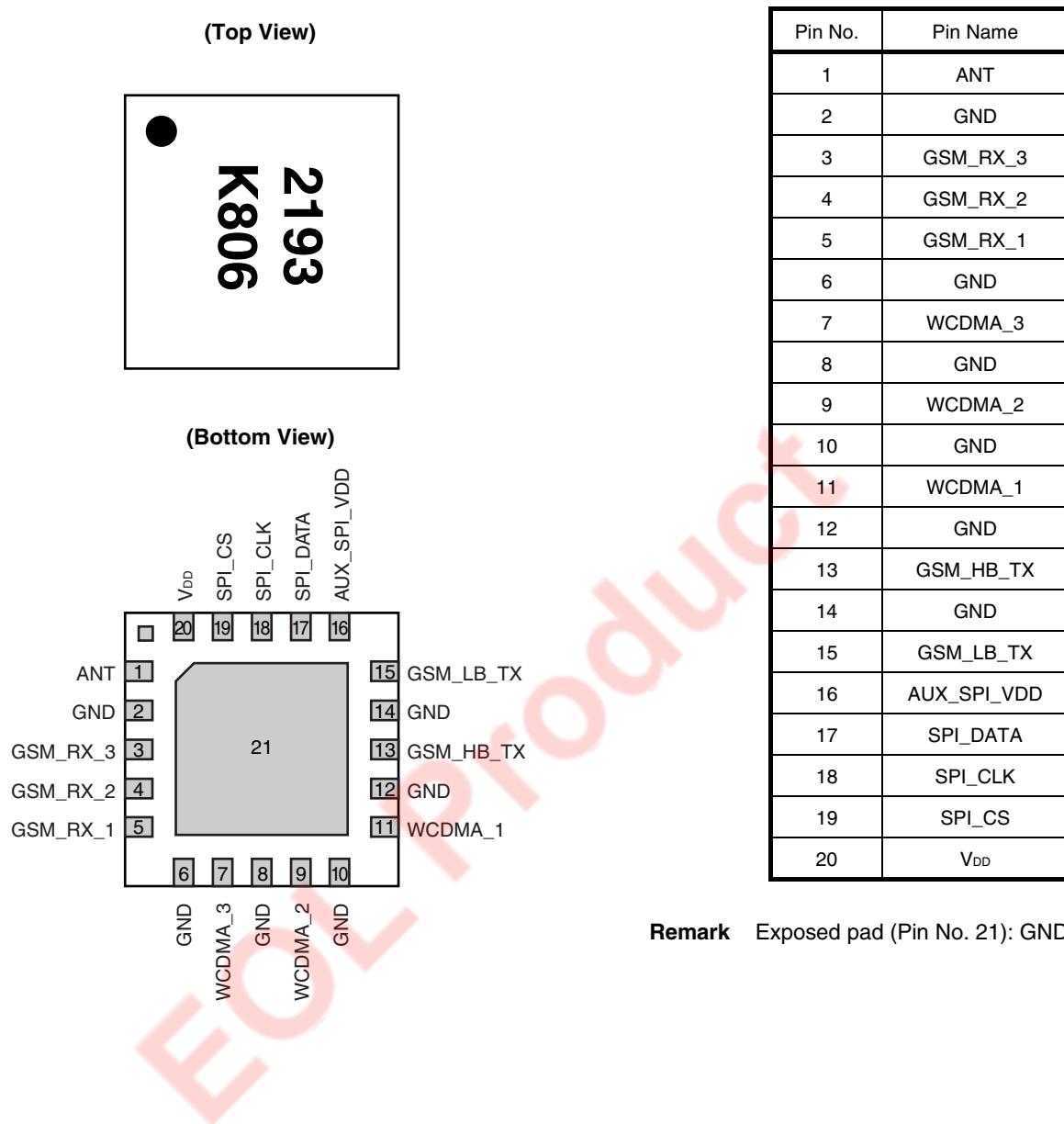
APPLICATIONS

- Antenna switch for Mobile Communications

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μ PG2193T6E-E2	μ PG2193T6E-E2-A	20-pin plastic TQFN (Pb-Free)	G2193	<ul style="list-style-type: none">Embossed tape 12 mm widePin 16 to 20 face the perforation side of the tapeQty 5 kpcs/reel

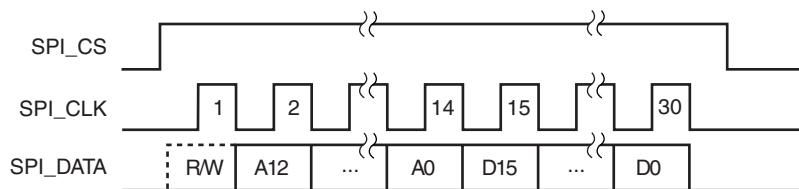
Remark To order evaluation samples, please contact your nearby sales office.


Part number for sample order: μ PG2193T6E-A

Caution Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.


PIN CONNECTIONS

TRUTH TABLE

Bit	Function	Set	Description
29	Read/Write mode	1	Not used for front end switch
		0	Write to the switch
28	(Slave Type)	0	001 used for front end switches
27		0	
26		1	
25	(Slave Identifier)	0	00000 = FE switch module for single antenna radios
24		0	
23		0	
22		0	
21		0	
20	(Slave SPI register)	0	Only one SPI register will be used on the front end switch
19		0	
18		0	
17		0	
16		0	
15	DCDC converter enable	1/0	A logic high enables the DCDC converter (if applicable)
14	FE Select 4 = MSB	0000	Switch Disabled (low current mode)
13		0001	GSM_HB_TX enable
12		0010	GSM_LB_TX enable
11		0011	Not Used/Reserved
		0100	GSM_RX_1 enable
		0101	GSM_RX_2 enable
		0110	GSM_RX_3 enable
		0111	Not Used / Reserved
		1000	WCDMA_1 enable
		1001	WCDMA_2 enable
		1010	WCDMA_3 enable
		1011 to 1111	Not used/Reserved
10	Not used	X	Not used/Reserved
9	Not used	X	Not used/Reserved
8	Not used	X	Not used/Reserved
7	Not used	X	Not used/Reserved
6	Not used	X	Not used/Reserved
5	Not used	X	Not used/Reserved
4	Not used	X	Not used/Reserved
3	Not used	X	Not used/Reserved
2	Not used	X	Not used/Reserved
1	Not used	X	Not used/Reserved
0	Not used	X	Not used/Reserved

Timing Chart (SPI Control)

On a write command to the device with address bots A12 through A0 set to all 1's, the device shall revert to the default state. The default state of this device is the deep sleep mode.

Bit	Function	Set	Description
29	Read/Write mode	0	Logic low command puts device in read mode
28	Address (Slave Type)	1	111 used for global write
27		1	
26		1	
25		1	
24	(Slave Identifier)	1	11111 used for global write
23		1	
22		1	
21		1	
20	Command	1/0	A transmission of "11111" must put the switch into standby mode
19		1/0	
18		1/0	
17		1/0	
16		1/0	
15	DCDC converter enable	1/0	A logic high enables the DCDC converter (if applicable)
14	Not used	X	Data bit must be ignored during Global Command Write
13	Not used	X	Data bit must be ignored during Global Command Write
12	Not used	X	Data bit must be ignored during Global Command Write
11	Not used	X	Data bit must be ignored during Global Command Write
10	Not used	X	Data bit must be ignored during Global Command Write
9	Not used	X	Data bit must be ignored during Global Command Write
8	Not used	X	Data bit must be ignored during Global Command Write
7	Not used	X	Data bit must be ignored during Global Command Write
6	Not used	X	Data bit must be ignored during Global Command Write
5	Not used	X	Data bit must be ignored during Global Command Write
4	Not used	X	Data bit must be ignored during Global Command Write
3	Not used	X	Data bit must be ignored during Global Command Write
2	Not used	X	Data bit must be ignored during Global Command Write
1	Not used	X	Data bit must be ignored during Global Command Write
0	Not used	X	Data bit must be ignored during Global Command Write

DISABLING THE SWITCH: The switch can be disabled in two ways. Either the appropriate SPI command can be sent, or AUX_SPI_VDD can be sent low.

POWER ON RESET: Assuming the 2.775 V supply is already on when AUX_SPI_VDD is powered up, the switch should revert to the default state, which is the deep sleep mode. If the deep sleep mode corresponds to a port being connected to the antenna, it should be Rx1. If a DCDC converter is used, it should be shut off. If AUX_SPI_VDD comes up before the 2.775 V supply, the POR should occur as soon as both signals are high. In any case, where the AUX_SPI_VDD is low, the chip should be powered off.

Remark “Deep sleep mode”, “powered off”, “low current mode”, and “standby mode” all mean the same thing.

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	V _{DD}	3.2	V
Switch Control Voltage	AUX_SPI_VDD VC	3.2	V
Input Power 1	Pin TX	+36	dBm
Input Power 2	Pin RX	+26	
Operating Ambient Temperature	T _A	-30 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

Parameter	Pin	Symbol	MIN.	TYP.	MAX.	Unit
Switch Supply Voltage	V _{DD}	V _{DD}	2.5	2.775	3.0	V
SPI Supply Voltage (High)	AUX_SPI_VDD	AUX_SPI_VDD	1.5	1.8	3.0	V
SPI Supply Voltage (Low)			-0.3	0	0.3	V
SPI Control Input Voltage (High)	SPI_CS SPI_CLK SPI_DATA	VC_HI	AUX_SPI_VDD × 80%	1.8	AUX_SPI_VDD +0.3	V
SPI Control Input Voltage (Low)		VC_LO	-0.3	0	AUX_SPI_VDD × 20%	V
SPI Control Enable	AUX_SPI_VDD	SPI_en	150	—	—	μs
CLK frequency	SPI_CLK	—	10	—	26	MHz

ELECTRICAL CHARACTERISTICS 1

($T_A = +25^\circ\text{C}$, $V_{DD} = 2.5$ to 3.0 V, $Z_0 = 50 \Omega$, DC blocking capacitors = 22 pF, with ESD protection circuit, unless otherwise specified)

Parameter	Symbol	Frequency (MHz)	P_{in} (dBm)	Measured Path	MAX.	Unit
Insertion Loss	L_{ins} GSM_LB_TX	824 to 915	+35	GSM_LB_TX (Pin 15) to ANT (Pin 1)	0.60	dB
	L_{ins} GSM_HB_TX	1 710 to 1 910	+33	GSM_HB_TX (Pin 13) to ANT (Pin 1)	0.70	
	L_{ins} WCDMA_1	824 to 960	+25.5	WCDMA_1 (Pin 11) or WCDMA_2 (Pin 9) or WCDMA_3 (Pin 7) to ANT (Pin 1)	0.55	
		1 710 to 1 910			0.70	
		1 920 to 2 170			0.85	
	L_{ins} GSM_RX1	869 to 960	-15	GSM_RX1 (Pin 5) or GSM_RX2 (Pin 4) or GSM_RX3 (Pin 3) to ANT (Pin 1)	0.90	
		1 805 to 1 990		GSM_RX1 (Pin 5) to ANT (Pin 1)	1.10	
				GSM_RX2 (Pin 4) to ANT (Pin 1)	1.05	
				GSM_RX3 (Pin 3) to ANT (Pin 1)	1.15	

ELECTRICAL CHARACTERISTICS 2

($T_A = -30$ to $+85^\circ\text{C}$, $V_{DD} = 2.5$ to 3.0 V, $Z_0 = 50 \Omega$, DC blocking capacitors = 22 pF, with ESD protection circuit, unless otherwise specified)

Parameter	Symbol	Frequency (MHz)	P_{in} (dBm)	Measured Path	MAX.	Unit
Insertion Loss	L_{ins} GSM_LB_TX	824 to 915	+35	GSM_LB_TX (Pin 15) to ANT (Pin 1)	0.65	dB
	L_{ins} GSM_HB_TX	1 710 to 1 910	+33	GSM_HB_TX (Pin 13) to ANT (Pin 1)	0.75	
	L_{ins} WCDMA_1	824 to 960	+25.5	WCDMA_1 (Pin 11) or WCDMA_2 (Pin 9) or WCDMA_3 (Pin 7) to ANT (Pin 1)	0.60	
		1 710 to 1 910			0.80	
		1 920 to 2 170			0.95	
	L_{ins} GSM_RX1	869 to 960	-15	GSM_RX1 (Pin 5) or GSM_RX2 (Pin 4) or GSM_RX3 (Pin 3) to ANT (Pin 1)	0.90	
		1 805 to 1 990		GSM_RX1 (Pin 5) to ANT (Pin 1)	1.25	
				GSM_RX2 (Pin 4) to ANT (Pin 1)	1.20	
				GSM_RX3 (Pin 3) to ANT (Pin 1)	1.30	

ELECTRICAL CHARACTERISTICS 3

($T_A = +25^\circ\text{C}$, DC blocking capacitors = 22 pF, with ESD protection circuit, unless otherwise specified)

Parameter	Symbol	Conditions	P_{in} (dBm)	Measured Path	MIN.	Unit
Harmonics (50 Ω)	nf0 WCDMA_1, 2, 3	f = 824 to 1 980 MHz, $V_{DD} = 2.775\text{ V}$	+25.5	WCDMA_1 (Pin 11) or WCDMA_2 (Pin 9) or WCDMA_3 (Pin 7) to ANT (Pin 1)	69	dBc
	3f0 WCDMA_1, 2, 3	f = 824 to 833 MHz, $V_{DD} = 2.775\text{ V}$			74	
	nf0 GSM_HB_TX	f = 1710 to 1910 MHz, $V_{DD} = 2.691\text{ V}$	+32.5	GSM_HB_TX (Pin 13) to ANT (Pin 1)	70	
	nf0 GSM_LB_TX	f = 824 to 915 MHz, $V_{DD} = 2.691\text{ V}$	+34.5	GSM_LB_TX (Pin 15) to ANT (Pin 1)	72	
	3f0 GSM_LB_TX	f = 824 to 833 MHz, $V_{DD} = 2.691\text{ V}$				
Harmonics (VSWR = 4:1 on ANT port)	nf0 WCDMA_1, 2, 3	f = 824 to 1 980 MHz, $V_{DD} = 2.775\text{ V}$	+25.5	WCDMA_1 (Pin 11) or WCDMA_2 (Pin 9) or WCDMA_3 (Pin 7) to ANT (Pin 1)	65	dBc
	3f0 WCDMA_1, 2, 3	f = 824 to 833 MHz, $V_{DD} = 2.775\text{ V}$			70	
	nf0 GSM_HB_TX	f = 1710 to 1910 MHz, $V_{DD} = 2.691\text{ V}$	+32.5	GSM_HB_TX (Pin 13) to ANT (Pin 1)	68	
	nf0 GSM_LB_TX	f = 824 to 915 MHz, $V_{DD} = 2.691\text{ V}$	+34.5	GSM_LB_TX (Pin 15) to ANT (Pin 1)	70	
Transient Harmonics (50 Ω)	nf0 GSM_HB_TX	f = 1710 to 1910 MHz, $V_{DD} = 2.691\text{ V}$	0	GSM_HB_TX (Pin 13) to ANT (Pin 1)	38	dBc
	nf0 GSM_LB_TX	f = 824 to 915 MHz, $V_{DD} = 2.691\text{ V}$		GSM_LB_TX (Pin 15) to ANT (Pin 1)	39	
	3f0 GSM_LB_TX	f = 824 to 833 MHz, $V_{DD} = 2.691\text{ V}$			44	

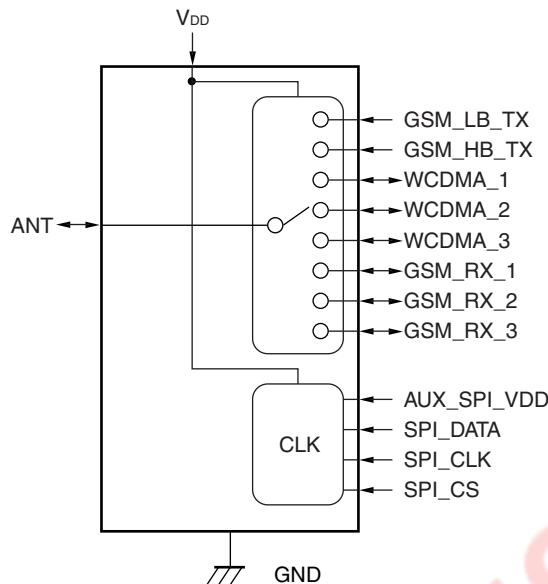
ELECTRICAL CHARACTERISTICS 4

($T_A = -30$ to $+85^\circ\text{C}$, $V_{DD} = 2.5$ to 3.0 V, $Z_0 = 50 \Omega$, DC blocking capacitors = 22 pF , with ESD protection circuit, unless otherwise specified)

Parameter	Symbol	Frequency (MHz)	P_{in} (dBm)	ON Path	Measured Path	MIN.	Unit
Forward Isolation	Forward Isolation GSM_LB_TX	824 to 833	+35	Any RF port except GSM_LB_TX	GSM_LB_TX (Pin 15) to ANT (Pin 1)	20	dB
	Forward Isolation GSM_HB_TX	1 710 to 1 910	+33	Any RF port except GSM_HB_TX	GSM_HB_TX (Pin 13) to ANT (Pin 1)	19.5	
Pin to Pin Isolation	Pin to Pin Isolation WCDMA_1, 2, 3	824 to 960	+25.5	WCDMA_1 or 2 or 3 to ANT (Pin1)	WCDMA_1 or 2 or 3 to Any RX port	29	dB
		960 to 1 980				25	
	Pin to Pin Isolation GSM_HB_TX	1 710 to 1 910	+33	GSM_HB_TX (Pin 13) to ANT (Pin1)	GSM_HB_TX to Any RX port	30	
					GSM_HB_TX to WCDMA_1	27	
					GSM_HB_TX to WCDMA_2	27	
					GSM_HB_TX to WCDMA_3	28	
	Pin to Pin Isolation GSM_LB_TX	824 to 915	+35	GSM_LB_TX (Pin15) to ANT (Pin1)	GSM_LB_TX to Any RX port	30	
					GSM_LB_TX to Any WCDMA port	30	
	Pin to Pin Isolation WCDMA_1	824 to 960	+25.5	WCDMA_1 to ANT (Pin 1)	WCDMA_1 to WCDMA_2	29	
		960 to 1 980			WCDMA_1 to WCDMA_3	27	
	Pin to Pin Isolation WCDMA_2	824 to 960		WCDMA_2 to ANT (Pin 1)	WCDMA_2 to WCDMA_3	29	
		960 to 1 980			WCDMA_2 to WCDMA_1	26.5	
	Pin to Pin Isolation WCDMA_3	824 to 960		WCDMA_3 to ANT (Pin 1)	WCDMA_3 to WCDMA_1	29	
		960 to 1 980			WCDMA_3 to WCDMA_2	26.5	

ELECTRICAL CHARACTERISTICS 5

($T_A = -30$ to $+85^\circ\text{C}$, $V_{DD} = 2.5$ to 3.0 V, $Z_0 = 50 \Omega$, DC blocking capacitors = 22 pF, with ESD protection circuit, unless otherwise specified)


Parameter	Symbol	Frequency (MHz)	P_{in} (dBm)	ON Path	Measured Path	MIN.	Unit
Return Loss	Return Loss ANT to any port	824 to 2 170	-15	ANT (Pin1) to any port		9.5	dB
	Return Loss WCDMA_1, 2, 3 to ANT		+25.5	WCDMA_1 or WCDMA_2 or WCDMA_3 to ANT (Pin 2)		12.5	
	Return Loss GSM_HB_TX to ANT	1 710 to 1 910	+33	GSM_HB_TX (Pin 13) to ANT (Pin 1)		15.0	
	Return Loss GSM_LB_TX to ANT	824 to 915	+35	GSM_LB_TX (Pin15) to ANT (Pin1)		15.0	
	Return Loss ANT to any GSM_RX	869 to 1 990	-15	ANT (Pin1) to any GSM_RX		11.5	

ELECTRICAL CHARACTERISTICS 6

($T_A = -30$ to $+85^\circ\text{C}$, $V_{DD} = 2.5$ to 3.0 V, $Z_0 = 50 \Omega$, DC blocking capacitors = 22 pF, with ESD protection circuit, unless otherwise specified)

Parameter	Symbol	Frequency (MHz)	P_{in} (dBm)	ON Path	Measured Path	MIN.	TYP.	MAX.	Unit
IIP ₂ IMD _{2_out}	IIP ₂ WCDMA_1, 2, 3	Refer to FREQUENCY CONDITIONS FOR IMD TESTING	$P_{tx} = +20$ $P_{int} = -15$	WCDMA_1 or WCDMA_2 or WCDMA_3 to ANT (Pin 1)	108	—	—	dBm	
	IMD ₂ WCDMA_1, 2, 3				—	—	—		
	IIP ₃ IMD _{3_out}				65.25	—	—		
	IMD ₃ WCDMA_1, 2, 3				—	—	—106.5		
Spectrum Emissions	Spectrum Emissions WCDMA_1, 2, 3	824 to 1 980	+25.5 (CW)	WCDMA_1 or WCDMA_2 or WCDMA_3 to ANT (Pin1)	—	—	83	dBc	
		869 to 2 170	RBW = 3.84 MHz	ANT to WCDMA_1 or WCDMA_2 or WCDMA_3	—	—	—114		
	Spectrum Emissions GSM_HB_TX	1710 to 1 910	+33	GSM_HB_TX to ANT	—	—	83		
	Spectrum Emissions GSM_LB_TX	824 to 915	+35	GSM_LB_TX to ANT	—	—	83		
	Spectrum Emissions GSM_RX	869 to 1 990	RBW = 180 kHz	ANT to any GSM_RX	—	—	—132.5		
Switching Speed	tsw	Any path transition Time from SPI frame low to RF turn on				—	1	5.0	μs
Turn on time	Turn on time	Any path From 10% to 90% of full DC/DC converter voltage				—	—	100	μs
Supply Current	IDD1	Active mode, DC/DC converter on				—	—	850	μA
	IDD2	Active mode, DC/DC converter off				—	—	650	
Standby Current	IDD_stb	Standby mode				—	—	30	μA
SPI Control Current	SPI_IDD	During SPI read ($V_{DD} < 2.1$ V)				—	—	400	μA
		During SPI read ($2.1 \leq V_{DD} \leq 3.0$ V)				—	—	650	
SPI Line Capacitance	SPI_C	Capacitance on SPI data line				—	—	5	pF

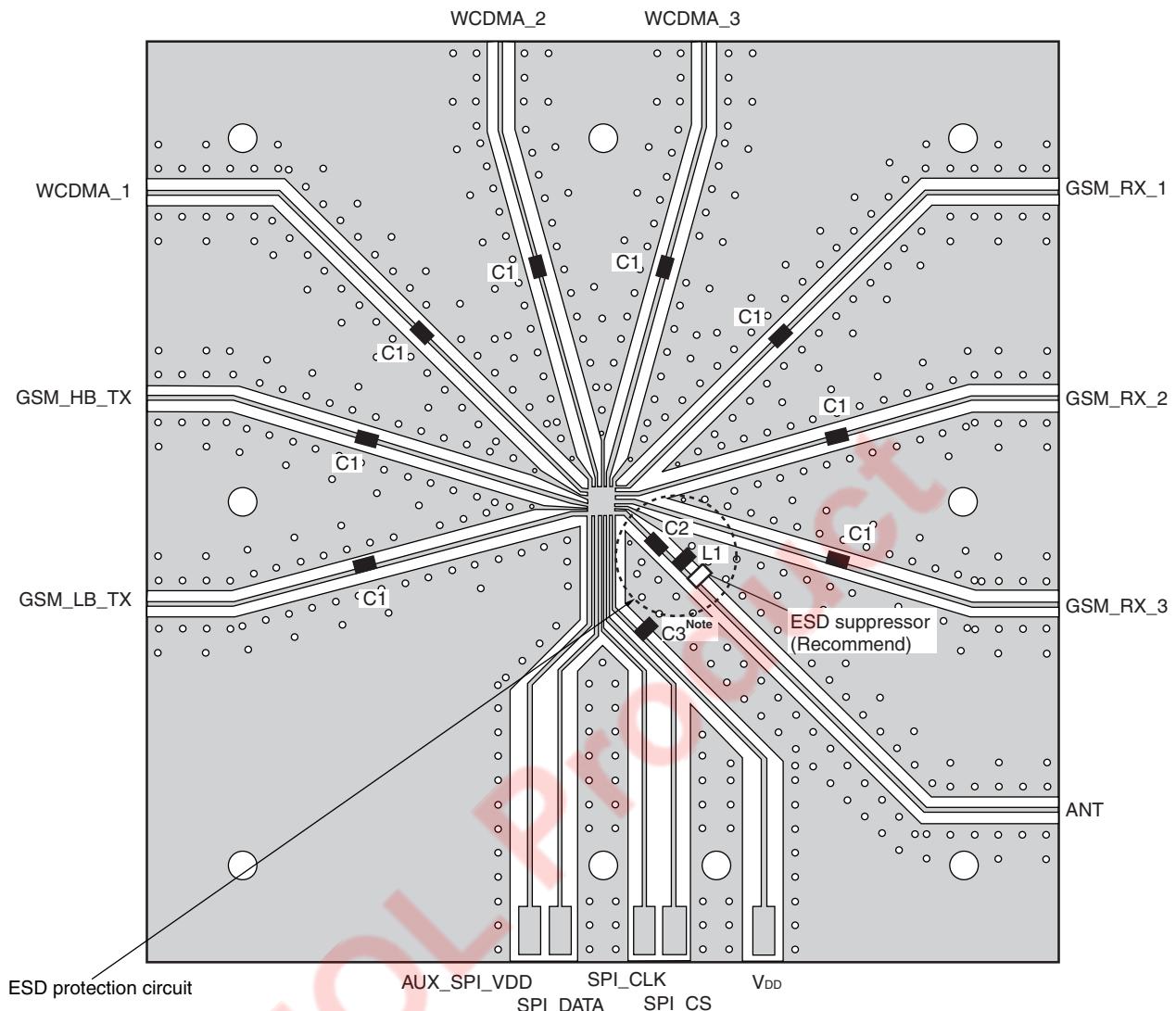
FUNCTIONAL BLOCK DIAGRAM

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

FREQUENCY CONDITIONS FOR IMD TESTING

IP2 TEST

(Unit: MHz)

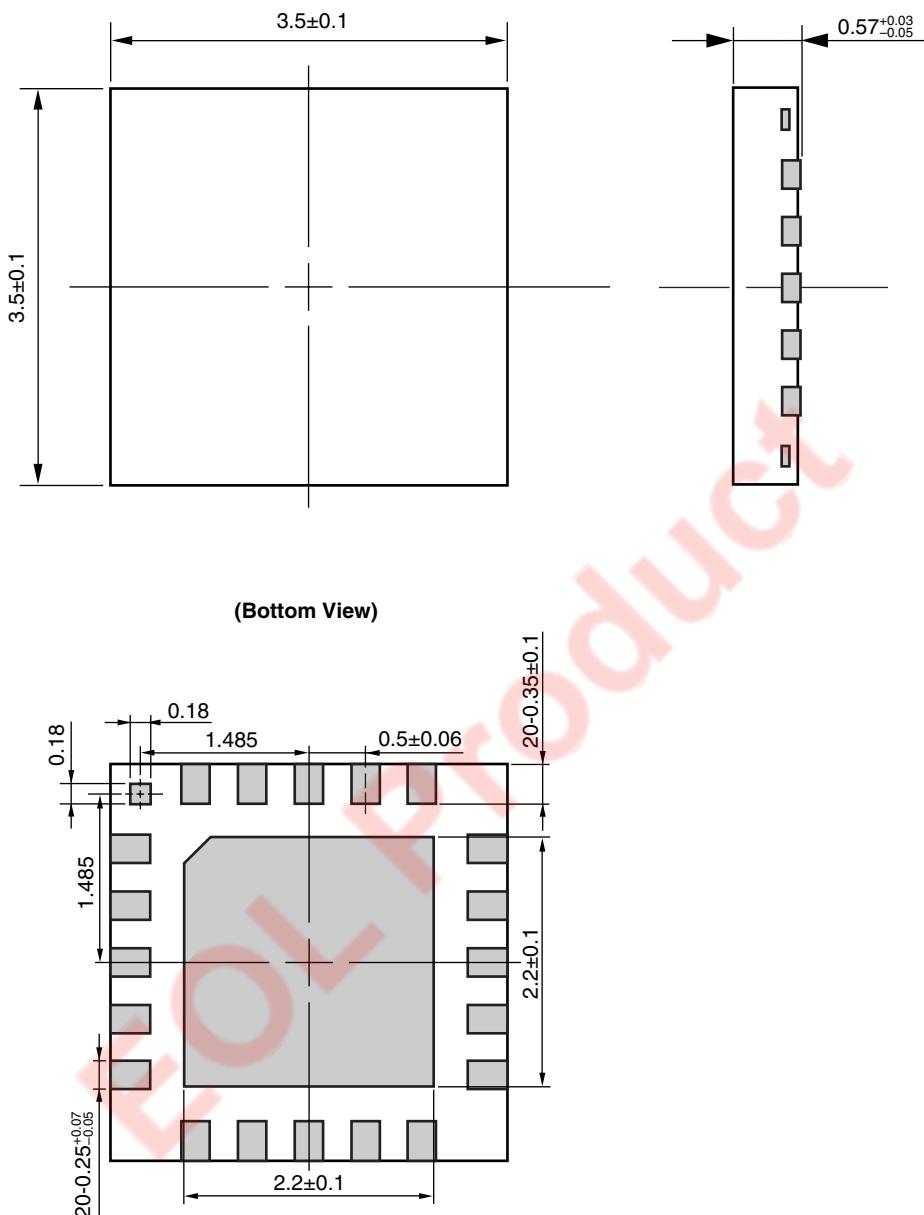

BAND	TX		RX		Duplex	RX/2	
	FTX LOW	FTX HIGH	FRX LOW	FRX HIGH	FINT1	FINT2 LOW	FINT2 HIGH
B1	1 920	1 980	2 110	2 170	190	1 055.0	1 085.0
B2	1 850	1 910	1 930	1 990	80	965.0	995.0
B3	1 710	1 785	1 805	1 880	95	902.5	940.0
B5	824	849	869	894	45	434.5	447.0
B8	880	915	925	960	45	462.5	480.0
B10	1 710	1 770	2 110	2 170	400	1 055.0	1 085.0

IP3 TEST

(Unit: MHz)

BAND	TX		RX		Duplex		RX/3	
	FTX LOW	FTX HIGH	FRX LOW	FRX HIGH	FINT1 LOW	FINT1 HIGH	FINT2 LOW	FINT2 HIGH
B1	1 920	1 980	2 110	2 170	1 730	1 790	703.33	723.33
B2	1 850	1 910	1 930	1 990	1 770	1 830	643.33	663.33
B3	1 710	1 785	1 805	1 880	1 615	1 690	601.67	626.67
B5	824	849	869	894	779	804	289.67	298.00
B8	880	915	925	960	835	870	308.33	320.00
B10	1 710	1 770	2 110	2 170	1 310	1 370	703.33	723.33

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD


Note 1 000 pF V_{DD} decoupling capacitor to be placed near V_{DD} pin of the antenna switch to improve spurious emissions.

USING THE NEC EVALUATION BOARD

Symbol	Values
C1	22 pF
C2	12 pF
C3	1 000 pF
L1	15 nH

PACKAGE DIMENSIONS

20-PIN PLASTIC TQFN (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

- The information in this document is current as of April, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

Caution

GaAs Products

This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
- 1. Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

EOL Product