

High Voltage Latch-Up Proof, Single SPDT Switch

Data Sheet ADG5419

FEATURES

Latch-up immune under all circumstances Human body model (HBM) ESD rating: 8 kV Low on resistance: 13.5 Ω ± 9 V to ± 22 V dual-supply operation 9 V to 40 V single-supply operation 48 V supply maximum ratings Fully specified at ± 15 V, ± 20 V, ± 12 V, and ± 36 V V_{DD} to V_{SS} analog signal range

APPLICATIONS

High voltage signal routing Automatic test equipment Analog front-end circuits Precision data acquisition Industrial instrumentation Amplifier gain select Relay replacement

FUNCTIONAL BLOCK DIAGRAMS

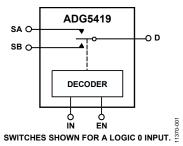


Figure 1. 8-Lead LFCSP

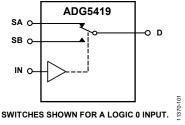


Figure 2. 8-Lead MSOP

GENERAL DESCRIPTION

The ADG5419 is a monolithic industrial, complementary metal oxide semiconductor (CMOS) analog switch containing a latch-up immune single-pole/double-throw (SPDT) switch.

Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. The ADG5419 exhibits break-before-make switching action for use in multiplexer applications.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. The latch-up immune construction and high ESD rating make these switches more robust in harsh environments.

PRODUCT HIGHLIGHTS

- Trench isolation guards against latch-up. A dielectric trench separates the P channel and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
- 2. Low Ron of 13.5 Ω .
- 3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5419 can be operated from dual supplies up to ± 22 V.
- 4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5419 can be operated from a single-rail power supply up to 40 V.
- 5. 3 V logic compatible digital inputs: $V_{INH} = 2.0 \text{ V}$, $V_{INL} = 0.8 \text{ V}$.
- 6. No V_L logic power supply required.
- 7. Available in 8-lead MSOP and 8-lead, 2 mm \times 3 mm LFCSP packages.

ADG5419* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

 Evaluation Board for 8 lead MSOP Devices in the Switch/ Mux Portfolio

DOCUMENTATION

Data Sheet

 ADG5419: High Voltage Latch-Up Proof, Single SPDT Switch Data Sheet

User Guides

 UG-893: Evaluating the 8-Lead MSOP Devices in the Switch/Mux Portfolio

REFERENCE MATERIALS \Box

Press

 Latch-up Immune, High ESD Switches, Expands ADI Offerings in High-Voltage Industrial Applications

DESIGN RESOURCES 🖵

- · ADG5419 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all ADG5419 EngineerZone Discussions.

SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

TABLE OF CONTENTS

Applications1	Absolu
Functional Block DiagramS1	ESD
General Description1	Pin Co
Product Highlights 1	Typical
Revision History	Test Ci
Specifications	Termin
±15 V Dual Supply3	Applica
±20 V Dual Supply4	Tren
12 V Single Supply5	Outline
36 V Single Supply6	Orde
REVISION HISTORY	
3/15—Rev. 0 to Rev. A	Added
Added 8-Lead LFCSPUniversal	Change
Added Figure 1; Renumbered Sequentially	Added
Changes to Table 1	Deletec
Changes to Table 2	Added
Changes to Table 35	Change
Changes to Table 46	Added
Changed Continuous Current, Sx or D to 8-Lead MSOP,	Change
Table 5	_
Added Figure 3 and Table 8; Renumbered Sequentially 9	9/13—
Changes to Table 79	
Changes to Figure 510	

Continuous Current per Channel, Sx or D	7
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configurations and Function Descriptions	9
Typical Performance Characteristics	10
Test Circuits	14
Terminology	17
Applications Information	18
Trench Isolation	18
Outline Dimensions	19
Ordering Guide	19
Added Figure 23	13
Changes to Figure 24 Caption	14
Added Figure 25 and Figure 26	14
Deleted Figure 27; Renumbered Sequentially	14
Added Figure 32 and Figure 33	15
Changes to Terminology Section	17
Added Figure 37, Outline Dimensions	
Changes to Ordering Guide	19

9/13—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, Ron	13.5			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -10 \text{ mA; see Figure 27}$
	15	19	23	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.1			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	1.8			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	2.2	2.7	3.1	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_S = \pm 10 \text{ V}$, $V_D = \mp 10 \text{ V}$; see Figure 24 and Figure 25
	±0.25	±1	±10	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 25}$
- · · ·	±0.4	±4	±10	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.1			nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 24 and Figure 26
	±0.4	±4	±10	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
,			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	217			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	260	310	336	ns max	V _s = 10 V; see Figure 32
t _{on} (EN)	179			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	212	261	298	ns max	V _s = 10 V; see Figure 33
t _{OFF} (EN)	153			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	176	195	209	ns max	V _s = 10 V; see Figure 33
Break-Before-Make Time Delay, t _D	86			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
·			45	ns min	V _s = 10 V; see Figure 34
Charge Injection, Q _{INJ}	130			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 35
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion + Noise	0.01			% typ	$R_L = 1 \text{ k}\Omega$, 15 V p-p, $f = 20 \text{ Hz}$ to 20 kHz; see Figure 30
–3 dB Bandwidth	190			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	-0.8			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
C _s (Off)	12			pF typ	V _S = 0 V, f = 1 MHz
C _D (Off)	23			pF typ	$V_S = 0 V, f = 1 MHz$
C_D (On), C_S (On)	55			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I_{DD}	45			μA typ	Digital inputs = 0 V or V _{DD}
	55		70	μA max	-
I _{SS}	0.001			μΑ typ μΑ max	Digital inputs = 0 V or V_{DD}
V - A/ -	1		1 +0/+22	•	GND = 0.V
V_{DD}/V_{SS}			±9/±22	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, Ron	12.5			Ω typ	$V_S = \pm 15 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure 27}$
	14	18	22	Ω max	$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.1			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -10 \text{ mA}$
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	2.3			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -10 \text{ mA}$
	2.7	3.3	3.7	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, I ₅ (Off)	±0.1			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}$; see Figure 24 and Figure 25
	±0.25	±1	±10	nA max	
Drain Off Leakage, ID (Off)	±0.1			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}; \text{ see Figure 25}$
	±0.4	±4	±10	nA max	
Channel On Leakage, I_D (On), I_S (On)	±0.1			nA typ	$V_S = V_D = \pm 15 \text{ V}$; see Figure 24 and Figure 26
	±0.4	±4	±10	nA max	
DIGITAL INPUTS	İ				
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	200			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	235	279	294	ns max	V _s = 10 V; see Figure 32
t _{ON} (EN)	199			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	239	300	344	ns max	V _s = 10 V; see Figure 33
t _{OFF} (EN)	157			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	185	208	227	ns max	$V_S = 10 \text{ V}$; see Figure 33
Break-Before-Make Time Delay, t _D	77			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			46	ns min	V _s = 10 V; see Figure 34
Charge Injection, Q _{INJ}	160			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 35
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion + Noise	0.01			% typ	$R_L = 1 \text{ k}\Omega$, 20 V p-p, f = 20 Hz to 20 kHz; see Figure 30
−3 dB Bandwidth	190			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	-0.7			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Cs (Off)	11			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	22			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)	55			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
I _{DD}	50			μA typ	Digital inputs = 0 V or V _{DD}
	70		110	μA max	
Iss	0.001		1	μΑ typ μΑ max	Digital inputs = 0 V or V _{DD}
V _{DD} /V _{SS}			±9/±22	V min/V max	GND = 0 V

 $^{^{\}rm 1}$ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, Ron	26			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -10 \text{ mA; see}$ Figure 27
	30	38	44	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.1			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
	1	1.5	1.6	Ω max	
On-Resistance Flatness, RFLAT (ON)	5.5			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
	6.8	8.3	12.3	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_S = 1 \text{ V to } 10 \text{ V}, V_D = 10 \text{ V to } 1 \text{ V};$ see Figure 24 and Figure 25
	±0.25	±1	±10	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	VS = 1V to 10 V, VD = 10 V to 1V; see Figure 25
	±0.4	±4	±10	nA max	
Channel On Leakage, I_D (On), I_S (On)	±0.1			nA typ	$V_S = V_D = 1 \text{ V to } 10 \text{ V}$; see Figure 24 and Figure 26
	±0.4	±4	±10	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	333			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	414	508	567	ns max	$V_S = 8 \text{ V}$; see Figure 32
t _{on} (EN)	327			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	410	526	612	ns max	$V_S = 8 \text{ V}$; see Figure 33
t _{OFF} (EN)	166			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	200	528	611	ns max	$V_S = 8 \text{ V}$; see Figure 33
Break-Before-Make Time Delay, t _D	176			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			97	ns min	$V_S = 8 \text{ V}$; see Figure 34
Charge Injection, Q _{INJ}	55			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$ Figure 35
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion + Noise	0.03			% typ	$R_L = 1 \text{ k}\Omega$, 6 V p-p, f = 20 Hz to 20 kHz; see Figure 30
−3 dB Bandwidth	170			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	-1.7			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
C _s (Off)	15			pF typ	$V_S = 6 V, f = 1 MHz$
C _D (Off)	29			pF typ	$V_S = 0 V, f = 1 MHz$
C_D (On), C_S (On)	50			pF typ	$V_S = 6 \text{ V}, f = 1 \text{ MHz}$
POWER REQUIREMENTS					V _{DD} = 13.2 V
I_{DD}	40			μA typ	Digital inputs = 0 V or V _{DD}
	50		65	μA max	
V_{DD}			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{ON}	14.5			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA; see}$ Figure 27
	16	20	24	Ω max	$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.1			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA}$
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	3.5			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V}, I_S = -10 \text{ mA}$
	4.3	5.5	6.5	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	V_S = 1 V to 30 V, V_D = 30 V to 1 V; see Figure 24 and Figure 25
	±0.25	±1	±10	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = 1V \text{ to } 30 \text{ V}, V_D = 30 \text{ V to } 1V; \text{ see Figure 25}$
	±0.4	±4	±10	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.1			nA typ	$V_S = V_D = 1 \text{ V to } 30 \text{ V};$ see Figure 24 and Figure 26
	±0.4	±4	±10	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	216			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	250	286	310	ns max	$V_S = 18 \text{ V}$; see Figure 32
t _{on} (EN)	199			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	232	279	315	ns max	$V_S = 18 \text{ V}$; see Figure 33
t _{OFF} (EN)	160			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	193	284	315	ns max	$V_s = 18 \text{ V}$; see Figure 33
Break-Before-Make Time Delay, t _D	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			47	ns min	V _S = 18 V; see Figure 34
Charge Injection, Q _{INJ}	135			pC typ	$V_S = 18 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$ Figure 35
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion + Noise	0.01			% typ	$R_L = 1 \text{ k}\Omega$, 18 V p-p, f = 20 Hz to 20 kHz; see Figure 30
−3 dB Bandwidth	170			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	-1			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
C _s (Off)	14			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	26			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)	50			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					V _{DD} = 39.6 V
I_{DD}	80			μA typ	Digital inputs = 0 V or V _{DD}
	100		130	μA max	
V_{DD}			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR D

Table 5.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
8-LEAD MSOP					$\theta_{JA} = 133.1^{\circ}C/W$
$V_{DD} = 15 \text{ V}, V_{SS} = -15 \text{ V}$	113	73	46	mA maximum	
$V_{DD} = 20 \text{ V}, V_{SS} = -20 \text{ V}$	118	76	47	mA maximum	
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$	90	60	41	mA maximum	
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$	116	74	46	mA maximum	
8-LEAD LFCSP					$\theta_{JA} = 60.88$ °C/W
$V_{DD} = 15 \text{ V}, V_{SS} = -15 \text{ V}$	156	92	52	mA maximum	
$V_{DD} = 20 \text{ V}, V_{SS} = -20 \text{ V}$	163	95	53	mA maximum	
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$	126	78	48	mA maximum	
$V_{\text{DD}}=36\ V,V_{\text{SS}}=0\ V$	160	93	53	mA maximum	

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

1 aut 0.	
Parameter	Rating
V _{DD} to V _{SS}	48 V
V _{DD} to GND	−0.3 V to +48 V
V _{SS} to GND	+0.3 V to -48 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or } 30$ mA, whichever occurs first
Digital Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Peak Current, Sx or D Pins	410 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx or D ²	Data + 15%
Temperature Range	
Operating	−40°C to +125°C
Storage	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ_{JA}	
8-Lead MSOP (4-Layer Board)	133.1°C/W
8-Lead LFCSP	60.88°C/W
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
Human Body Model (HBM) ESD	8 kV

¹ Overvoltages at the IN, Sx, and D pins are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

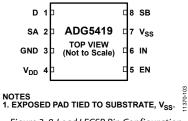


Figure 3. 8-Lead LFCSP Pin Configuration

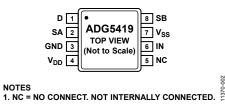


Figure 4. 8-Lead MSOP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.			
LFCSP	LFCSP MSOP		Description
1	1	D	Drain Terminal. This pin can be an input or output.
2	2	SA	Source Terminal. This pin can be an input or an output.
3	3	GND	Ground (0 V) Reference.
4	4	V_{DD}	Most Positive Power Supply Potential.
5		EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the IN logic input determines the state of the switch.
6	6	IN	Logic Control Input.
7	7	Vss	Most Negative Power Supply Potential.
8	8	SB	Source Terminal. This pin can be an input or an output.
	5	NC	No Connect. Not internally connected.
	Not applicable	EPAD	Exposed Pad. Exposed pad tied to substrate, Vss.

Table 8. LFCSP Truth Table

EN	IN	Switch A	Switch B
0	X ¹	Off	Off
1	0	On	Off
1	1	Off	On

 $^{^{1}}$ X = don't care.

Table 9. MSOP Truth Table

IN	Switch A	Switch B
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

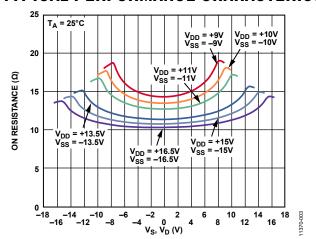


Figure 5. On Resistance as a Function of V_S , V_D Dual Supply

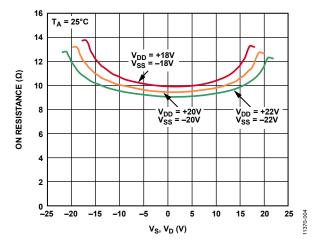


Figure 6. On Resistance as a Function of V_S , V_D Dual Supply)

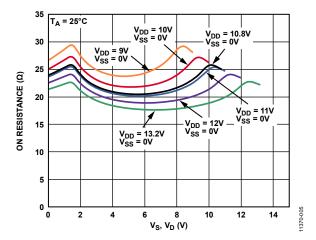


Figure 7. On Resistance as a Function of V_S , V_D (Single Supply)

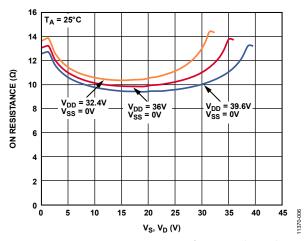


Figure 8. On Resistance as a Function of V_S , V_D (Single Supply)

Figure 9. On Resistance as a Function of $V_S(V_D)$ for Different Temperatures, ± 15 V Dual Supply

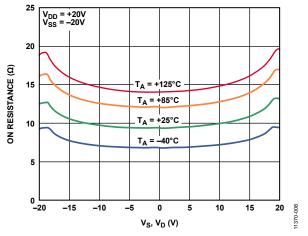


Figure 10. On Resistance as a Function of V_S (V_D) for Different Temperatures, $\pm 20 \text{ V Dual Supply}$

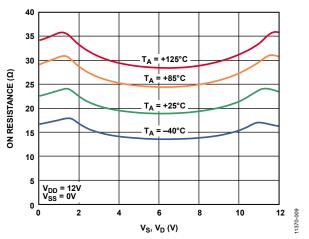


Figure 11. On Resistance as a Function of V_S (V_D) for Different Temperatures, 12 V Single Supply

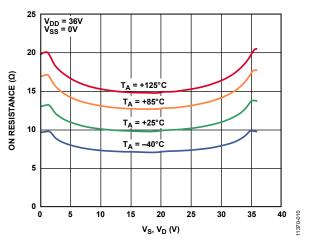


Figure 12. On Resistance as a Function of V_S (V_D) for Different Temperatures, 36 V Single Supply

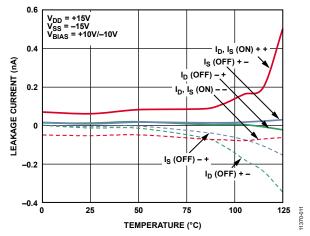


Figure 13. Leakage Currents as a Function of Temperature, ±15 V Dual Supply

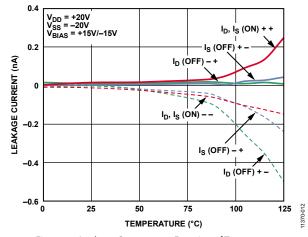


Figure 14. Leakage Currents as a Function of Temperature, $\pm 20\, V$ Dual Supply

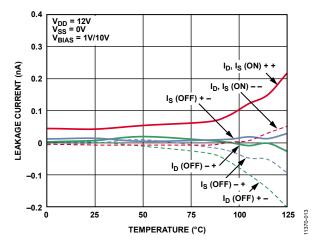


Figure 15. Leakage Currents as a Function of Temperature, 12 V Single Supply

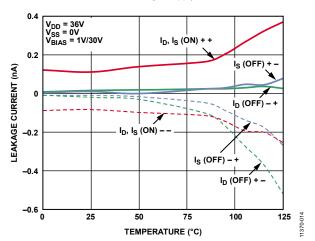


Figure 16. Leakage Currents as a Function of Temperature, 36 V Single Supply

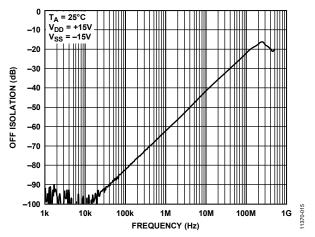


Figure 17. Off Isolation vs. Frequency

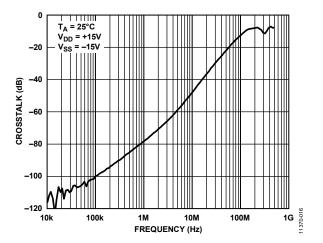


Figure 18. Crosstalk vs. Frequency

Figure 19. Charge Injection vs. Source Voltage

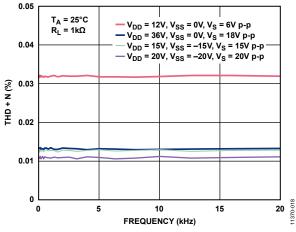


Figure 20. THD + N vs. Frequency

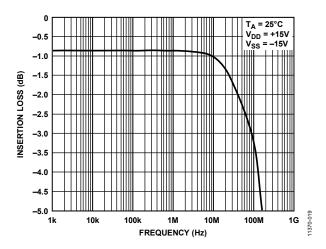


Figure 21. Bandwidth

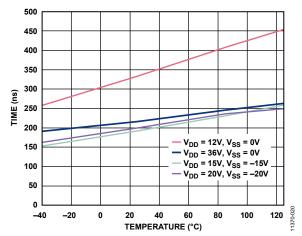


Figure 22. t_{TRANSITION} Times vs. Temperature

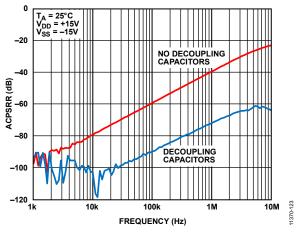


Figure 23. ACPSRR vs. Frequency

TEST CIRCUITS

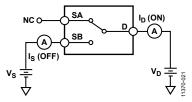


Figure 24. Channel On and Source Off Leakage (MSOP Only)

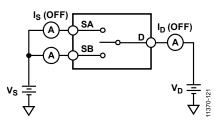
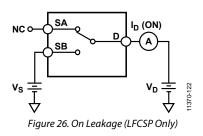



Figure 25. Off Leakage (LFCSP Only)

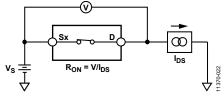


Figure 27. On Resistance

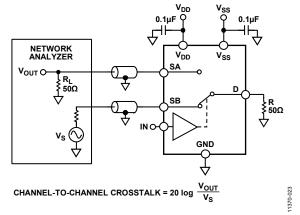


Figure 28. Channel-to-Channel Crosstalk

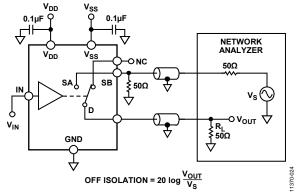


Figure 29. Off Isolation

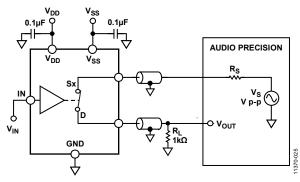


Figure 30. THD + Noise

Figure 31. Bandwidth

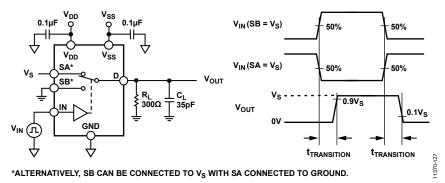


Figure 32. Transition Time, t_{TRANSITION}

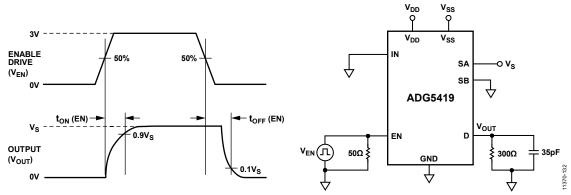


Figure 33. Enable Delay, ton (EN), toff (EN) (LFCSP Only)

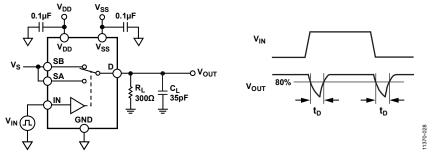


Figure 34. Break-Before-Make Delay, t_D

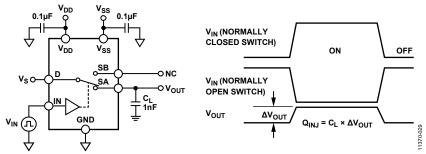


Figure 35. Charge Injection

TERMINOLOGY

I_{DD}

IDD represents the positive supply current.

Iss

Iss represents the negative supply current.

V_D, V_S

 $V_{\text{\scriptsize D}}$ and $V_{\text{\scriptsize S}}$ represent the analog voltage on Terminal D and Terminal S, respectively.

Rox

 R_{ON} is the ohmic resistance between Terminal D and Terminal S.

ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT} (ON)

The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range is represented by $R_{\rm FLAT\,(ON)}$.

Is (Off)

Is (Off) is the source leakage current with the switch off.

In (Off)

I_D (Off) is the drain leakage current with the switch off.

I_D (On), I_S (On)

 $I_{D}\left(On\right)$ and $I_{S}\left(On\right)$ represent the channel leakage currents with the switch on.

\mathbf{V}_{INL}

 V_{INL} is the maximum input voltage for Logic 0.

V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

IINL, IINH

 $I_{\rm INL}$ and $I_{\rm INH}$ represent the low and high input currents of the digital inputs.

C_D (Off)

 C_D (Off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

Cs (Off) represents the off switch source capacitance, which is measured with reference to ground.

C_D (On), C_S (On)

 C_D (On) and C_S (On) represent on switch capacitances, which are measured with reference to ground.

C_{IN}

C_{IN} represents digital input capacitance.

ton (EN)

 $t_{\rm ON}$ represents the delay time between the 50% and 90% points of the digital input and switch on condition. See Figure 33.

toff (EN)

 t_{OFF} represents the delay time between the 50% and 90% points of the digital input and switch off condition. See Figure 33.

tTRANSITION

ttransition represents the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

\mathbf{t}_{I}

t_D represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB. from its dc level.

Total Harmonic Distortion + Noise (THD + N)

THD + N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR. See Figure 23.

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5419 high voltage switch allows single-supply operation from 9 V to 40 V and dual-supply operation from ± 9 V to ± 22 V. The ADG5419 (as well as other select devices within this family) achieves an 8 kV human body model ESD rating, which provides a robust solution, eliminating the need for separate protection circuitry designs in some applications.

TRENCH ISOLATION

In the ADG5419, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a completely latch-up immune switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. The two transistors form a silicon-controlled rectifier (SCR) type circuit, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up immune switch.

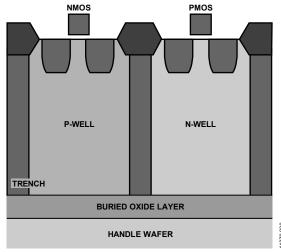


Figure 36. Trench Isolation

OUTLINE DIMENSIONS

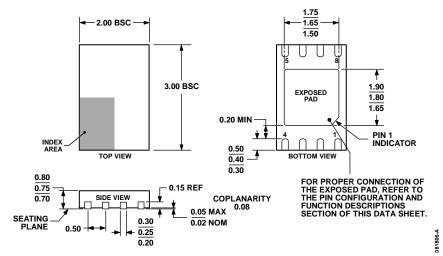


Figure 37. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD] 2 mm × 3 mm Body, Very Very Thin, Dual Lead (CP-8-4)

Dimensions shown in millimeters

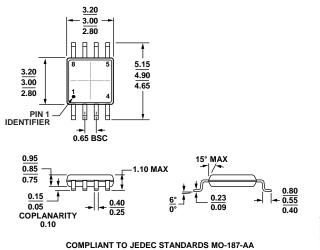


Figure 38. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG5419BCPZ-RL7	−40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-8-4	BL
ADG5419BRMZ	−40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S48
ADG5419BRMZ-RL7	−40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S48

¹ Z = RoHS Compliant Part.

