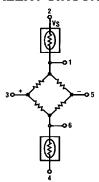
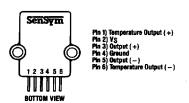
SCX C Series 0 to 1psi to 0 to 150psi

Low Cost Compensated Pressure Sensors


FEATURES

- Low Cost
- Temperature Compensation
- Calibrated Zero and Span
- Small Size
- Low Noise
- High Impedance for Low Power **Applications**


APPLICATIONS

- Medical Equipment
- Computer Peripherals
- Pneumatic Controls
- **HVAC**

EQUIVALENT CIRCUIT

ELECTRICAL CONNECTION

Note: The polarity indicated is for pressure applied to port B. (For Absolute devices, pressure is applied to port A and the output polarity is reversed.)

GENERAL DESCRIPTION

The SCX C series sensors will provide a very cost effective solution for pressure applications that require operation over a wide temperature range. These internally calibrated and temperature compensated sensors give an accurate and stable output over a 0°C to 70°C temperature range. This series is intended for use with non-corrosive, non-ionic working fluids such as air, dry gases, and the like.

Devices are available to measure absolute, differential, and gage pressures from 1psi (SCX01) up to 150psi (SCX150). The Absolute (A) devices have an internal vacuum reference and an output voltage proportional to absolute pressure. The Differential (D) devices allow application of pressure to either side of the pressure sensing diaphragm and can be used for gage or differential pressure measurements.

The SCX devices feature an integrated circuit sensor element and laser trimmed thick film ceramic housed in a compact nylon case. This package provides excellent corrosion resistance and provides isolation to external package stresses. The package has convenient mounting holes and pressure ports for ease of use with standard plastic tubing for pressure connection.

All SCX devices are calibrated for span to within $\pm 5\%$ and provide an offset (zero pressure output) of ±1 millivolt maximum. These parts were designed for low cost applications where the user can typically provide fine adjustment of zero and span in external circuitry. For higher accuracies, refer to the standard SCX series datasheet. If the application requires extended temperature range operation, beyond 0 to 70°C, two pins which provide an output voltage proportional to temperature are available for use with external circuitry.

The output of the bridge is ratiometric to the supply voltage and operation from any D.C. supply voltage up to +30 V is acceptable.

Because these devices have very low noise and 100 microsecond response time they are an excellent choice for medical equipment, computer peripherals, and pneumatic control applications.

For further technical information on the SCX series, please contact your local Sensym office or the factory.

PRESSURE SENSOR CHARACTERISTICS

SCX C Series

STANDARD PRESSURE RANGES

PART NUMBER	OPERATING PRESSURE	PROOF PRESSURE*	FULL-SCALE SPAN
SCX01DNC	0 – 1 psid	20 psid	18mV
SCX05DNC	0 – 5 psid	20 psid	60mV
SCX15ANC	0 – 15 psia	30 psia	90mV
SCX15DNC	0 – 15 psid	30 psid	90mV
SCX30ANC	0 - 30 psia	60 psia	90mV
SCX30DNC	0 – 30 psid	60 psid	. 90mV
SCX100ANC	0 – 100 psia	150 psia	100mV
SCX100DNC	0 – 100 psid	150 psid	100mV
SCX150ANC	0 – 150 psia	150 psia	90mV
SCX150DNC	0 – 150 psid	150 psid	90mV

^{*} Maximum pressure above which causes permanent sensor failure.

Maximum Ratings (For All Devices)

Supply Voltage, VS Common-mode Pressure Lead Temperature

(Soldering, 10 seconds)

Environmental Specifications (For All Devices)

+30 V_{DC} Temperature Range Compensated 50 psig

Operating 300°C Storage Humidity Limits

0 to 70°C -40°C to +85°C -55°C to +125°C 0 to 100% RH

SCX01DNC PERFORMANCE CHARACTERISTICS (Note 1)

CHARACTERISTIC	MIN	TYP	MAX	UNIT
Operating Pressure Range		_	1	psid
Sensitivity		18	_	mV/psi
Full-scale Span (Note 2)	17.00	18.00	19.00	mV
Zero Pressure Offset	– 1.0	0	+1.0	mV
Combined Linearity and Hysteresis (Note 3)		±0.2	± 1.0	%FSO
Temperature Effect on Span (0-70°C) (Note 4)	-	±0.4	±2.0	%FSO
Temperature Effect on Offset (0-70°C) (Note 4)		±0.20	±1.0	mV
Repeatability (Note 5)	· -	±0.2	±0.5	%FSO
Input Impedance (Note 6)		4.0	_	kΩ
Output Impedance (Note 7)	_	4.0	_	kΩ
Common-mode Voltage (Note 8)	5.7	6.0	6.3	V _{DC}
Response Time (Note 9)		100		μsec
Long Term Stability of Offset and Span (Note 10)	_	±0.1		%FSO

PRESSURE SENSOR CHARACTERISTICS (Cont.)

SCX C Series

SCX05DNC PERFORMANCE CHARACTERISTICS (Note 1)

CHARACTERISTIC	MIN	TYP	MAX	UNIT
Operating Pressure Range	1	_	- 5	psid
Sensitivity	_	12.0	_	mV/psi
Full-scale Span (Note 2)	57.5	60.0	62.5	mV
Zero Pressure Offset	- 1.0	0	+1.0	mV
Combined Linearity and Hysteresis (Note 3)	_	±0.1	±1.0	%FSO
Temperature Effect on Span (0-70°C) (Note 4)		±0.4	±2.0	%FSO
Temperature Effect on Offset (0-70°C) (Note 4)	_	±0.20	±1.0	mV
Repeatability (Note 5)	_	±0.2	±0.5	%FSO
Input Impedance (Note 6)	_	4.0		kΩ
Output Impedance (Note 7)		4.0	_	kΩ
Common-mode Voltage (Note 8)	5.7	6.0	6.3	V _{DC}
Response Time (Note 9)		100	_	μsec
Long Term Stability of Offset and Span (Note 10)	_	±0.1	_	%FSO

SCX15C PERFORMANCE CHARACTERISTICS (Note 1)

CHARACTERISTIC	MIN	TYP	MAX	UNIT
Operating Pressure Range		_	15	psi
Sensitivity		6.0	_	mV/psi
Full-scale Span (Note 2)	85.0	90.0	95.0	mV
Zero Pressure Offset	- 1.0	0	+1.0	m۷
Combined Linearity and Hysteresis (Note 3)	_	±0.1	±1.0	%FSO
Temperature Effect on Span (0-70°C) (Note 4)		±0.4	±2.0	%FSO
Temperature Effect on Offset (0-70°C) (Note 4)	—	±0.20	±1.0	mV
Repeatability (Note 5)	_	±0.2	±0.5	%FSO
Input Impedance (Note 6)	-	4.0	_	kΩ
Output Impedance (Note 7)		4.0	_	kΩ
Common-mode Voltage (Note 8)	5.7	6.0	6.3	V _{DC}
Response Time (Note 9)	_	100		μsec
Long Term Stability of Offset and Span (Note 10)	_	±0.1	_	%FSO

PRESSURE SENSOR CHARACTERISTICS (Cont.)

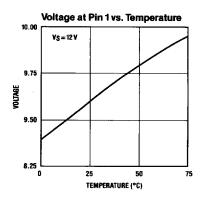
SCX C Series

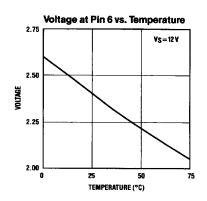
SCX30C PERFORMANCE CHARACTERISTICS (Note 1)

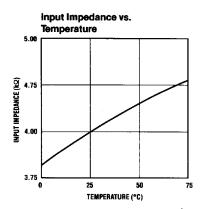
CHARACTERISTIC	MIN	TYP	MAX	UNIT
Operating Pressure Range		_	30	psi
Sensitivity		3.0	_	mV/psi
Full-scale Span (Note 2)	85.0	90.0	95.0	mV
Zero Pressure Offset	- 1.0	0	+1.0	mV
Combined Linearity and Hysteresis (Note 3)		±0.2	±1.0	%FSO
Temperature Effect on Span (0-70°C) (Note 4)	_	±0.4	±2.0	%FSO
Temperature Effect on Offset (0-70°C) (Note 4)	_	±0.2	±1.0	mV
Repeatability (Note 5)		±0.2	±0.5	%FSO
Input Impedance (Note 6)		4.0	_	kQ
Output Impedance (Note 7)	_	4.0	_	kΩ
Common-mode Voltage (Note 8)	5.7	6.0	6.3	V _{DC}
Response Time (Note 9)		100	_	μSec
Long Term Stability of Offset and Span (Note 10)	_	±0.1	_	%FSO

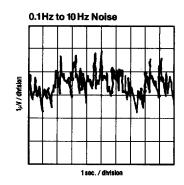
SCX100C PERFORMANCE CHARACTERISTICS (Note 1)

CHARACTERISTIC	MIN	TYP	MAX	UNIT
Operating Pressure Range			100	psi
Sensitivity	_	1.0	_	mV/psi
Full-scale Span (Note 2)	95.0	100.0	105.0	mV
Zero Pressure Offset	1.0	0	+1.0	m∨
Combined Linearity and Hysteresis (Note 3)		±0.2	± 1.0	%FSO
Temperature Effect on Span (0-70°C) (Note 4)	-	±0.4	±2.0	%FSO
Temperature Effect on Offset (0-70°C) (Note 4)	_	±0.20	±1.0	mV
Repeatability (Note 5)		±0.2	±0.5	%FSO
Input Impedance (Note 6)	_	4.0		kΩ
Output Impedance (Note 7)		4.0		kΩ
Common-mode Voltage (Note 8)	. 5.7	6.0	6.3	V _{DC}
Response Time (Note 9)		100		μsec
Long Term Stability of Offset and Span (Note 10)	<u> </u>	±0.1	_	%FSQ


PRESSURE SENSOR CHARACTERISTICS (Cont.) SCX C Series


SCX150C PERFORMANCE CHARACTERISTICS (Note 1)


Characteristic	MIN	TYP	MAX	UNIT
Operating Pressure Range		_	150	psi
Sensitivity		0.6		mV/psi
Full-scale Span (Note 2)	85.0	90.0	95.0	mV
Zero Pressure Offset	-1.0	0	+1.0	mV
Combined Linearity & Hysterisis (Note 3)		±0.2	±1.0	%FSO
Temperature Effect on Span (0°C to 70°C) (Note 4)		±0.4	±2.0	%FSO
Temperature Effect on Offset (0°C to 70°C) (Note 4)		±0.20	±1.0	mV
Repeatability (Note 5)		±0.2	±0.5	%FSO
Input Impedance (Note 6)		4.0		kΩ
Output Impedance (Note 7)		4.0		kΩ
Common-mode Voltage (Note 8)	5.7	6.0	6.3	V _{DC}
Response Time (Note 9)	1 —	100		μsec
Long Term Stability of Offset and Span (Note 10)		±0.1		%FSO


TYPICAL PERFORMANCE CHARACTERISTICS

SCX C Series

Specification Notes: (For All Devices)

Reference Conditions: Unless otherwise noted: Supply Voltage, $V_S = 12V_{DC}$, $T_A = 25^{\circ}C$, Common-mode Line Pressure = 0 psig, Pressure Applied to Port B. For absolute devices only, pressure is applied to Port A and the output polarity is reversed.

Span is the algebraic difference between the output voltage at full-scale pressure and the output at zero pressure. Span is ratiometric to the supply Note 2: voltage.

See Definition of Terms. Note 3:

Hysteresis — the maximum output difference at any point within the operating pressure range for increasing and decreasing pressure.

Maximum error band of the offset voltage and the error band of the span, relative to the 25°C reading. Note 4:

Note 5: Maximum difference in output at any pressure with the operating pressure range and temperature within 0°C to +70°C after: a) 1,000 temperature cycles, 0°C to +70°C

b) 1.5 million pressure cycles, 0 psi to full-scale span.

Note 6: Input Impedance is the impedance between pins 2 and 4.

Note 7: Output impedance is the impedance between pins 3 and 5.

This is the common-mode voltage of the output arms (Pins 3 and 5) for $V_S = 12 V_{DC}$.

Response time for a 0 psi to full-scale span pressure step change, 10% to 90% rise time.

Note 10: Long term stability over a one year period.

SCX C Series

GENERAL DISCUSSION

The SCX series devices give a voltage output which is directly proportional to applied pressure. The devices will give an increasing positive going output when increasing pressure is applied to pressure port $P_{\rm B}$ of the device. If the input pressure connections are reversed, the output will increase with decreases in pressure. The devices are ratiometric to the supply voltage and changes in the supply voltage will cause proportional changes in the offset voltage and full-scale span. Since for absolute device pressure is applied to port $P_{\rm A}$, output polarity will be reversed.

User Calibration

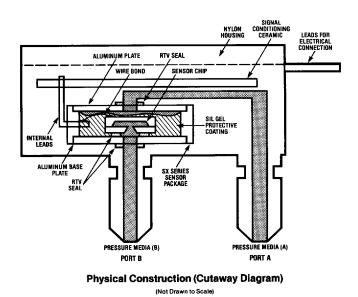
The SCX devices are fully calibrated for offset and span and should therefore require little user adjustment in most applications. For precise span and offset adjustments, refer to the applications section herein or contact the Sensym factory.

Vacuum Reference (Absolute Devices)

Absolute sensors have a hermetically sealed vacuum reference chamber. The offset voltage on these units is therefore measured at vacuum, Opsia. Since all pressure is measured relative to a vacuum reference, all changes in barometric pressure or changes in altitude will cause changes in the device output.

Media Compatibility

SCX devices are compatible with most non-corrosive gases. Because the circuitry is coated with a protective


silicon gel, many otherwise corrosive environments can be compatible with the sensors. As shown in the physical construction diagram below, fluids must generally be compatible with silicon gel, plastic, aluminum, RTV, silicon, and glass for use with Port B. For questions concerning media compatibility, contact the factory.

MECHANICAL AND MOUNTING CONSIDERATIONS

The SCX nylon housing is designed for convenient pressure connection and easy PC board mounting. To mount the device horizontally to a PC board, the leads can be bent downward and the package attached to the board using either tie wraps or mounting screws. For pressure attachment, tygon or silicon tubing is recommended.

All versions of the SCX sensors have two (2) tubes available for pressure connection. For absolute devices, only port P_A is active. Applying pressure through the other port will result in pressure dead ending into the backside of the silicon sensor and the device will not give an output signal with pressure.

For gage applications, pressure should be applied to port P_B. Port P_A is then the vent port which is left open to the atmosphere. For differential pressure applications, to get proper output signal polarity, port P_B should be used as the high pressure port and P_A should be used as the low pressure port.

65E D

2-22

_

SCX C Series

APPLICATION INFORMATION

Shown here is a popular circuit which gives a high level $2-5V_{DC}$ output for a 0–10 inch W.C. pressure input. Additional applications circuits are shown in the standard SCX series datasheet and SCX-EB evaluation board literature. For further applications information or assistance, please contact your nearest Sensym sales office or the Sensym factory.

Low Pressure Application

For sensing pressure below 1 psi, the circuit shown in Figure A uses the SCX01DN to provide a 2 to 5V output for a 0 to 10 inch of water column input pressure. This output signal is compatible with many A/D converters and hence can be used to interface to a microprocessor system. This low-cost circuit is easily adaptable to lower full-scale pressure down to 5 inches of water column.

Circuit Description

The LM10 is used to provide a voltage reference for the excitation voltage (V_E), and for the voltage node V_{REF} With this configuration, V_E and V_{REF} are not affected by noise or voltage variations in the 12V power supply. R_3 is used to adjust V_{REF} to set the initial offset voltage at the output, V_{OUT} .

The pressure signal, V_{IN} , is amplified by amplifiers B_1 , and B_2 . (See Sensym Application Note SSAN-17 for details on this amplifier) R_2 is used to adjust the signal gain of the circuit. The output equation is given below.

$$V_{OUT} = V_{IN} \left[2 \left(1 + \frac{R}{R_1} \right) \right] + V_{REF}$$

For the best circuit performance, a careful selection of components is necessary. Use wirebound pots to insure low temperature coefficients and low long-term drift. A five-element resistor array ($10\,\mathrm{k}\Omega$) SIP should be used for the resistors in the amplifier stage in order to obtain closely matched values and temperature coefficients. All other resistors should be 1% metal film. Amplifiers B_1 , and B_2 should have low offset voltages and low noise. Signal lines should be as short as possible and the power supply should be capacitively bypassed on the PC board.

Adjustment Procedure

- With zero-pressure applied, adjust the offset adjust R₃, until V_{OUT} = 2.000 V.
- Apply full-scale pressure (10 in. W.C.) to port B, and adjust the full-scale adjust R₂, so that V_{OUT} = 5.000 V.
- 3. Repeat procedure if necessary.

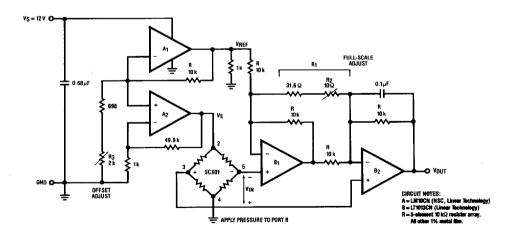


Figure A. Low Pressure Circuits Provide a 2 to 5V Output for a 0-10 in. W.C. Pressure Input.

ORDERING INFORMATION

To order, use the following part numbers:

Description	Part Number
0 to 1 psi Differential/Gage	SCX01DNC
0 to 5 psi Differential/Gage	SCX05DNC
0 to 15 psi Absolute	SCX15ANC
0 to 15 psi Differential/Gage	SCX15DNC
0 to 30 psi Absolute	SCX30ANC .
0 to 30 psi Differential/Gage	SCX30DNC
0 to 100 psi Absolute	SCX100ANC
0 to 100 psi Differential/Gage	SCX100DNC
0 to 150 psi Absolute	SCX150ANC
0 to 150 psi Differential/Gage	SCX150DNC