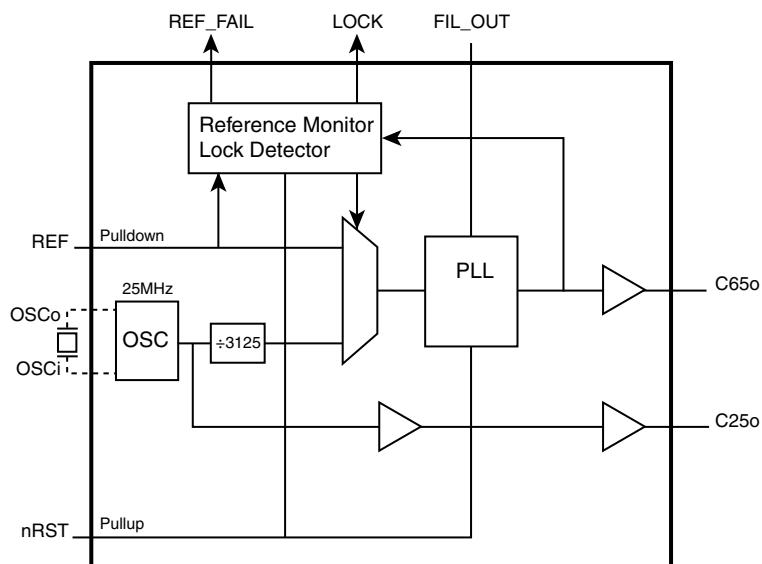
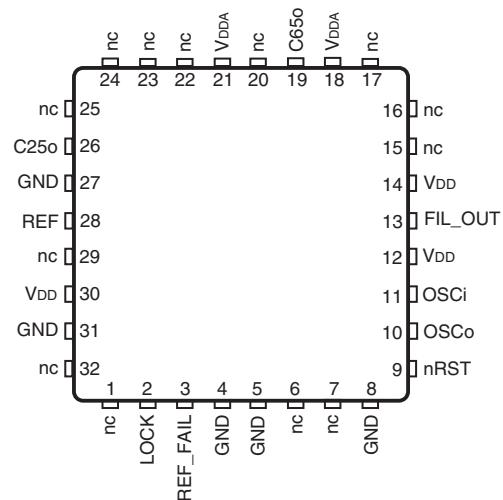


General Description

The 8400110 is a Low Jitter Telecom Rate-Conversion PLL that provides accurate and reliable frequency conversion.


The 8400110 generates a 65.536MHz clock that is either locked to the input reference or locked to the external crystal or oscillator.

In the locked mode, the reference input is continuously monitored for a failure condition. In the event of a failure, the PLL continues to provide a stable free-running clock, ensuring system reliability.


Features

- One 65.536MHz output, synchronized to 8kHz reference
- One 25MHz output, buffered version of the internal osc output
- Provides lock and reference fail indication
- Free run mode when reference clock (REF) fails
- Automatic switch-over to reference when good reference (REF) is available
- 25MHz external master clock source: crystal or oscillator
- Full 3.3V operation
- -40°C to 85°C ambient operating temperature
- Available in a lead-free (RoHS 6) package

Block Diagram

Pin Assignment

8400110
32-Lead VFQFN
5mm x 5mm x 0.925mm package body
K Package
Top View

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Type	Description	
1, 6, 7, 15, 16, 17, 20, 22, 23, 24, 25, 29, 32	nc	Unused	No connect.	
2	LOCK	Output	Lock indicator. When HIGH, the PLL is frequency locked to a valid input reference. LVCMOS/LVTTL interface levels.	
3	REF_FAIL	Output	Reference fail indicator. A logic HIGH at this output indicates that the reference (REF) frequency is exhibiting abrupt phase or frequency change. LVCMOS/LVTTL interface levels.	
4, 5, 8, 27, 31	GND	Power	Power supply ground.	
9	nRST	Input	Pullup	Reset. A logic LOW at this input resets the device. In Reset state, all outputs are forced into high-impedance. LVCMOS/LVTTL interface levels.
10	OSCo	Output		Crystal out.
11	OSCi	Input		Crystal in or single ended clock input.
12, 14, 30	V _{DD}	Power		Core supply pins.
13	FIL_OUT	Output		Filter output pin connected to 4.7 μ F capacitor.
18, 21	V _{DDA}	Power		Analog supply pins.
19	C65o	Output		Single-ended clock output, 65.536MHz frequency. This output is used for general TDM applications. LVCMOS/LVTTL interface levels.
26	C25o	Output		Single-ended clock output, 25MHz frequency. This is a buffered version of internal crystal oscillator. The phase and frequency accuracy of this output tracks that of the external crystal or oscillator. LVCMOS/LVTTL interface levels.
28	REF	Input	Pulldown	This is the input reference source used for synchronization. LVCMOS/LVTTL interface levels.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		k Ω
R _{PULLDOWN}	Input Pulldown Resistor			51		k Ω
R _{OUT}	Output Impedance	V _{DDO} = 3.6V		17		Ω

Functional Description

The PLL of 8400110 consists of a phase detector, a loop filter and a Voltage Controlled Oscillator (VCO). In the normal mode of operation, the VCO provides an output clock signal that is frequency and phase locked to the input reference clock (REF). In free-run mode, VCO is locked to 25MHz input with an accuracy equal to the accuracy of the OSCi 25MHz clock.

Lock Indicator

The Lock detector monitors if the output clock phase is within 90° of the input reference (REF). If the difference between input reference clock (REF) and output is more than 90°, LOCK output is LOW. The monitor then looks for eight consecutive clocks within 22.5° of the reference, before setting the LOCK to a HIGH.

REF_FAIL

The REF_FAIL signal is HIGH when reference clock (REF) shows greater than 130ppm variation in frequency, there are more than three consecutive edges missing, or there is an abrupt phase shift in the reference clock REF. Under any of these circumstances the PLL input will be switched from primary reference clock (REF) to crystal. When the primary reference clock (REF) is restored and REF_FAIL sets to LOW, the PLL input is switched back to the primary reference clock (REF).

Modes of Operation

The 8400110 device has two modes of operation; normal mode and free-run mode. The device powers up in free-run mode, it automatically transitions to normal mode if a valid reference clock (REF) is available and transitions to free-run mode if the reference fails. RESET signal also will puts the device in free-run mode.

Freerun Mode

The freerun mode is typically used when an asynchronous clock source is required or it is used immediately following system power-up before synchronization is achieved. In free-run mode, 8400110 provides an output clock based on oscillator frequency. The output is not synchronized to the reference input clock (REF). In the free-run mode the accuracy of output frequency is equal to the accuracy of the frequency of the oscillator.

Normal Mode

The normal mode is typically used when a synchronous clock is required. In normal mode, 8400110 provides an output clock which is synchronized to the input (REF).

Lock Time

This is the time it takes the PLL to lock to the input reference clock REF. Lock occurs when the input signal and output signal are aligned in phase and frequency with respect to each other. LOCK time is affected by many factors which include:

- Initial input to output phase difference
- Initial input to output frequency difference
- PLL loop bandwidth

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Outputs, V_O	-0.5V to $V_{DD} + 0.5V$
Package Thermal Impedance, θ_{JA}	37°C/W
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.0	3.3	3.6	V
V_{DDA}	Analog Supply Voltage		$V_{DD} - 0.075$	3.3	V_{DD}	V
I_{DD}	Power Supply Current	Output Frequency = 65MHz			130	mA
I_{DDA}	Analog Supply Current	Output Frequency = 65MHz			15	mA

Table 3B. LVC MOS DC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		2		$V_{DD} + 0.3$	V
			-0.3		0.8	V
I_{IH}	Input Current High	REF	$V_{DD} = V_{IN} = 3.6V$		150	μA
		nRST	$V_{DD} = V_{IN} = 3.6V$		5	μA
I_{IL}	Input Current Low	REF	$V_{DD} = 3.6V$, $V_{IN} = 0V$	-5		μA
		nRST	$V_{DD} = 3.6V$, $V_{IN} = 0V$	-150		μA
V_{OH}	Output High Voltage	C65o, C25o, REF_FAIL, LOCK	$V_{DD} = 3.6V$, $I_{OH} = -12mA$	2.6		V
V_{OL}	Output Low Voltage	C65o, C25o, REF_FAIL, LOCK	$V_{DD} = 3.6V$, $I_{OL} = 12mA$		0.5	V

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

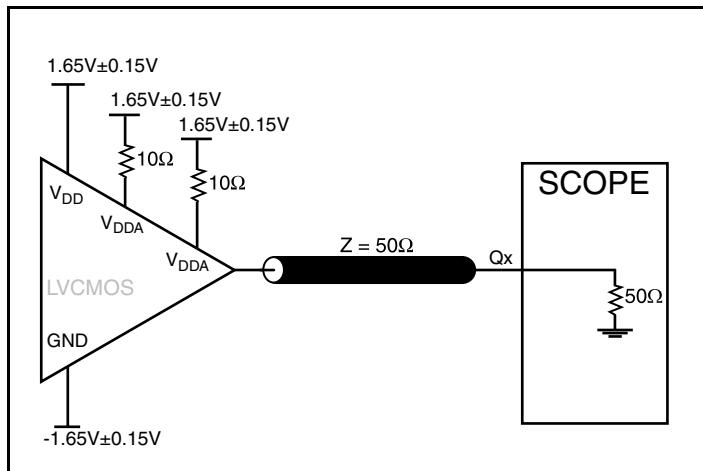
AC Electrical Characteristics

Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

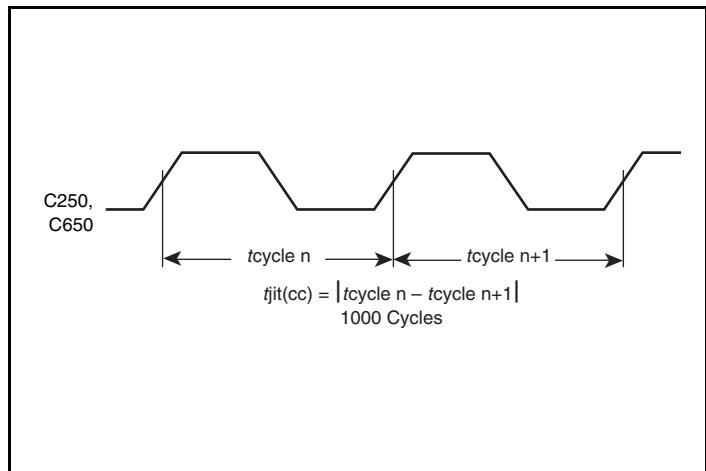
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
t_{REFW}	Reference Pulse Width High or Low	$f = 8kHz$	15			ns
t_{C65L}	C65o Pulse Width Low	$f = 65.536MHz$	7.0		8	ns
t_{ORF}	Output Clock Rise or Fall Time	Rise/Fall Time, 20% to 80%, 15pF Load	1.05		2.1	ns
t_{C25L}	C25o Pulse Width Low		19		21	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

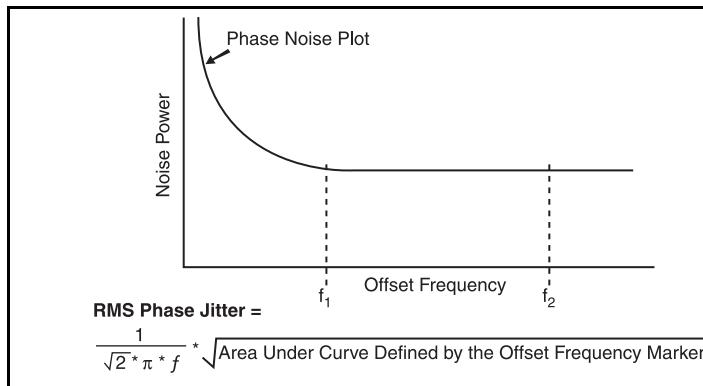
Performance Characteristics

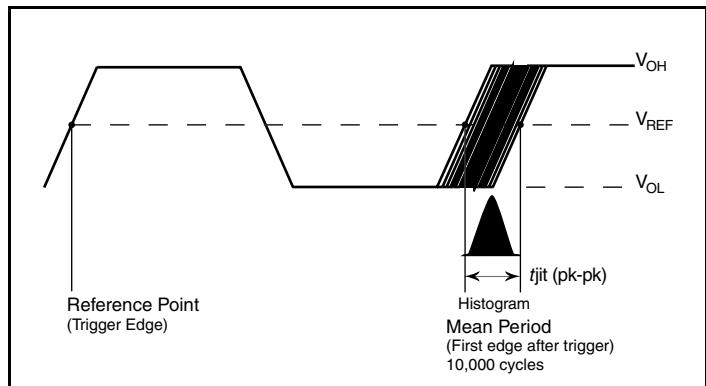

Table 6. Functional Performance Characteristics

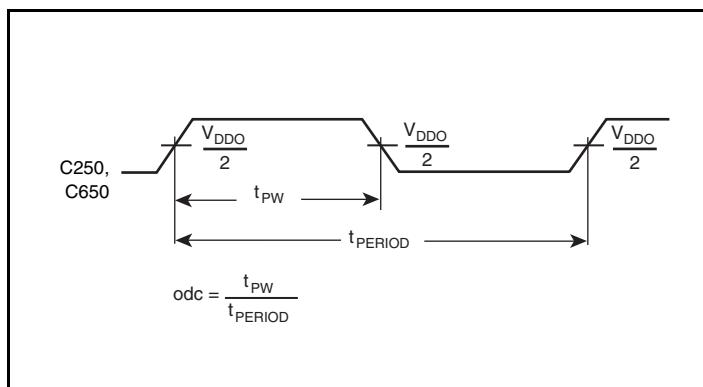
Characteristics	Test Conditions	Minimum	Typical	Maximum	Units
PLL Capture Range		-150		150	ppm
PLL Lock Time	REF = 8kHz			1	s
C65o Cycle-to-Cycle Jitter	C65o = 65.536MHz			100	ps
Peak-to-Peak Jitter C65.536; NOTE 1	C65o = 65.536MHz			175	ps
RMS Phase Jitter C25o	25MHz Crystal Input, 12kHz to 5MHz		1		ps

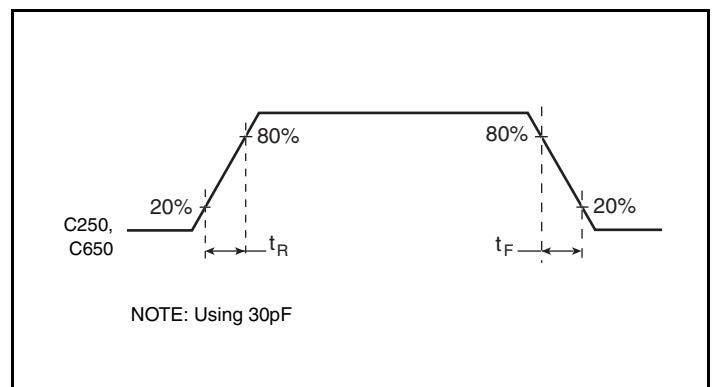

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Peak-to-Peak jitter was calculated with RMS Period jitter data multiplied by BER 14.

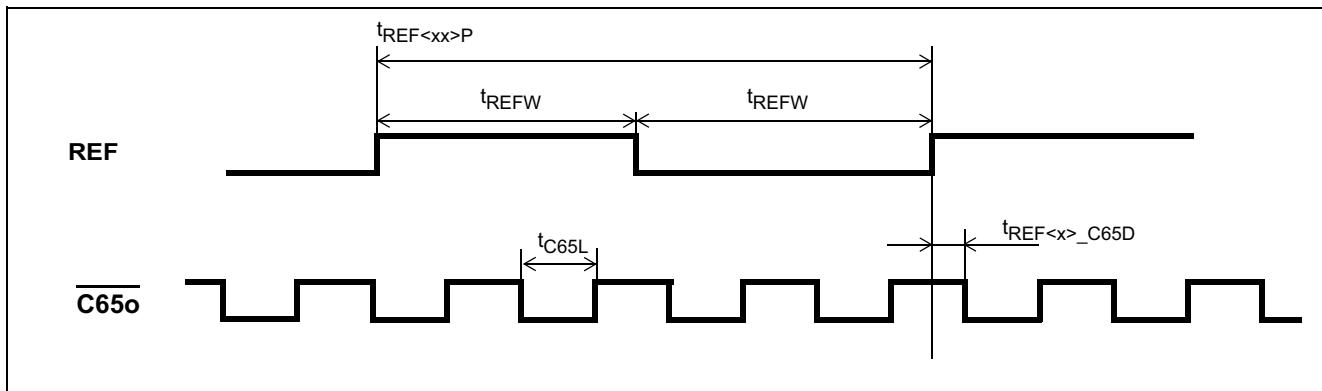

Parameter Measurement Information


Output Load AC Test Circuit


Cycle-to-Cycle Jitter


RMS Phase Jitter

Period Jitter Peak-to-Peak



Output Pulse Width

Output Rise/Fall Time

Parameter Measurement Information, continued

Input-to-Output Timing for Synchronous Clock

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 8400110 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and $0.01\mu F$ bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the V_{DDA} pin.

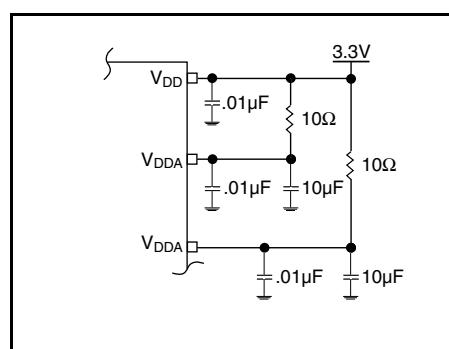
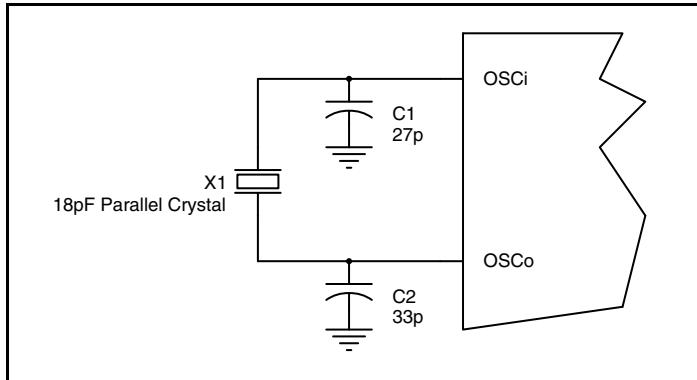



Figure 1. Power Supply Filtering

Crystal Input Interface

The 8400110 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant crystal and

were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

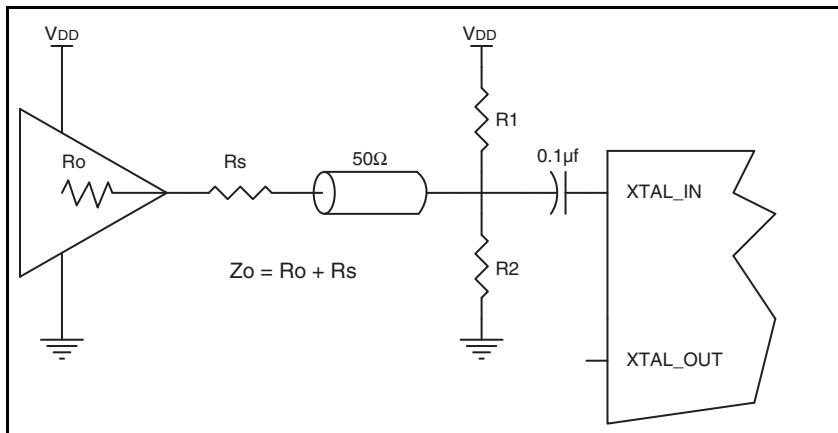
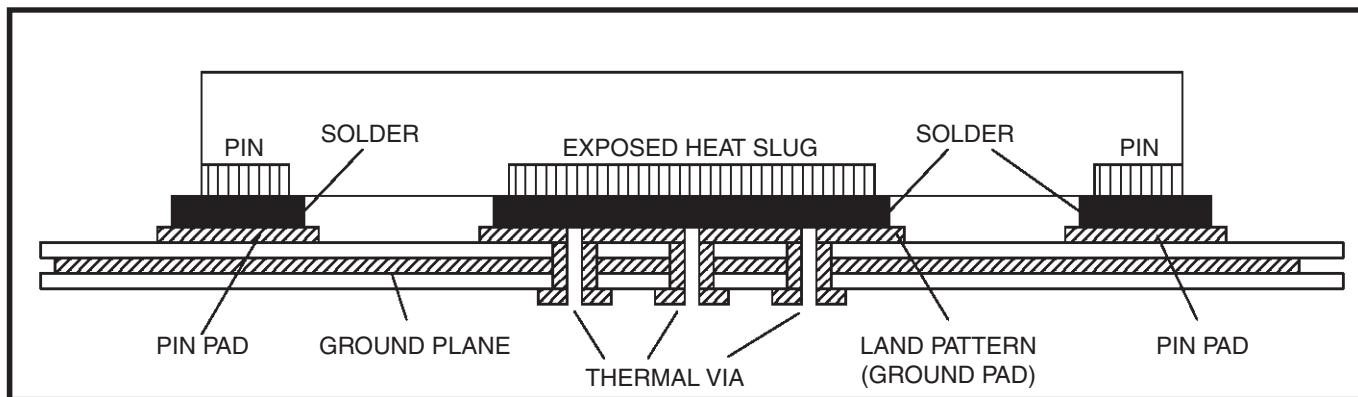


Figure 2. Crystal Input Interface

LVC MOS to XTAL Interface

The OSCi input can accept a single-ended LVC MOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The OSCo pin can be left floating. The input edge rate can be as slow as 10ns. For LVC MOS signals, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (R_o) plus the series resistance (R_s) equals the transmission line

impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R_1 and R_2 in parallel should equal the transmission line impedance. For most 50Ω applications, R_1 and R_2 can be 100Ω . This can also be accomplished by removing R_1 and making $R_2 50\Omega$. By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.


Figure 3. General Diagram for LVC MOS Driver to XTAL Input Interface

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 4*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific

and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

Power Considerations

This section provides information on power dissipation and junction temperature for the 8400110. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8400110 is the sum of the core power plus the analog power plus the power dissipation in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 0.3V = 3.6V$, which gives worst case results.

- Power (core)_{MAX} = $V_{DD_MAX} * (I_{DD} + I_{DDA}) = 3.6V * (130mA + 15mA) = 522mW$
- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{DD}/2$
Output Current $I_{OUT} = V_{DD_MAX} / [2 * (50\Omega + R_{OUT})] = 3.6V / [2 * (50\Omega + 17\Omega)] = 26.9mA$
- Power Dissipation on the R_{OUT} per LVC MOS output
Power (R_{OUT}) = $R_{OUT} * (I_{OUT})^2 = 17\Omega * (26.9mA)^2 = 12.3mW$ per output
- Total Power Dissipation on the R_{OUT}
Total Power (R_{OUT}) = $12.3mW * 2 = 24.6mW$

Total Power Dissipation

- Total Power
= Power (core)_{MAX} + Total Power (R_{OUT})
= $522mW + 24.6mW$
= **546.6mW**

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature for devices is 125°C . Limiting the internal transistor junction temperature, T_j , to 125°C ensures that the bond wire and bond pad temperature remains below 125°C .

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 37°C/W per Table 7 below.

Therefore, T_j for an ambient temperature of 85°C with all outputs switching is:

$85^\circ\text{C} + 0.547W * 37^\circ\text{C/W} = 105.2^\circ\text{C}$. This is below the limit of 125°C .

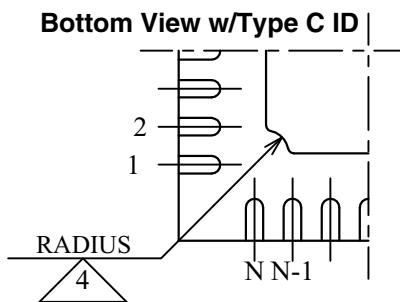
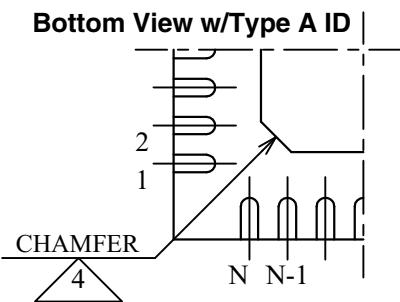
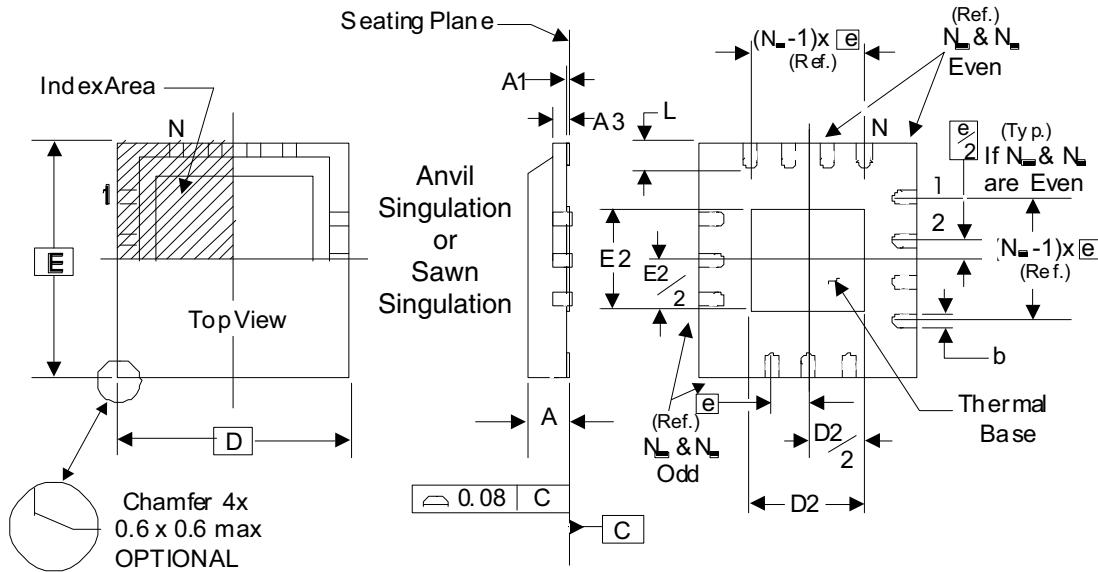
This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 32 Lead VFQFN, Forced Convection

θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	37.0°C/W	32.4°C/W	29.0°C/W

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 32 Lead VFQFN




θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	37.0°C/W	32.4°C/W	29.0°C/W

Transistor Count

The transistor count for 8400110 is: 4007

Package Outline and Package Dimensions

Package Outline - K Suffix for 32 Lead VFQFN

There are 2 methods of indicating pin 1 corner at the back of the VFQFN package:

1. Type A: Chamfer on the paddle (near pin 1)
2. Type C: Mouse bite on the paddle (near pin 1)

Table 9. Package Dimensions for 32 Lead VFQFN

JEDEC Variation: VHHD-2/4 All Dimensions in Millimeters			
Symbol	Minimum	Nominal	Maximum
N	32		
A	0.80		1.00
A1	0		0.05
A3	0.25 Ref.		
b	0.18	0.25	0.30
ND & NE			8
D & E	5.00 Basic		
D2 & E2	3.0		3.3
e	0.50 Basic		
L	0.30	0.40	0.50

NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 9.

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8400110EKILF	ICS00110EIL	“Lead-Free” 32 Lead VFQFN	Tray	-40°C to 85°C
8400110EKILFT	ICS00110EIL	“Lead-Free” 32 Lead VFQFN	Tape & Reel	-40°C to 85°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
B	T10	1 13	<p>“General Description” - deleted <i>HiperClocks</i> logo.</p> <p>Ordering Information Table - deleted <i>Tape & Reel count</i>.</p> <p>Deleted all <i>HiperClocks</i> references throughout the datasheet.</p> <p>Deleted <i>/CS</i> prefix from part number throughout the datasheet.</p> <p>Updated datasheet header/footer.</p>	1/20/16

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.