

- Single-Chip TIA/EIA-232-F Interface for IBM™ PC/AT™ Serial Port
- Designed to Transmit and Receive 4- μ s Pulses (Equivalent to 256 kbit/s)
- Less Than 21-mW Power Consumption
- Wide Supply-Voltage Range . . . 4.75 V to 15 V
- Driver Output Slew Rates Are Internally Controlled to 30 V/ μ s Max
- Receiver Input Hysteresis . . . 1000 mV Typical
- TIA/EIA-232-F Bus-Pin ESD Protection Exceeds:
 - 15-kV, Human-Body Model
- Three Drivers and Five Receivers Meet or Exceed the Requirements of TIA/EIA-232-F and ITU V.28
- Complements the SN75LP196
- Designed to Replace the Industry-Standard SN75185 and SN75C185 With the Same Flow-Through Pinout
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Dual-In-Line (N) Packages

DB, DW, OR N PACKAGE
(TOP VIEW)

description

The SN75LP1185 is a low-power bipolar device containing three drivers and five receivers, with 15 kV of ESD protection on the bus pins with respect to each other. Bus pins are defined as those pins that tie directly to the serial-port connector, including GND. The pinout matches the flow-through design of the industry-standard SN75185 and SN75C185. The flow-through pinout of the SN75LP1185 allows easy interconnection of the UART and serial-port connector of the IBM PC/AT and compatibles. The SN75LP1185 provides a rugged, low-cost solution for this function with the combination of the bipolar processing and 15 kV of ESD protection.

The SN75LP1185 has internal slew-rate control to provide a maximum rate of change in the output signal of 30 V/ μ s. The driver output swing is nominally clamped at ± 6 V to enable the higher data rates associated with this device and to reduce EMI emissions. Even though the driver outputs are clamped, they can handle voltages up to ± 15 V without damage. All the logic inputs can accept 3.3-V or 5-V input signals.

The SN75LP1185 complies with the requirements of TIA/EIA-232-F and ITU V.28. These standards are for data interchange between a host computer and peripheral at signaling rates up to 20 kbit/s. The switching speeds of the SN75LP1185 support rates up to 256 kbit/s.

The SN75LP1185 is characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

IBM and PC/AT are trademarks of International Business Machines Corporation.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated

SN75LP1185

LOW-POWER MULTIPLE RS-232 DRIVERS AND RECEIVERS

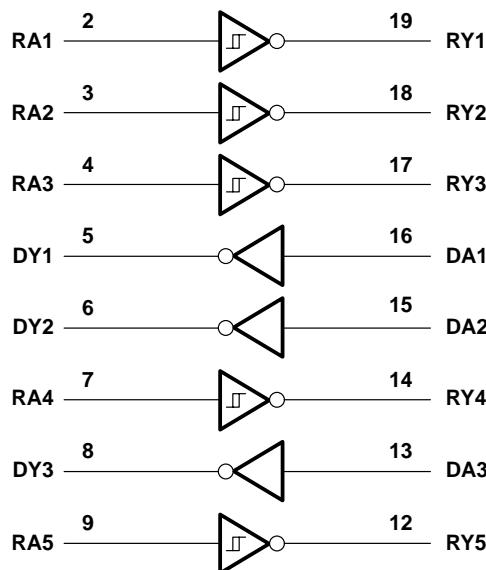
SLLS335A – JANUARY 1999 – REVISED JANUARY 2001

AVAILABLE OPTIONS

T _A	PACKAGED DEVICES		
	PLASTIC SHRINK SMALL-OUTLINE (DB)	PLASTIC SMALL OUTLINE (DW)	PLASTIC DIP (N)
0°C to 70°C	SN75LP1185DBR	SN75LP1185DW	SN75LP1185N

The DB package is only available taped and reeled. The DW package also is available taped and reeled. Add the suffix R to device type (e.g., SN75LP1185DWR).

Function Tables


DRIVER

INPUT DA	OUTPUT DY
H	L
L	H
Open	L

RECEIVER

INPUT RA	OUTPUT RY
H	L
L	H
Open	H

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to network ground terminal, unless otherwise noted.
 2. Per MIL-STD-883, Method 3015.7
 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage (see Note 4)		4.75	5	5.25	V
V _{DD}	Supply voltage (see Note 5)		9	12	15	V
V _{SS}	Supply voltage (see Note 5)		-9	-12	-15	V
V _{IH}	High-level input voltage	DA	2			V
V _{IL}	Low-level input voltage	DA			0.8	V
V _I	Receiver input voltage	RA	-25	25		V
I _{OH}	High-level output current	RY			-1	mA
I _{OL}	Low-level output current	RY			2	mA
T _A	Operating free-air temperature		0	70		°C

NOTES: 4. V_{CC} cannot be greater than V_{DD} .
5. The device operates down to $V_{DD} = V_{CC}$ and $|V_{SS}| = V_{CC}$, but supply currents increase and other parameters may vary slightly from the data sheet limits.

supply currents over the recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply current for V_{CC} , I_{CC}	No load, All inputs at minimum V_{OH} or maximum V_{OL}	$V_{DD} = 9 \text{ V}$, $V_{SS} = -9 \text{ V}$		1000	μA
Supply current for V_{DD} , I_{DD}		$V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$		1000	
Supply current for V_{SS} , I_{SS}		$V_{DD} = 9 \text{ V}$, $V_{SS} = -9 \text{ V}$		800	
		$V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$		800	
		$V_{DD} = 9 \text{ V}$, $V_{SS} = -9 \text{ V}$		-625	
		$V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$		-625	

driver electrical characteristics over the recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH} High-level output voltage	$V_{IL} = 0.8 \text{ V}$, $R_L = 3 \text{ k}\Omega$, See Figure 1	$V_{DD} = 9 \text{ V}$, $V_{SS} = -9 \text{ V}$	5	5.8	6.6
		$V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, See Note 6	5	5.8	6.6
V_{OL} Low-level output voltage	$V_{IH} = 2 \text{ V}$, $R_L = 3 \text{ k}\Omega$, See Figure 1	$V_{DD} = 9 \text{ V}$, $V_{SS} = -9 \text{ V}$	-5	-5.8	-6.9
		$V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, See Note 6	-5	-5.9	-6.9
I_{IH} High-level input current	V_I at V_{CC}			1	μA
I_{IL} Low-level input current	V_I at GND			-1	μA
$I_{OS(H)}$ Short-circuit high-level output current	$V_O = GND$ or V_{SS} ,	See Figure 2 and Note 7		-30	-55
$I_{OS(L)}$ Short-circuit low-level output current	$V_O = GND$ or V_{DD} ,	See Figure 2 and Note 7		30	55
r_o Output resistance	$V_{DD} = V_{SS} = V_{CC} = 0$,	$V_O = 2 \text{ V}$	300		Ω

NOTES: 6. Maximum output swing is clamped nominally at $\pm 6 \text{ V}$ to enable the higher data rates associated with this device and to reduce EMI emissions. The driver outputs may slightly exceed the maximum output voltage over the full V_{CC} and temperature ranges.
 7. Not more than one output should be shorted at one time.

driver switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
t _{PHL}	Propagation delay time, high- to low-level output $R_L = 3 \text{ k}\Omega$ to $7 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, See Figure 1		300	800	1600	ns	
t _{PLH}	Propagation delay time, low- to high-level output $R_L = 3 \text{ k}\Omega$ to $7 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, See Figure 1		300	800	1600	ns	
t _{TLH}	Transition time, low- to high-level output $V_{CC} = 5 \text{ V}$, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $R_L = 3 \text{ k}\Omega$ to $7 \text{ k}\Omega$, See Figure 1 and Note 9	$V_{CC} = 5 \text{ V}$, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $R_L = 3 \text{ k}\Omega$ to $7 \text{ k}\Omega$, See Figure 1 and Note 9	Using $V_{TR} = 10\%$ -to-90% transition region, Driver speed = 250 kbit/s, $C_L = 15 \text{ pF}$, See Note 8	375	2240	ns	
			Using $V_{TR} = \pm 3 \text{ V}$ transition region, Driver speed = 250 kbit/s, $C_L = 15 \text{ pF}$	200	1500		
			Using $V_{TR} = \pm 2 \text{ V}$ transition region, Driver speed = 250 kbit/s, $C_L = 15 \text{ pF}$	133	1000		
			Using $V_{TR} = \pm 3 \text{ V}$ transition region, Driver speed = 125 kbit/s, $C_L = 2500 \text{ pF}$		2750		
t _{THL}	Transition time, high- to low-level output $V_{CC} = 5 \text{ V}$, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $R_L = 3 \text{ k}\Omega$ to $7 \text{ k}\Omega$, See Figure 1 and Note 9	$V_{CC} = 5 \text{ V}$, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $R_L = 3 \text{ k}\Omega$ to $7 \text{ k}\Omega$, See Figure 1 and Note 9	Using $V_{TR} = 10\%$ -to-90% transition region, Driver speed = 250 kbit/s, $C_L = 15 \text{ pF}$, See Note 8	375	2240	ns	
			Using $V_{TR} = \pm 3 \text{ V}$ transition region, Driver speed = 250 kbit/s, $C_L = 15 \text{ pF}$	200	1500		
			Using $V_{TR} = \pm 2 \text{ V}$ transition region, Driver speed = 250 kbit/s, $C_L = 15 \text{ pF}$	133	1000		
			Using $V_{TR} = \pm 3 \text{ V}$ transition region, Driver speed = 125 kbit/s, $C_L = 2500 \text{ pF}$		2750		
SR	Output slew rate	$V_{CC} = 5 \text{ V}$, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$	Using $V_{TR} = \pm 3 \text{ V}$ transition region, Driver speed = 0 to 250 kbit/s, $C_L = 15 \text{ pF}$	4	20	30	V/ μ s

NOTES: 8. Equivalent to the SN75C185. The SN75LP1185 output-voltage swing is clamped to about 70% of the typical SN75C185 output-voltage swing, and the specified limits reflect the reduced output swing.

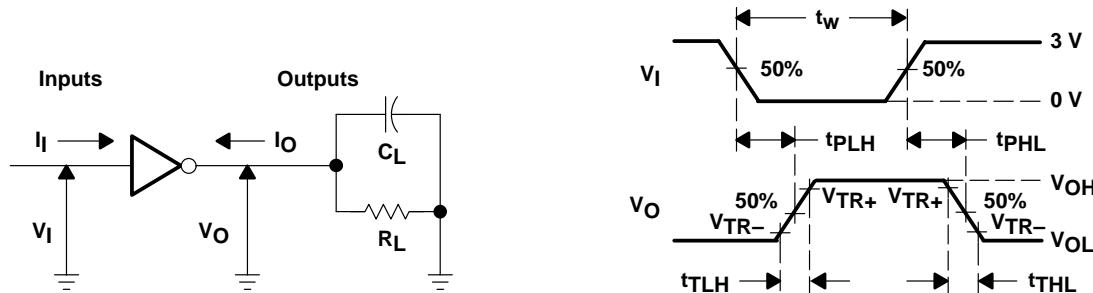
9. Maximum output swing is limited to $\pm 6 \text{ V}$ to enable the higher data rates associated with this device and to reduce EMI emissions.

receiver electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
V_{IT+}	Positive-going input threshold voltage See Figure 3		1.6	2	2.55	V	
V_{IT-}	Negative-going input threshold voltage See Figure 3		0.6	1	1.45	V	
V_{HYS}	Input hysteresis, $V_{IT+} - V_{IT-}$ See Figure 3		600	1000		mV	
V_{OH}	High-level output voltage $I_{OH} = -1 \text{ mA}$		2.5	3.9		V	
V_{OL}	Low-level output voltage $I_{OL} = 2 \text{ mA}$			0.33	0.5	V	
I_{IH}	High-level input current $V_I = 3 \text{ V}$		0.43	0.6	1	mA	
			3.6	5.1	8.3		
I_{IL}	Low-level input current $V_I = -3 \text{ V}$		-0.43	-0.6	-1	mA	
			-3.6	-5.1	-8.3		
$I_{OS(H)}$	Short-circuit high-level output current $V_O = 0$, See Figure 5 and Note 7				-20	mA	
$I_{OS(L)}$	Short-circuit low-level output current $V_O = V_{CC}$, See Figure 5 and Note 7				20	mA	
R_{IN}	Input resistance $V_I = \pm 3 \text{ V}$ to $\pm 25 \text{ V}$		3	5	7	k Ω	

NOTE 7: Not more than one output should be shorted at one time.

SN75LP1185


LOW-POWER MULTIPLE RS-232 DRIVERS AND RECEIVERS

SLLS335A – JANUARY 1999 – REVISED JANUARY 2001

**receiver switching characteristics over recommended operating free-air temperature range,
 $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 4)**

PARAMETER	MIN	TYP	MAX	UNIT
t_{PHL} Propagation delay time, high- to low-level output	400	900		ns
t_{PLH} Propagation delay time, low- to high-level output	400	900		ns
t_{TLH} Transition time, low- to high-level output	200	500		ns
t_{THL} Transition time, high- to low-level output	200	400		ns
$t_{SK(p)}$ Pulse skew $ t_{PLH} - t_{PHL} $	200	425		ns

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generator has the following characteristics:
 For $C_L < 1000 \text{ pF}$: $t_W = 4 \mu\text{s}$, PRR = 250 kbit/s, $Z_O = 50 \Omega$, t_f and $t_r < 50 \text{ ns}$.
 For $C_L = 2500 \text{ pF}$: $t_W = 8 \mu\text{s}$, PRR = 125 kbit/s, $Z_O = 50 \Omega$, t_f and $t_r < 50 \text{ ns}$.
 B. C_L includes probe and jig capacitance.

Figure 1. Driver Parameter Test Circuit and Waveform

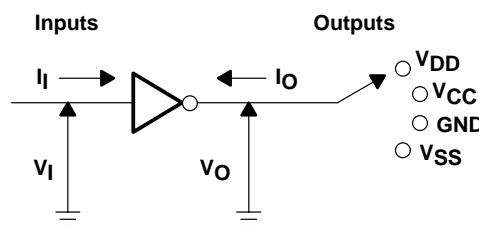


Figure 2. Driver I_{O_s} Test

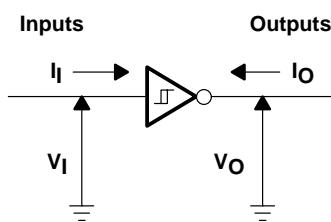
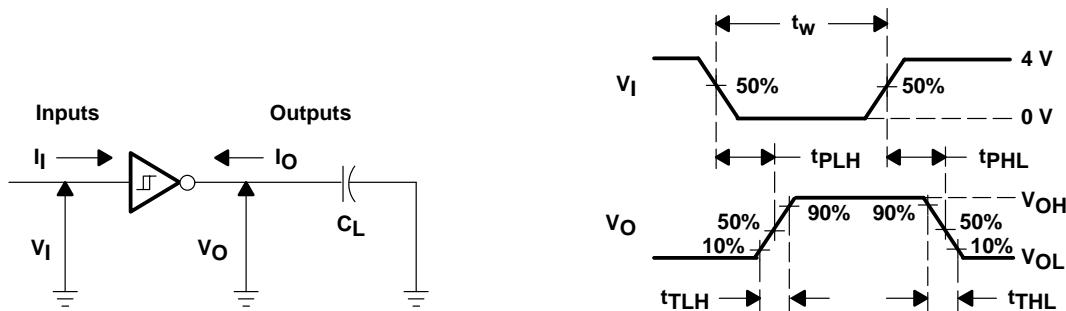



Figure 3. Receiver V_{IT} Test

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_W = 4 \mu s$, PRR = 250 kbit/s, $Z_O = 50 \Omega$, t_r and $t_f < 50$ ns.
B. C_L includes probe and jig capacitance.

Figure 4. Receiver Parameter Test Circuit and Waveform

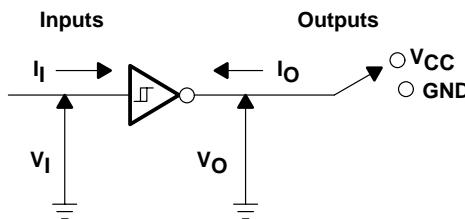


Figure 5. Receiver I_{O_s} Test

APPLICATION INFORMATION

Diodes placed in series with the V_{DD} and V_{SS} leads protect the SN75LP1185 in the fault condition when the device outputs are shorted to ± 15 V and the power supplies are at low voltage and provide low-impedance paths to ground (see Figure 6).

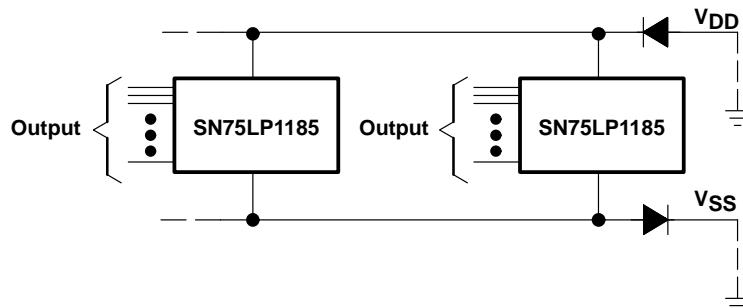


Figure 6. Power-Supply Protection to Meet Power-Off Fault Conditions of TIA/EIA-232-F

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN75LP1185DBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	5LP1185	Samples
SN75LP1185DBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	5LP1185	Samples
SN75LP1185DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LP1185	Samples
SN75LP1185DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LP1185	Samples
SN75LP1185DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LP1185	Samples
SN75LP1185N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75LP1185N	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

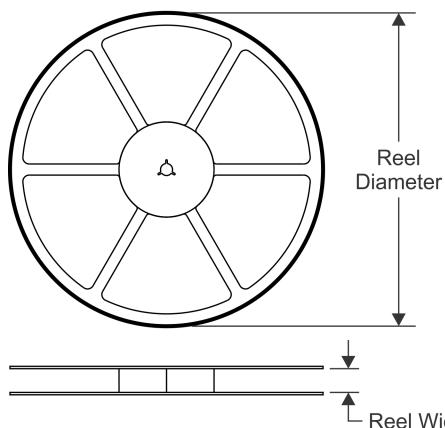
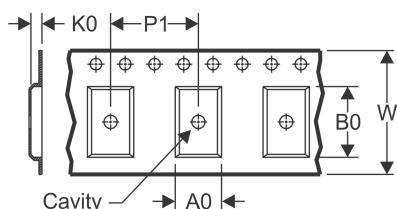
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

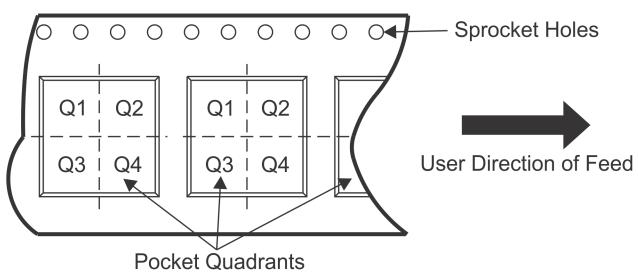
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

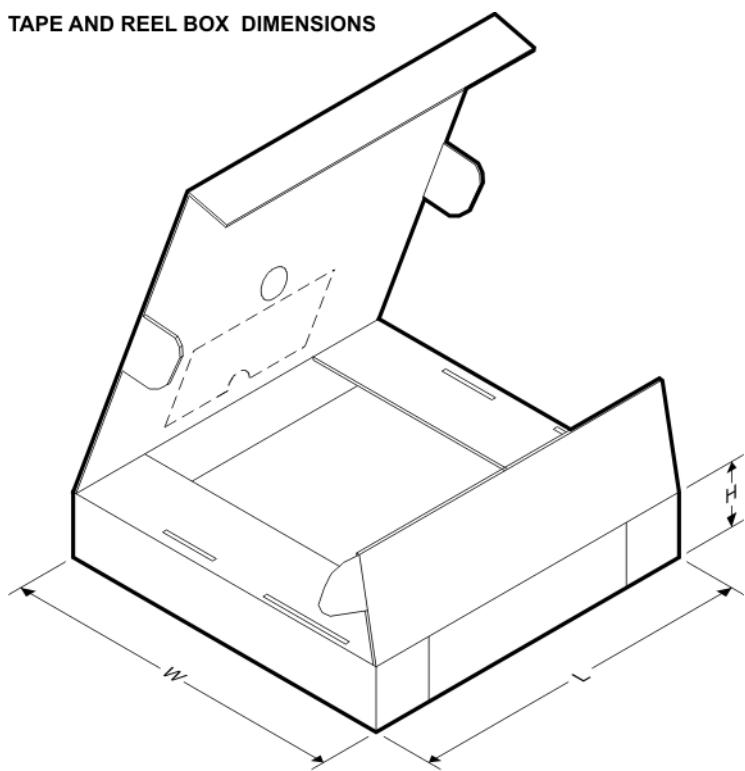
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.



(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

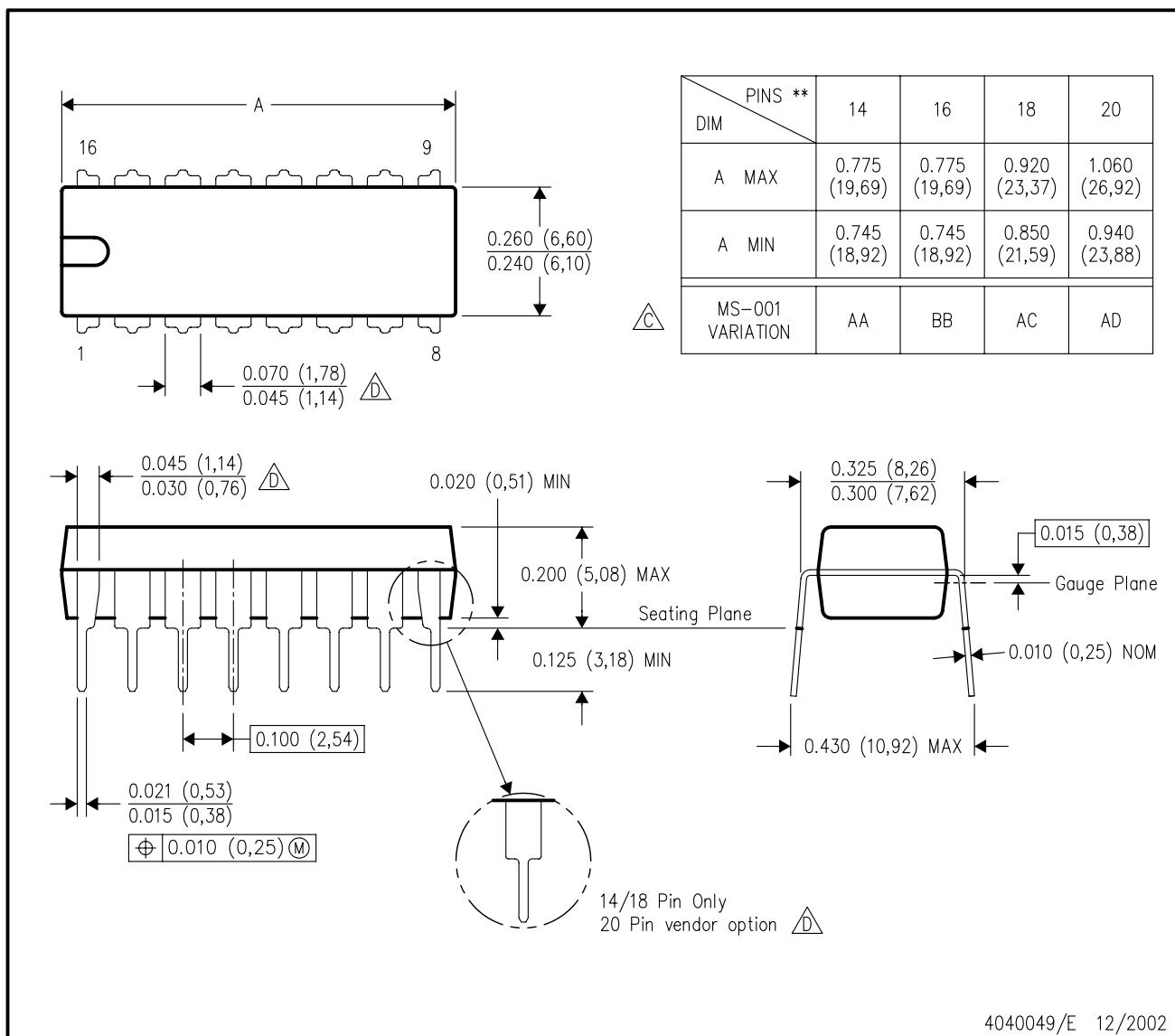
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75LP1185DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN75LP1185DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

TAPE AND REEL BOX DIMENSIONS

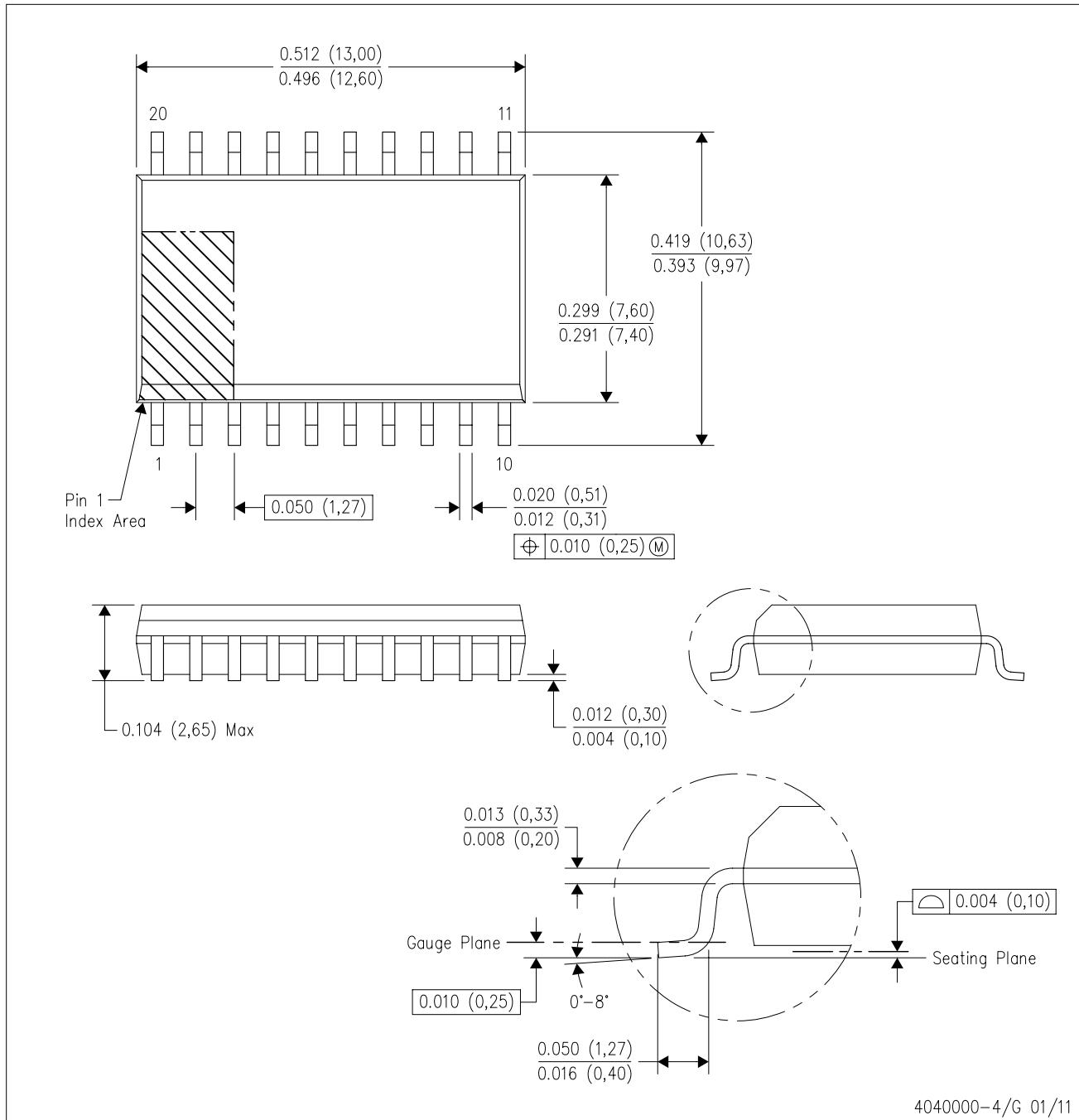

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75LP1185DBR	SSOP	DB	20	2000	367.0	367.0	38.0
SN75LP1185DWR	SOIC	DW	20	2000	367.0	367.0	45.0

N (R-PDIP-T**)

16 PINS SHOWN

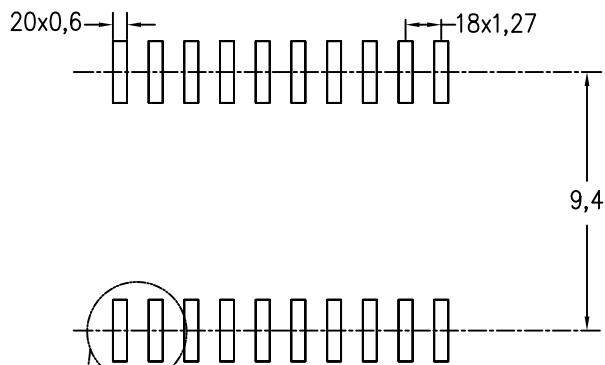
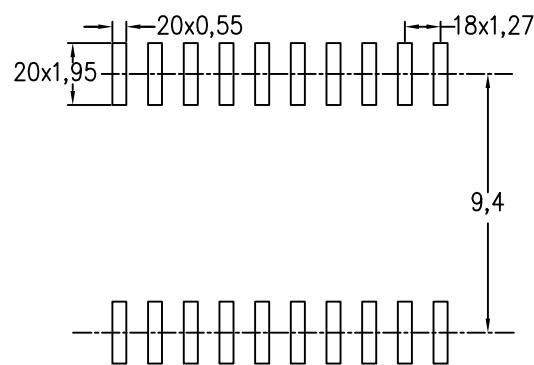
PLASTIC DUAL-IN-LINE PACKAGE

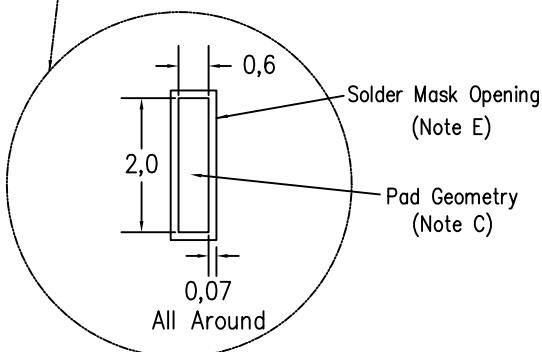

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

△ The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)



PLASTIC SMALL OUTLINE

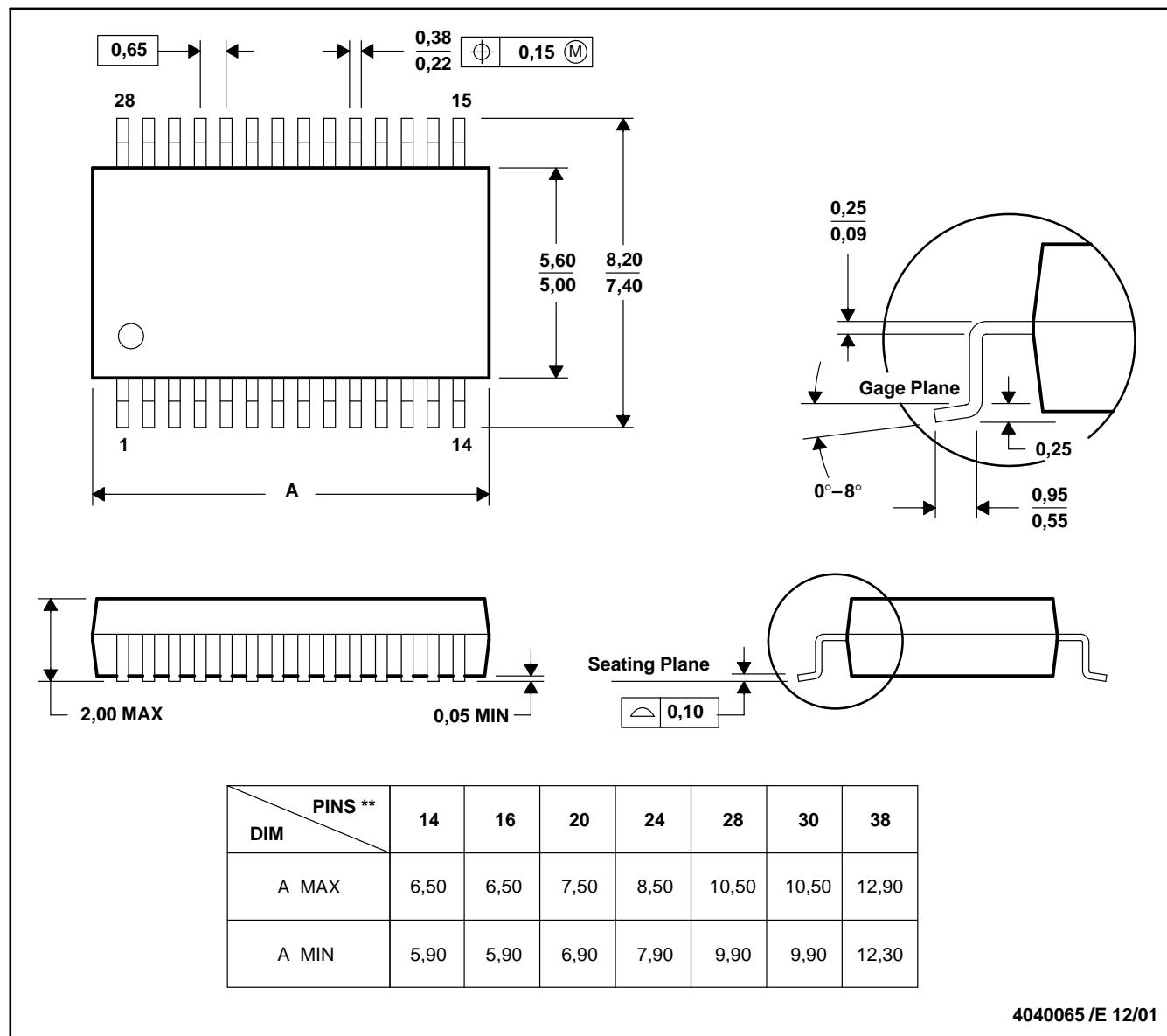

- NOTES:
- All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
 - This drawing is subject to change without notice.
 - Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
 - Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

Example Board Layout
(Note C)Stencil Openings
(Note D)

Non Solder Mask Define Pad


4209202-4/F 08/13

- NOTES:
- All linear dimensions are in millimeters.
 - This drawing is subject to change without notice.
 - Refer to IPC7351 for alternate board design.
 - Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
 - Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

- NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
 D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com