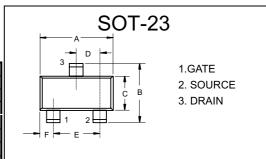


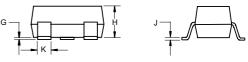
Micro Commercial Components 20736 Marilla Street Chatsworth

CA 91311

Phone: (818) 701-4933 (818) 701-4939 Fax:

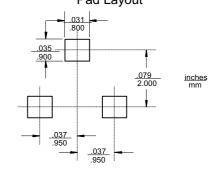
SI2305B

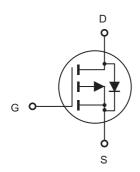

Features


- Halogen free available upon request by adding suffix "-HF"
- Epoxy meets UL 94 V-0 flammability rating
- Moisture Sensitivity Level 1
- TrenchFET MOSFET
- Low RDSON

P-Channel Enhancement Mode Field Effect Transistor

Maximum Ratings @ 25°C Unless Otherwise Specified


Symbol	Parameter	Rating	Unit	
V _{DS}	Drain-source Voltage	-20	V	
I_D	Continuous Drain Current	-4.2	Α	
V_{GS}	Gate-source Voltage	±8	V	
P _D	Total Power Dissipation	1.4	W	
R _{0 JA}	Thermal Resistance Junction to Ambient ^b	90	°C/W	
TJ	Operating Junction Temperature	-55 to +150	$^{\circ}\!\mathbb{C}$	
T _{STG}	Storage Temperature	-55 to +150	$^{\circ}\mathbb{C}$	



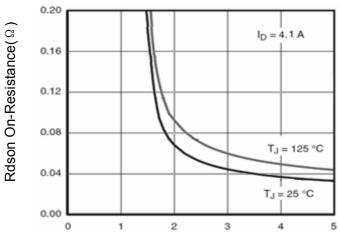
DIMENSIONS					
	INCHES		MM		
DIM	MIN	MAX	MIN	MAX	NOTE
Α	.110	.120	2.80	3.04	
В	.083	.104	2.10	2.64	
С	.047	.055	1.20	1.40	
D	.035	.041	.89	1.03	
Е	.070	.081	1.78	2.05	
F	.018	.024	.45	.60	
G	.0005	.0039	.013	.100	
Н	.035	.044	.89	1.12	
J	.003	.007	.085	.180	
K	015	020	37	51	

Suggested Solder Pad Layout

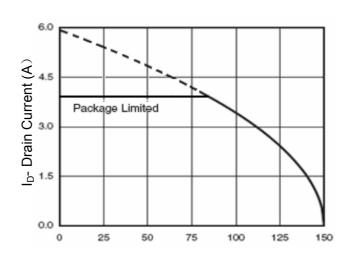
Internal Block Diagram

SI2305B

Electrical characteristics (T_a=25°C unless otherwise noted)


Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Static	•		•	•		•
Drain-source breakdown voltage	V _{(BR)DSS} V _{GS} = 0V, I _D =-250μA		-20			V
Gate-source threshold voltage	VGS(th)	$V_{GS(th)}$ $V_{DS} = V_{GS}$, $I_D = -250 \mu A$			-0.9	
Gate-source leakage	I _{GSS}	V _{DS} =0V, V _{GS} =±8V			±100	nA
Zero gate voltage drain current	I _{DSS}	V _{DS} =-20V, V _{GS} =0V			-1	μA
	RDS(on)	Vgs =-4.5V, lp =-2.7A		0.035	0.060	Ω
Drain-source on-state resistance ^a		V _{GS} =-2.5V, I _D =-2.7A		0.046	0.080	
		Vgs =-1.8V,Ip=-2.7A		0.090		
Forward transconductance ^a	g fs	V _{DS} =-5V, I _D =-4.1A	6			S
Dynamic				I		I
Input capacitance ^{b,c}	C _{iss}			740		pF
Output capacitance ^{b,c}	C _{oss}	V _{DS} =-4V,V _{GS} =0V,f =1MHz		290		
Reverse transfer capacitance ^{b,c}	C _{rss}			190		
		V _{DS} =-4V,V _{GS} =-4.5V,		7.0	45	
Total gate charge ^b	Qg	I _D =-4.1A		7.8	15	nC
		\(\lambda \)		4.5	9	
Gate-source charge ^b	Q_{gs}	V _{DS} =-4V,V _{GS} =-2.5V, I _D =-4.1A		1.2		
Gate-drain charge ^b	Q_{gd}	- 104.1A		1.6		
Gate resistance ^{b,c}	R _g	f=1MHz	1.4	7	14	Ω
Turn-on delay time ^{b,c}	td(on)			13	20	
Rise time ^{b,c}	tr	V _{DD} =-4V,		35	53	
Turn-off Delay time ^{b,c}	td(off)	$R_L=1.2 \Omega$, $I_D=-3.3 A$, $V_{GEN}=-4.5 V$, $R_G=1 \Omega$		32	48	
Fall time ^{b,c}	tf	V _{GEN} 4.5V,Ry-1Ω		10	20	
Turn-on delay time ^{b,c}	td(on)			5	10	ns
Rise time ^{b,c}	tr	V _{DD} =-4V,		11	17	-
Turn-off delay time ^{b,c}	td(off)	$R_L=1.2\Omega$, $I_D=-3.3A$,		22	33	
Fall time ^{b,c}	tf	V_{GEN} =-8 V ,Rg=1 Ω		16	24	
Drain-source body diode characteristic	s	•	1	1	1	
Continuous source-drain diode current	Is	T _C =25°C			-4.2	
Pulse diode forward current ^a	I _{SM}			-10	A	
Body ciode voltage	V _{SD}	I _F =-3.3A		-0.8	-1.2	V

Note:


- a. Pulse Test ; Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- b. Guaranteed by design, not subject to production testing.
- $\ensuremath{\text{c.}}$ These parameters have no way to verify.

SI2305B

Vgs Gate-Source Voltage (V)
Figure 1 Rdson vs Vgs

T_J-Junction Temperature(℃)

Figure 2 Drain Current

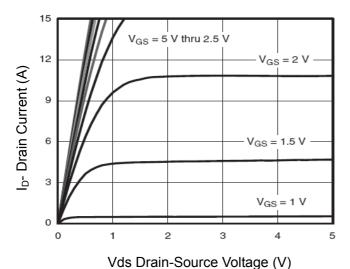


Figure 3 Output Characteristics

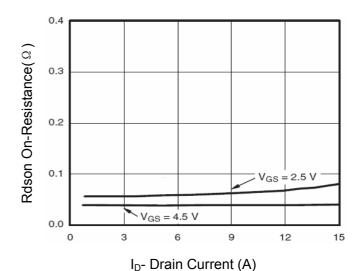


Figure 4 Drain-Source On-Resistance

Ordering Information:

Device	Packing
Part Number-TP	Tape&Reel: 3Kpcs/Reel

Note: Adding "-HF" suffix for halogen free, eg. Part Number-TP-HF

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.