

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
> 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP,
0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of -40°C to +85°C
- V_{CC} = 3.3V ± 0.3V, Normal Range
- V_{CC} = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCH244A:

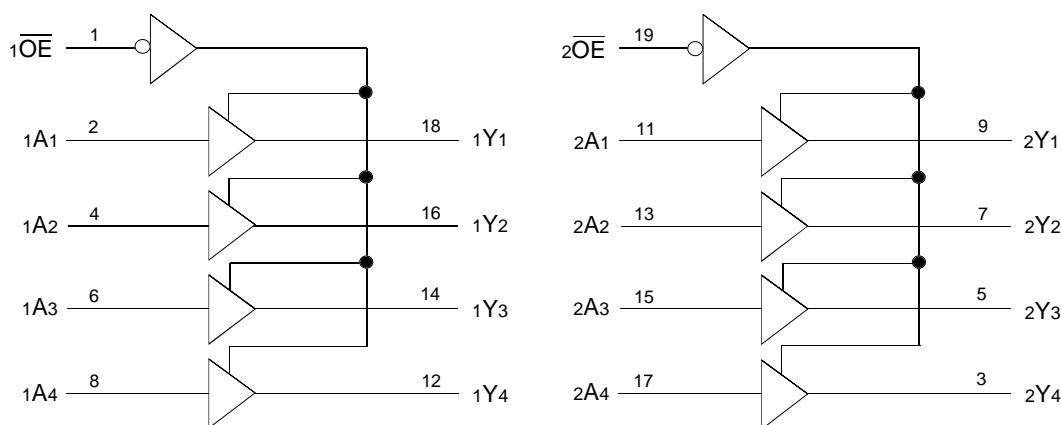
- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

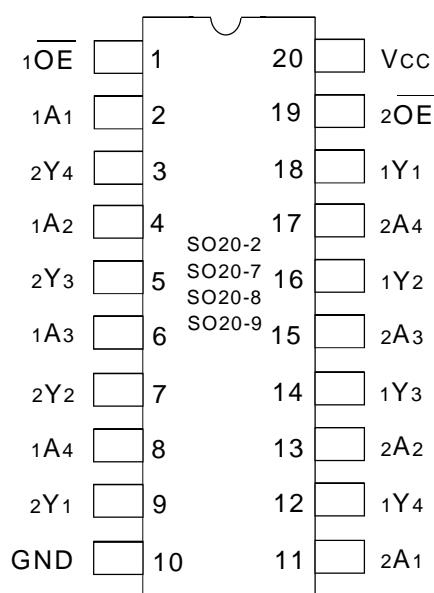
- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:

The LVCH244A octal buffer/driver is built using advanced dual metal CMOS technology. This device is organized as two 4-bit line drivers with separate output-enable (OE) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.


The LVCH244A has been designed with a ±24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.

The LVCH244A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
TSTG	Storage Temperature	-65 to +150	°C
I _{OUT}	DC Output Current	-50 to +50	mA
I _{lK}	Continuous Clamp Current, V _I < 0 or V _O < 0	-50	mA
I _{CC}	Continuous Current through each V _{CC} or GND	±100	mA
I _{SS}			

8LVC

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- V_{CC} terminals.
- All terminals except V_{CC}.

CAPACITANCE (T_A = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	4.5	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	5.5	8	pF
C _{I/O}	I/O Port Capacitance	V _{IN} = 0V	6.5	8	pF

8LVC Link

NOTE:

- As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
x _{OE}	Output-enable Inputs ⁽¹⁾ (Active LOW)
x _{Ax}	Data Inputs ⁽¹⁾
x _{Yx}	3-State Outputs

NOTE:

- On LVCH these pins have "Bus-hold". All other pins are standard inputs, outputs or I/Os.

FUNCTION TABLE (each buffer) (1)

Inputs		Outputs
x _{OE}	x _{Ax}	x _{Yx}
L	H	H
L	L	L
H	X	Z

NOTE:

- H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^\circ\text{C}$ To $+85^\circ\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V _{IH}	Input HIGH Voltage Level	V _{CC} = 2.3V to 2.7V		1.7	—	—	V
		V _{CC} = 2.7V to 3.6V		2	—	—	
V _{IL}	Input LOW Voltage Level	V _{CC} = 2.3V to 2.7V		—	—	0.7	V
		V _{CC} = 2.7V to 3.6V		—	—	0.8	
I _{IH} I _{IL}	Input Leakage Current	V _{CC} = 3.6V	V _I = 0 to 5.5V	—	—	± 5	μA
I _{OZH} I _{OZL}	High Impedance Output Current (3-State Output pins)	V _{CC} = 3.6V	V _O = 0 to 5.5V	—	—	± 10	μA
I _{OFF}	Input/Output Power Off Leakage	V _{CC} = 0V, V _{IN} or V _O \leq 5.5V	—	—	—	± 50	μA
V _{IK}	Clamp Diode Voltage	V _{CC} = 2.3V, I _{IN} = -18mA	—	—	-0.7	-1.2	V
V _H	Input Hysteresis	V _{CC} = 3.3V	—	—	100	—	mV
I _{CCL} I _{CCH} I _{CCZ}	Quiescent Power Supply Current	V _{CC} = 3.6V	V _{IN} = GND or V _{CC}	—	—	10	μA
			3.6 \leq V _{IN} \leq 5.5V ⁽²⁾	—	—	10	
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at V _{CC} - 0.6V, other inputs at V _{CC} or GND		—	—	500	μA

8LVC Link

NOTES:

1. Typical values are at V_{CC} = 3.3V, $+25^\circ\text{C}$ ambient.
2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
I _{BHH} I _{BHL}	Bus-Hold Input Sustain Current	V _{CC} = 3.0V	V _I = 2.0V	-75	—	—	μA
			V _I = 0.8V	75	—	—	
I _{BHH} I _{BHL}	Bus-Hold Input Sustain Current	V _{CC} = 2.3V	V _I = 1.7V	—	—	—	μA
			V _I = 0.7V	—	—	—	
I _{BHOO} I _{BHLO}	Bus-Hold Input Overdrive Current	V _{CC} = 3.6V	V _I = 0 to 3.6V	—	—	± 500	μA

8LVC Link

NOTES:

1. Pins with Bus-hold are identified in the pin description.
2. Typical values are at V_{CC} = 3.3V, $+25^\circ\text{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
VOH	Output HIGH Voltage	VCC = 2.3V to 3.6V	IOH = - 0.1mA	VCC - 0.2	—	V
		VCC = 2.3V	IOH = - 6mA	2	—	
		VCC = 2.3V	IOH = - 12mA	1.7	—	
		VCC = 2.7V		2.2	—	
		VCC = 3.0V		2.4	—	
		VCC = 3.0V	IOH = - 24mA	2.2	—	
VOL	Output LOW Voltage	VCC = 2.3V to 3.6V	IOL = 0.1mA	—	0.2	V
		VCC = 2.3V	IOL = 6mA	—	0.4	
			IOL = 12mA	—	0.7	
		VCC = 2.7V	IOL = 12mA	—	0.4	
		VCC = 3.0V	IOL = 24mA	—	0.55	

8LVC Link

NOTE:

1. VIH and Vil must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to +85°C.

OPERATING CHARACTERISTICS, TA = 25°C

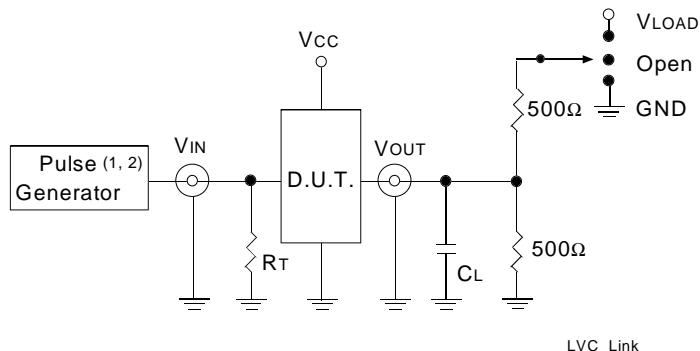
Symbol	Parameter	Test Conditions	Vcc = 2.5V±0.2V	Vcc = 3.3V±0.3V	Unit
			Typical	Typical	
CPD	Power Dissipation Capacitance per buffer/driver Outputs enabled	CL = 0pf, f = 10Mhz	—	47	pF
	Power Dissipation Capacitance per buffer/driver Outputs disabled		—	2	pF

SWITCHING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	Vcc = 2.5V±0.2V		Vcc = 2.7V		Vcc = 3.3V±0.3V		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tPLH	Propagation Delay xAx to xYx	—	—	—	6.9	1.5	5.9	ns
tPHL								
tPZH	Output Enable Time xOE to xYx	—	—	—	8.6	1	7.6	ns
tPZL								
tPHZ	Output Disable Time xOE to xYx	—	—	—	6.8	1.5	5.8	ns
tPLZ								
tsk(0)	Output Skew ⁽²⁾	—	—	—	—	—	500	ps

NOTES:

1. See test circuits and waveforms. TA = - 40°C to + 85°C.
2. Skew between any two outputs of the same package and switching in the same direction.


TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$V_{CC(1)} = 3.3V \pm 0.3V$	$V_{CC(1)} = 2.7V$	$V_{CC(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC}/2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

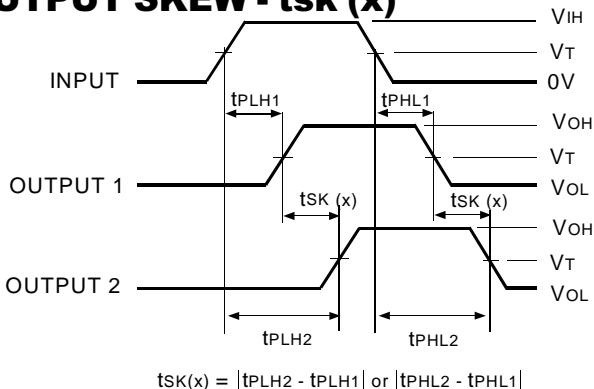
8LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.
 RT = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTES:

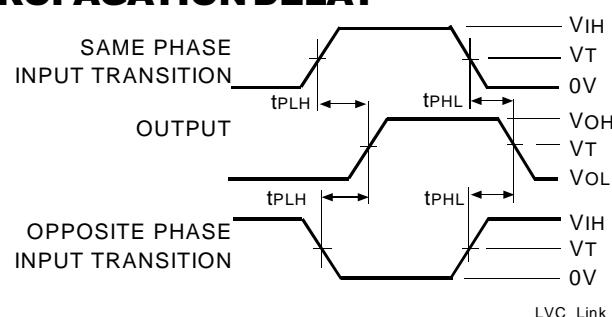

1. Pulse Generator for All Pulses: Rate ≤ 10 MHz; $t_f \leq 2.5$ ns; $t_r \leq 2.5$ ns.
2. Pulse Generator for All Pulses: Rate ≤ 10 MHz; $t_f \leq 2$ ns; $t_r \leq 2$ ns.

SWITCH POSITION

Test	Switch
Open Drain	V_{LOAD}
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

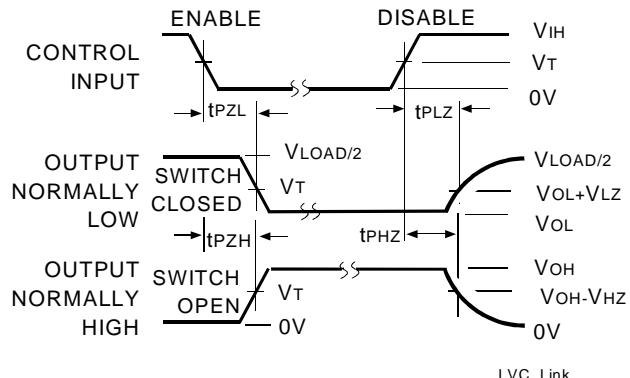
8LVC Link

OUTPUT SKEW - $t_{SK}(x)$



$$tsk(x) = |tPLH2 - tPLH1| \text{ or } |tPHL2 - tPHL1|$$

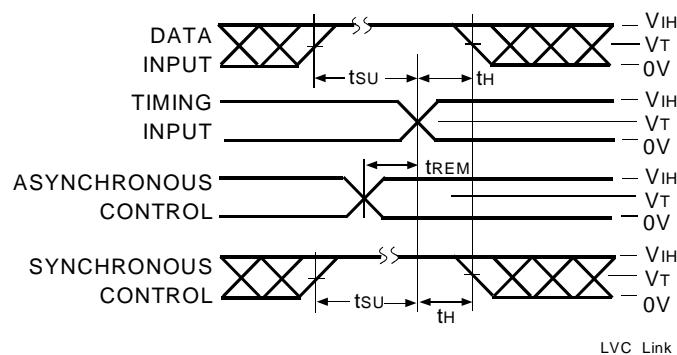
NOTES:


1. For $tsk(o)$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $tsk(b)$ OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

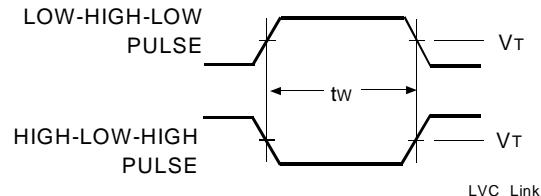
LVC Link

ENABLE AND DISABLE TIMES

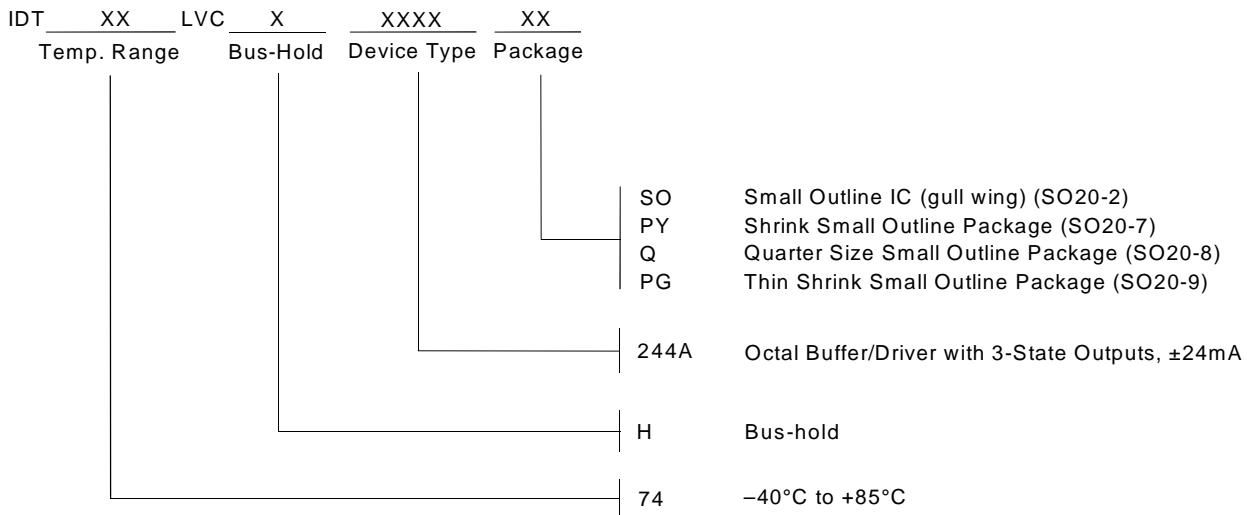


LVC Link

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES


LVC Link

PULSE WIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

**To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.*