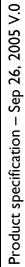


DATA SHEET

FUSIBLE CHIP RESISTORS


FR series (Pb Free)

5%

sizes 0603/1206

YAGEO

Chip Resistor Surface Mount

SERIES

0603/1206 (Pb Free)

SCOPE

This specification describes FR0603/1206 fusible chip resistors with lead-free terminations made by thick film process.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO ORDERING CODE

CTC CODE

FR XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6)

(I) SIZE

0603/1206

(2) TOLERANCE

 $| = \pm 5\%$

(3) PACKAGING TYPE

R = Paper/PE taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia, Reel

(6) RESISTANCE VALUE

IR, 5R6, 56R, 510R.

(7) RESISTOR TERMINATIONS (a)

L = Lead-free terminations (matte tin)

APPLICATIONS

- Power supply in small equipment
- Car telephones
- Portable radio, CD and cassette players

ORDERING EXAMPLE

The ordering code of a FR1206 chip resistor, value 200 Ω with ±5% tolerance, supplied in 7-inch tape reel is: FR1206JR-07200RL.

NOTE

- a. The "L" at the end of the code is only for ordering. On the reel label, the standard CTC or I2NC will be mentioned an additional stamp "LFP"= lead free production.
- Products with lead in terminations fulfil the same requirements as mentioned in this datasheet.
- Products with lead in terminations will be phased out in the coming months (before July 1 st, 2006)

Chip Resistor Surface Mount

SERIES

0603/1206 (Pb Free)

MARKING

FR0603/1206

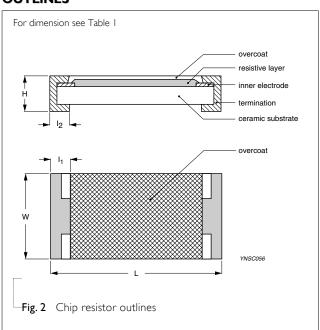
E-24 series: 3 digits

First two digits for significant figure and 3rd digit for number of zeros

For marking codes, please see EIA-marking code rules in data sheet "Chip resistors marking".

CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with an overcoat and printed with the resistance value. Finally, the two external terminations (matte tin) are added.


To enable recognition of a fusible device, the resistor should be mounted face up. See fig. 2.

DIMENSIONS

Table I For outlines see fig. 2

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	l ₂ (mm)
FR0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
FR1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20

OUTLINES

ELECTRICAL CHARACTERISTICS

Table 2						
		CHARACTERISTICS				
TYPE	RESISTANCE RANGE	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
FR0603	±5% (E-24), ∣ Ω ≤ R ≤ 240 Ω	–55 °C to +125 °C	50 V	100 V	100 V	I $\Omega \le R \le 10 \Omega$: 0/+500 ppm/°C I0 $\Omega < R \le 240 \Omega$: ±200 ppm/°C
FR1206	±5% (E-24), Ω ≤ R ≤ 5 0 Ω		200 V	500 V	500 V	I $\Omega \le R < 5 \Omega$: $\pm 250 \text{ ppm/°C}$ 5 $\Omega \le R \le 510 \Omega$: $\pm 200 \text{ ppm/°C}$

0603/1206 (Pb Free)

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

ENVIRONMENTAL DATA

For material declaration information (IMDS-data) of the products, please see the separated info "Environmental data" conformed to EU RoHS.

PACKING STYLE AND PACKAGING QUANTITY

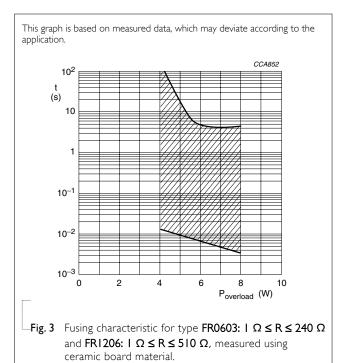
Table 3 Packing style and packaging quantity

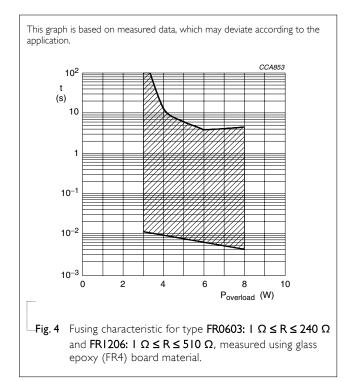
PACKING STYLE	REEL DIMENSION	FR0603	FR 1206
Paper/PE taping reel (R)	7" (178 mm)	5,000	5,000

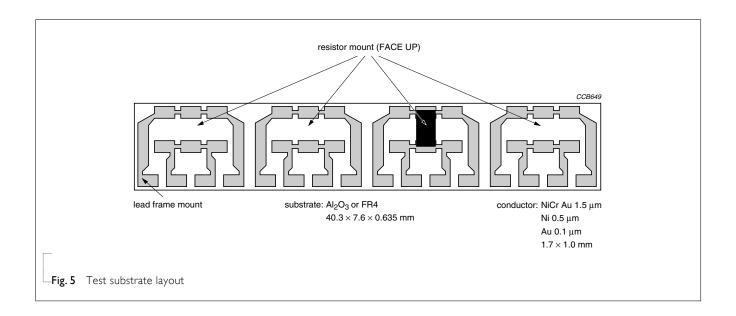
NOTE

1. For Paper/PE tape and reel specification/dimensions, please see the special data sheet "Packing" document.

FUNCTIONAL DESCRIPTION


PRODUCT CHARACTERIZATION


Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of ±5%. The values of the E24 series are in accordance with "IEC publication 60063".

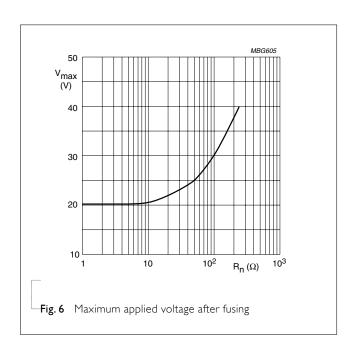

FUSING CHARACTERISTICS

The resistors will fuse without the risk of fire and within an indicated range of overload. Fusing means that the resistive value of the resistor increases at least 100 times; see Figs 3 and 4.

The fusing characteristic is measured under constant voltage with resistors mounted on a ceramic or glass epoxy (FR4) substrate; see Fig. 5

OPERATING TEMPERATURE RANGE

Range: -55°C to +125°C


LIMITING VALUES

 Ia	bI	e	4

TYPE	LIMITING VOLTAGE (1)	LIMITING POWER (3)
	(V)	(W)
FR0603	50 (2)	1/16
FR1206	200 (2)	1/8

NOTES

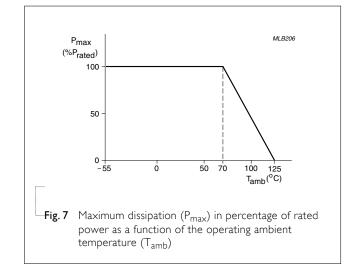
- 1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-8".
- 2. The maximum voltage that may be applied after fusing is shown in Fig. 6.
- 3. Each type rated power at 70°C.

POWER RATING

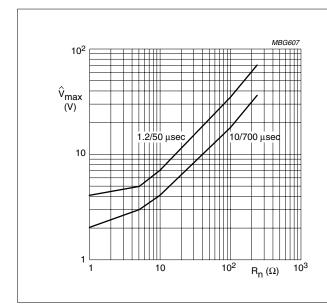
The power that the resistor can dissipate depends on the operating temperature; see Fig. 7.

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where


V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

PULSE LOADING CAPABILITIES

These pulses may not be applied on a regular basis

Fig. 8 For both types: RC0603/1206

Maximum permissible peak pulse voltage without failing to "open circuit" in accordance with DIN IEC 60040 (CO) 533

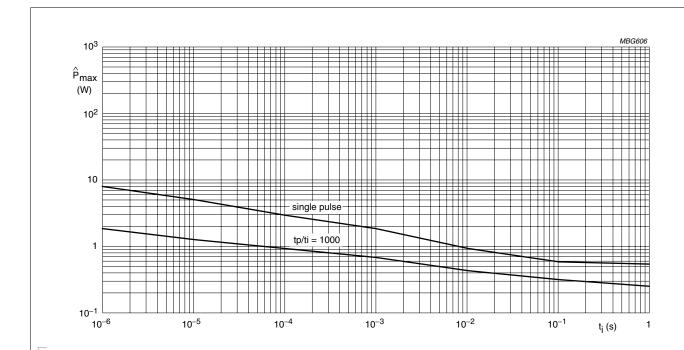


Fig. 9 Pulse on a regular basis; for type: RC1206, maximum permissible peak pulse power (P_{max}) as a function of pulse duration, single pulse and repetitive pulse tp/tj = 1000

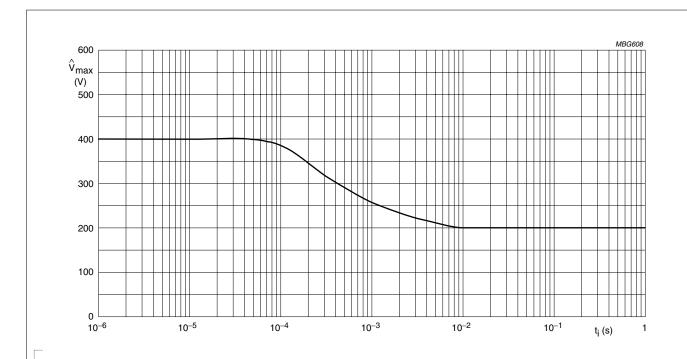


Fig. 10 Pulse on a regular basis; for type: RC1206, maximum permissible peak pulse power (Vmax) as a function of pulse duration

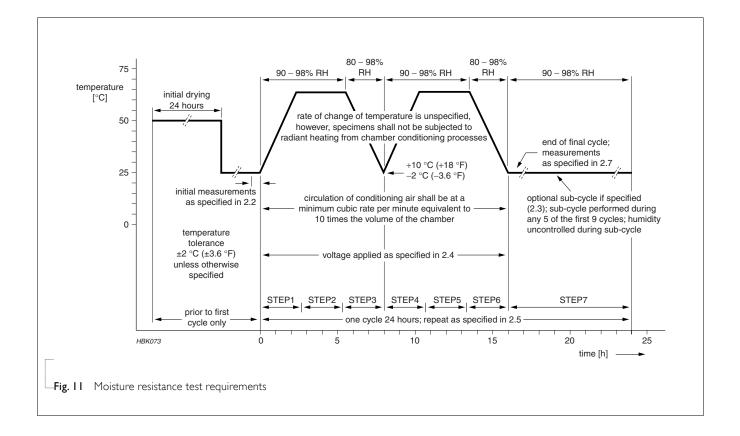
TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature	MIL-STD-202F-method 304;	At +25/−55 °C and +25/+125 °C	Refer to table 2
Coefficient of Resistance	JIS C 5202-4.8	Formula:	
(T.C.R.)			
		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where	
		t ₁ =+25 °C or specified room temperature	
		t ₂ =–55 °C or +125 °C test temperature	
		R ₁ =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Thermal Shock	MIL-STD-202F-method 107G;	At -65 (+0/-10) °C for 2 minutes and at +125	±(1.0%+0.05 Ω)
	IEC 60115-1 4.19	(+10/-0) °C for 2 minutes; 25 cycles	
Low	MIL-R-55342D-Para 4.7.4	At -65 (+0/-5) °C for I hour, RCWV applied	±(1.0%+0.05 Ω)
Temperature		for 45 (+5/–0) minutes	No visible damage
Operation			Ü
Short Time	MIL-R-55342D-Para 4.7.5;	2.5 × RCWV applied for 5 seconds at room	±(1.0%+0.05 Ω)
Overload	IEC 60115-1 4.13	temperature	No visible damage
Insulation	MIL-STD-202F-method 302;	One DC voltage (A) applied for L migute	≥10 GΩ
Resistance	IEC 60115-1 4.6.1.1	One DC voltage (V) applied for I minute	210 022
	IEC 60113-1 4.0.1.1	Details see below table 6	
Dielectric	MIL-STD-202F-method 301;	One AC voltage (V _{rms}) applied for 1 minute	No breakdown or flashover
Withstand Voltage	IEC 60115-1 4.6.1.1	Details see below table 6	
Resistance to	MIL-STD-202F-method 210C;	Unmounted chips; 260 ±5 °C for 10 ±1	±(1.0%+0.05 Ω)
Soldering Heat	IEC 60115-1 4.18	seconds	No visible damage
Life	MIL-STD-202F-method 108A;	At 70±2 °C for 1,000 hours; RCWV applied for	±(3%+0.05 Ω)
	IEC 60115-1 4.25.1	1.5 hours on and 0.5 hour off	
Solderability	MIL-STD-202F-method 208A;	Solder bath at 245±3 °C	Well tinned (≥95% covered)
	IEC 60115-1 4.17	Dipping time: 2±0.5 seconds	No visible damage

Chip Resistor Surface Mount | FR

SERIES 0603/1206 (Pb Free)


Table 5 Test condition, procedure and requirements (continued)


TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
Bending	JIS C 5202.6.14;	Resistors mounted on a 90 mm glass epoxy	±(1.0%+0.05 Ω)	
Strength	IEC 60115-1 4.15			
		Bending: 5 mm		
Resistance to	MIL-STD-202F-method 215;	Isopropylalcohol (C ₃ H ₇ OH) or dichloromethane	No smeared	
Solvent	IEC 60115-1 4.29	(CH ₂ Cl ₂) followed by brushing		
Noise	JIS C 5202 5.9;	Maximum voltage (V _{ms}) applied	Resistors range	Value
	IEC 60115-1 4.12		R < 100 Ω	10 dB
			$100 \Omega \le R < 1 K\Omega$	20 dB
			$1 \text{ K}\Omega \leq R < 10 \text{ K}\Omega$	30 dB
			$10 \text{ K}\Omega \leq R < 100 \text{ K}\Omega$	40 dB
			$100 \text{ K}\Omega \leq R < 1 \text{ M}\Omega$	46 dB
			$I M\Omega \le R \le 22 M\Omega$	48 dB
Humidity	JIS C 5202 7.5;	1,000 hours; 40±2 °C; 93(+2/–3)% RH	1 (2 00(1 0 0F Q)	
(steady state)	IEC 60115-8 4.24.8	RCWV applied for 1.5 hours on and 0.5 hour off	±(2.0%+0.05 Ω)	
Leaching	EIA/IS 4.13B;	Solder bath at 260±5 °C	No visible damage	
	IEC 60115-8 4.18	Dipping time: 30±1 seconds		
Intermittent Overload	JIS C 5202 5.8	At room temperature; 2.5 × RCWV applied for I second on and 25 seconds off; total 10,000 cycles	±(2.0%+0.05 Ω)	
Resistance to Vibration	On request	On request		
Moisture	MIL-STD-202F-method 106F;	42 cycles; total 1,000 hours	±(2.0%+0.05Ω)	
Resistance Heat	IEC 60115-1 4.24.2	Shown as Fig. 11	No visible damage	

Table 6 Criteria of rated continued working voltage and overload voltage

TYPE	FR0603	FR1206
Voltage (DC/unit: V); (AC/ unit: V _{rms})	100	500

Chip Resistor Surface Mount | FR | SERIES | 0603/1206 (Pb Free)

REVISION HISTORY

Version 0 Sep 26, 2005 - First issue of this specification