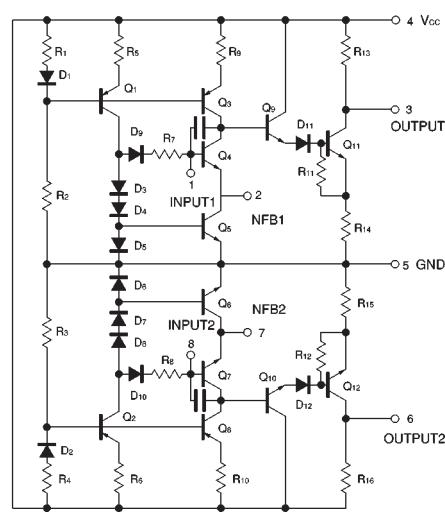


Dual preamplifier

BA328 / BA328F

The BA328 and BA328F are monolithic, dual-preamplifier ICs designed for car-audio systems.

They require few external components and allow compact set designs while reducing the number of assembly processes.


● Applications

Car and home stereos

● Features

- 1) Low noise.
- 2) Wide operating power supply voltage range.
- 3) Built-in bias circuit minimizes the number of external components required.
- 4) High open loop gain.
- 5) Good channel balance.

● Internal circuit diagram

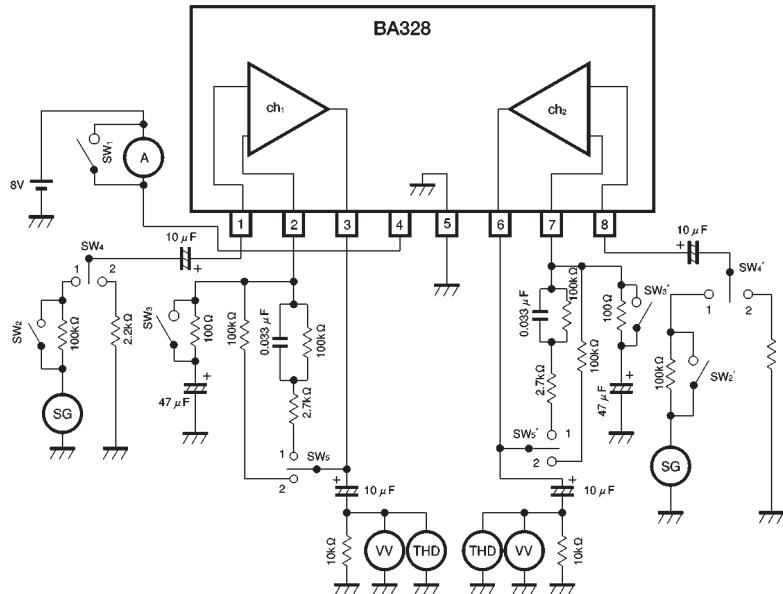
● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	V _{CC}	18	V
Power dissipation	P _d	900*1	mW
BA328F	P _d	500*2	
Operating temperature	T _{OPR}	-25~+75	°C
Storage temperature	T _{STG}	-55~+125	°C

*1 Reduced by 9.0mW for each increase in Ta of 1°C over 25°C.

*2 Reduced by 5.0mW for each increase in Ta of 1°C over 25°C.

(When mounted on a 70mm×70mm×1.6mm glass epoxy board)


● Recommended operating voltage range (Ta = 25°C)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	V _{CC}	6	8	16	V

● Electrical characteristics (unless otherwise noted, Ta = 25°C, V_{CC} = 8V, f = 1kHz, R_L = 10kΩ and R_E = 100Ω)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Quiescent current	I _Q	2	5	8	mA	V _{IN} =0V _{rms}
Open loop voltage gain	G _{VO}	65	80	—	dB	V _{OUT} =0.3V _{rms} , R _E =0Ω
Maximum output voltage	V _{OM}	1.0	1.5	—	V _{rms}	THD=1%
Input resistance	R _{IN}	50	—	—	kΩ	—
Total harmonic distortion	THD	—	0.1	0.3	%	V _{OUT} =0.3V _{rms}
Input conversion noise voltage	V _{NN}	—	1.2	2.0	μV _{rms}	R _g =2.2kΩ BPF (30Hz~20kHz)
Crosstalk level	CT	—	-65	-50	dB	Other channel V _{OUT} =0.3V _{rms} , R _g =2.2kΩ
Channel balance	CB	—	0	1.5	dB	V _{OUT} =0.3V _{rms}

● Measurement circuit

● Attached components

C_{IN} : input coupling capacitor

The recommended value is $10\mu\text{F}$. If the value of the capacitor is too small the characteristics at power on will deteriorate.

C_O : Output coupling capacitor

No particular requirements. A value of 4.7 to $22\mu\text{F}$ is appropriate.

C_E : AC signal bypass capacitor

The recommended value is $47\mu\text{F}$. This capacitor sets the bass gain.

If a capacitor larger than the recommended value is used, the bass-region gain will increase, but the characteristics at power on will deteriorate. If the value of the capacitor is made smaller than the recommended value, the bass-region gain will be lower, but the power on characteristics will improve.

C_1 and R_1 Ripple filter components

The larger R_1 and C_1 are made, the better the ripple rejection ratio will be. However, if R_1 is made too large, the voltage drop that results will influence the maximum output.

Feedback pin: The closed loop voltage gain is roughly Z_{nt}/R_E .

Item	SW ₁	SW ₂ SW _{2'}	SW ₃ SW _{3'}	SW ₄ SW _{4'}	SW ₅ SW _{5'}
I_Q	OFF	ON	OFF	2	1
G_{VO}	ON	ON	ON	1	2
V_{OM}	ON	ON	OFF	1	1
R_{IN}	ON	ON · OFF	OFF	1	1
THD	ON	ON	OFF	1	1
V_{NIN}	ON	ON	OFF	2	1
CT	ON	ON	OFF	2(1)	1
CB	ON	ON	OFF	1	1

Note: Bandpass filter used (30Hz to 20kHz).

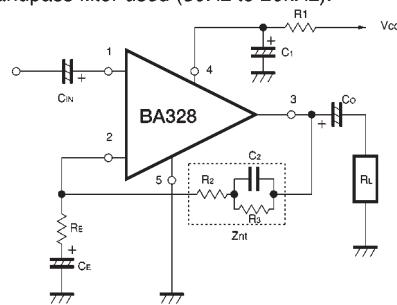


Fig.1

● Application example

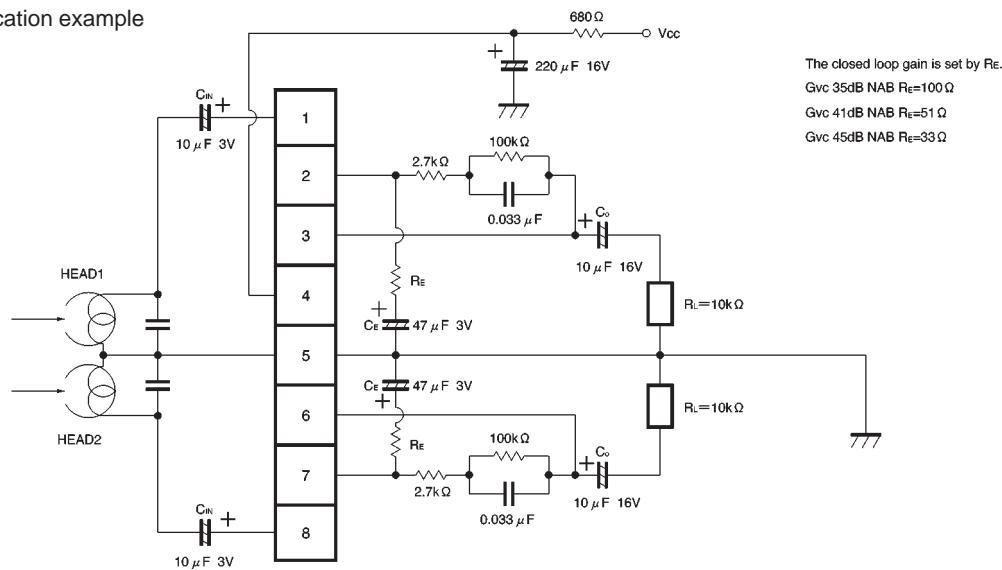


Fig. 2 Car stereo application

● Operation notes

Determining the DC output voltage (see Fig. 3)

The DC output voltage is determined as follows:

$$V_{ODC} = (R_{nt} \times I_o) + V_{P2} (7)$$

$V_{P2} (7)$: DC voltage on pin 2 (7)

R_{nt} : DC feedback resistance

I_o is set internally.

In other words, pin 7 is a fixed current source, and when that current flows into the feedback pin, the voltage generated becomes the DC voltage. $V_{P2} (7)$ is fixed at about 0.8V. When V_{ODC} is about 1/2 the power supply voltage, V_{OM} is maximized.

I_o is fixed regardless of the power supply voltage. Therefore, it is possible to set the DC feedback resistance after considering the required dynamic range and the minimum voltage applied to pin 4 (Vcc).

The recommended value is 100kΩ for a power supply voltage of 6V to 16V.

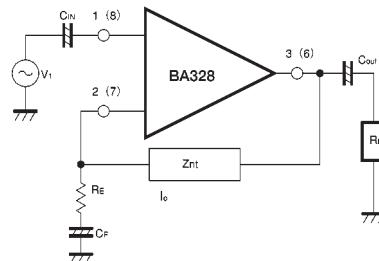


Fig. 3

● Electrical characteristics curves

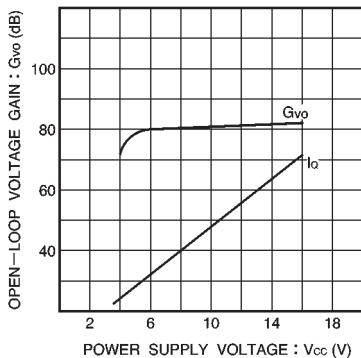


Fig. 4 Quiescent current and voltage gain vs. power supply voltage

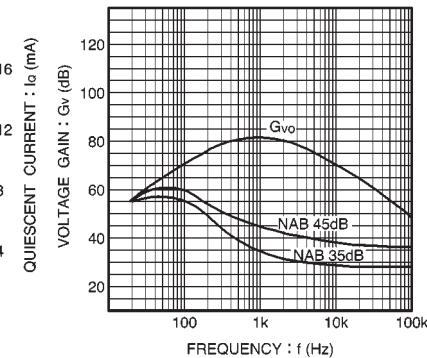


Fig. 5 Voltage gain vs. frequency

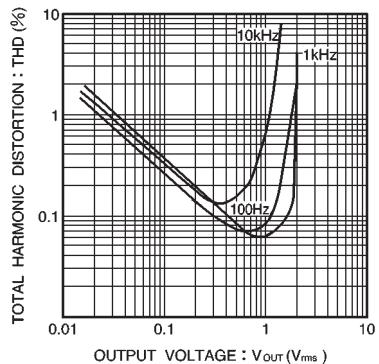
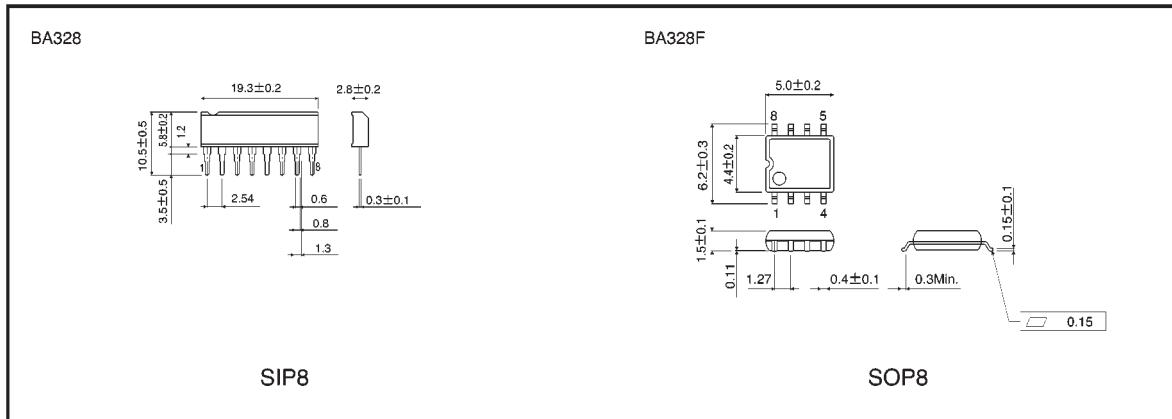



Fig. 6 Distortion vs. output voltage

● External dimensions (Units: mm)

