
HV Single Discrete IGBT 60 Amperes/4500 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
А	2.35	59.7
В	0.98	25.0
С	1.98	50.3
D	0.197	5.0
Е	0.22	5.5
F	0.22	5.6
G	0.465	11.8
Н	0.27	6.9

Dimensions	Inches	Millimeters
J	0.93	23.6
K	0.14	3.6
L	0.20	5.2
М	0.40	1.0
N	0.43	11.0
Р	0.20	0.5
Q	0.12	3.0
R	0.208 Dia.	5.3 Dia.

Description:

Powerex Single Non-isolated Discrete is designed specially for customer high voltage switching and pulse power applications.

Features:

- ☐ Low Drive Requirement
- ☐ Low V_{CE(sat)}
- ☐ Non-Isolated Molybdenum Mounting Plate
- ☐ IGBT is designed to be used by being immersed in oil or conformal coated in assembly

QIS4506002 **HV Single Discrete IGBT** 60 Amperes/4500 Volts

Maximum Ratings, $T_i = 25$ °C unless otherwise specified

Ratings	Symbol	QIS4506002	Units
Collector Emitter Voltage	V _{CES}	4500	Volts
Gate Emitter Voltage	V _{GES}	±20	Volts
Collector Current (DC, T _C = 127°C)	I _C	60	Amperes
Peak Collector Current (Pulsed)	I _{CM}	120*	Amperes
Junction Temperature	T _j	-55 to 150	°C
Storage Temperature	T _{stg}	-55 to 125	°C
Mounting Torque, M5 Mounting Screws	-	30	in-lb
Weight (Typical)	_	20	Grams

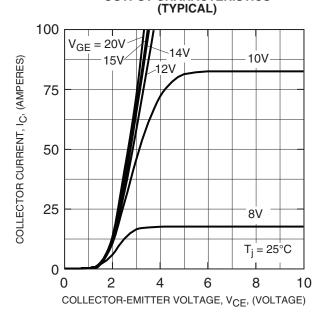
Static Electrical Characteristics, $T_i = 25$ °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector Cutoff Current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$	_	_	1.0	mA
Gate Leakage Current	I _{GES}	$V_{GE} = V_{GES}$, $V_{CE} = 0V$	_	_	0.5	μΑ
Gate-Emitter Threshold Voltage	V _{GE(th)}	$I_C = 7mA, V_{CE} = 10V$	4.5	6.0	7.5	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 60A$, $V_{GE} = 15V$, $T_j = 25$ °C	_	3.0	3.9**	Volts
		$I_C = 60A$, $V_{GE} = 15V$, $T_j = 125$ °C	_	3.6	_	Volts
Total Gate Charge	Q _G	V _{CC} = 2250V, I _C = 60A, V _{GE} = 15V	_	450	_	nC

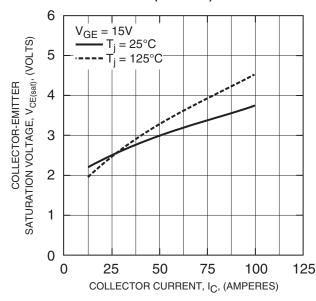
Dynamic Electrical Characteristics, $T_j = 25$ °C unless otherwise specified

Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitan	ice	C _{ies}		_	9.0	_	nF
Output Capacita	ance	C _{oes}	$V_{GE} = 0V$, $V_{CE} = 10V$	_	0.65	_	nF
Reverse Transfe	er Capacitance	C _{res}	_	_	0.2	_	nF
Resistive	Turn-on Delay Time	t _{d(on)}	$V_{CC} = 2250V$,	_	_	2.4	μs
Load	Rise Time	t _r	$I_{C} = 60A,$	_	_	2.4	μs
Switching	Turn-off Delay Time	t _{d(off)}	$V_{GE1} = V_{GE2} = 15V,$	_	_	6.0	μs
Times	Fall Time	t _f	$R_G = 120\Omega$	_	_	1.2	μs
Turn-on Switchi	ng Energy	E _{on}	$T_j = 125$ °C, $I_C = 60$ A, $V_{CC} = 2250$ V,	_	250	_	mJ/P
Turn-off switchir	ng Energy	E _{off}	$V_{GE} = \pm 15V$, $R_{G} = 120\Omega$, $L_{S} = 180$ nH	_	170	_	mJ/P

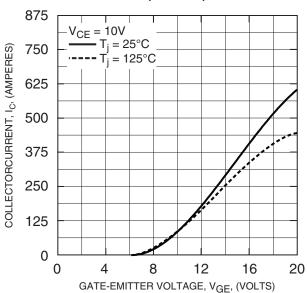
Thermal and Mechanical Characteristics, $T_i = 25$ °C unless otherwise specified

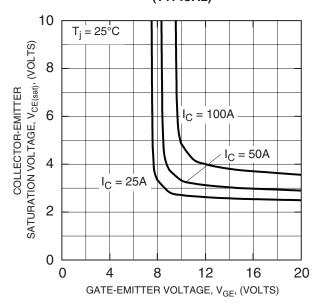

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	IGBT	_	0.10	0.12	°C/W
Thermal Resistance, Case to Sink	R _{th(c-s)}	$\lambda_{grease} = 1W/mK$	_	0.10	_	°C/W
Thermal Grease Applied						

^{*} Pulse width and repetition rate should be such that device junction temperature (Tj) does not exceed device rating.
**Pulse width and repetition rate should be such that device junction temperature rise is negligible.

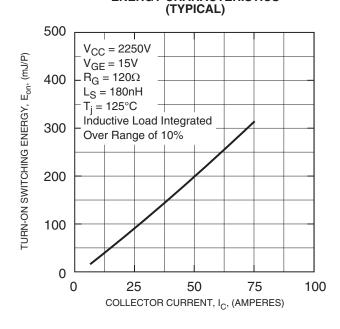


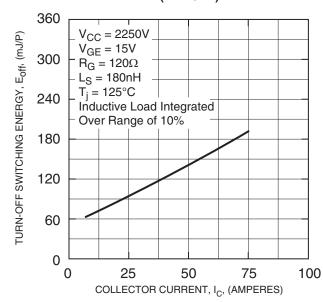
QIS4506002 HV Single Discrete IGBT 60 Amperes/4500 Volts


OUTPUT CHARACTERISTICS

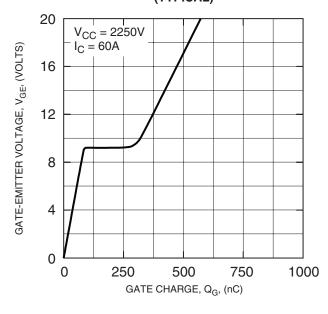

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

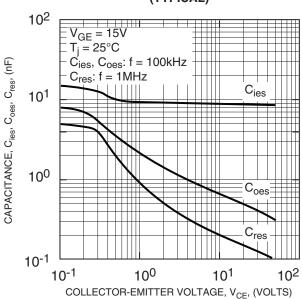
TRANSFER CHARACTERISTICS (TYPICAL)


COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

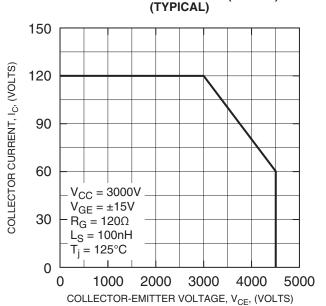


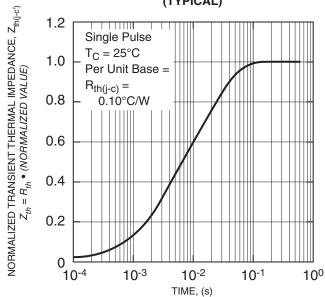
QIS4506002 HV Single Discrete IGBT 60 Amperes/4500 Volts




TURN-OFF SWITCHING ENERGY CHARACTERISTICS (TYPICAL)

GATE CHARGE CHARACTERISTICS (TYPICAL)


CAPACITANCE CHARACTERISTICS (TYPICAL)



QIS4506002 HV Single Discrete IGBT 60 Amperes/4500 Volts

REVERSE BIAS SAFE OPERATING AREA (RBSOA)

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL)

$$Z_{th(j-c)}(t) = \sum_{i=1}^{n} R_{i} \left\{ 1 - \exp\left(\frac{-t}{\tau_{i}}\right)\right\}$$

	1	2	3	4
R_i (°C/W)	-6.55E-03	1.66E-02	6.24E-03	8.32E-02
τ_i (sec)	3.33E-04	7.57-E-04	2.34E-03	1.34E-02