

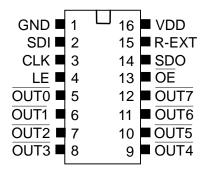
8-bit Constant Current LED Sink Driver

Features

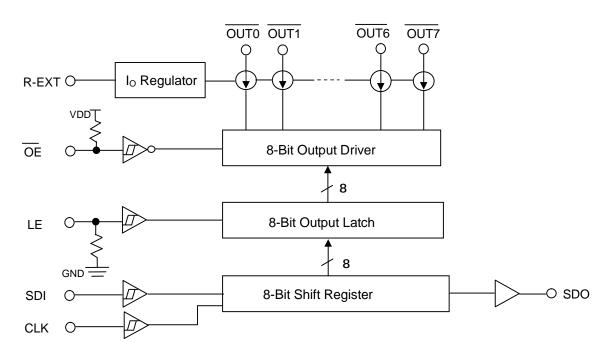
- I 8 constant-current output channels
- I Constant output current invariant to load voltage change
- Excellent output current accuracy: between channels: < ±4% (max.), and between ICs: < ±6% (max.)</p>
- I Output current adjusted through an external resistor
- I Constant output current range: 5 -120 mA
- I Fast response of output current, /OE (min.): 400 ns
- I 25MHz clock frequency
- I Schmitt trigger input
- I 5V supply voltage

Current	Accuracy	Conditions		
Between Channels Between ICs		Conditions		
< ±4% < ±6%		$I_{OUT} = 10 \text{ mA to } 60 \text{ mA}, V_{DS} = 0.6 \text{V}$		
< ±6%	< ±12%	$I_{OUT} = 60 \text{ mA to } 100 \text{ mA}, V_{DS} = 0.8 \text{V}$		

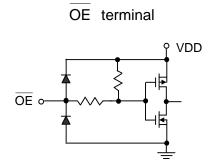
Product Description

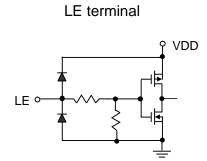

MBI5168 is designed for LED displays. As an enhancement of its predecessor, MBI5001, MBI5168 exploits PrecisionDrive™ technology to enhance its output characteristics. MBI5168 contains a serial buffer and data latches which convert serial input data into parallel output format. At MBI5168 output stage, eight regulated current ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of Vf variations.

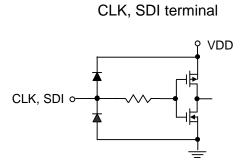
MBI5168 provides users with great flexibility and device performance while using MBI5168 in their system design for LED display applications, e.g. LED panels. Users may adjust the output current from 5 mA to 120 mA through an external resistor, R_{ext} , which gives users flexibility in controlling the light intensity of LEDs. MBI5168 guarantees to endure maximum 17V at the output port. The high clock frequency, 25 MHz, also satisfies the system requirements of high volume data transmission.

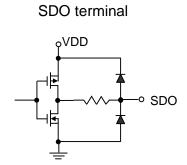

Terminal Description

PIN NO.	PIN NAME	FUNCTION
1	GND	Ground terminal for control logic and current sink
2	SDI	Serial-data input to the shift register
3	CLK	Clock input terminal for data shift on rising edge
4	LE	Data strobe input terminal Serial data is transferred to the respective latch when LE is high. The data is latched when LE goes low.
5-12	OUT0 ~ OUT7	Constant current output terminals
13	ŌĒ	Output enable terminal When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
14	SDO	Serial-data output to the following SDI of next driver IC
15	R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels
16	VDD	5V supply voltage terminal

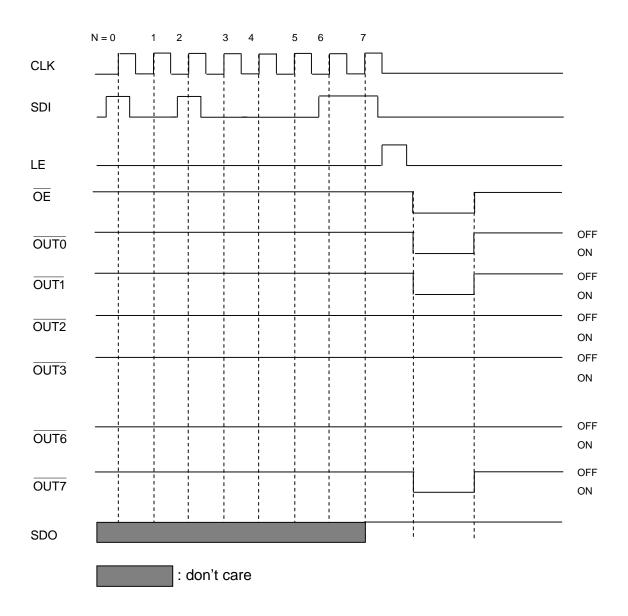

Pin Description




Block Diagram



Equivalent Circuits of Inputs and Outputs



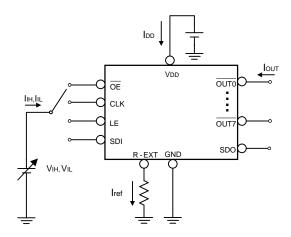
Timing Diagram

Truth Table

CLK	LE	ŌĒ	SDI	OUT0 OUT5 OUT 7	SDO
	Н	L	$\overline{D_n}$ $\overline{D_{n-5}}$ $\overline{D_{n-7}}$		D _{n-7}
	L	L	D _{n+1}	No Change	D _{n-6}
_	Н	L	D _{n+2}	$\overline{D_{n+2}} \dots \overline{D_{n-3}} \dots \overline{D_{n-5}}$	D _{n-5}
7	Х	L	D _{n+3}	D _{n+2} D _{n-3} D _{n-5}	D _{n-5}
7	Х	Н	D _{n+3}	Off	D _{n-5}

Maximum Ratings

CHARACTER	SYMBOL	RATING	UNIT	
Supply Voltage		V _{DD}	0~7.0	V
Input Voltage		V _{IN}	-0.4~V _{DD} + 0.4	V
Output Current		I _{OUT}	+120	mA
Output Voltage		V _{DS}	-0.5~+20.0	V
Clock Frequency		F _{CLK}	25	MHz
GND Terminal Current	GND Terminal Current		960	mA
	CN – type		1.64	
Power Dissipation (On PCB, Ta=25°C)	CD – type	P _D	1.06	W
(0.11 02, 14-20 0)	CP – type		0.88	
	CN – type		76	
Thermal Resistance (On PCB, Ta=25°C)	CD – type	$R_{th(j-a)}$	117	°C/W
(0111 05, 14-20 0)	CP – type		141	
Operating Temperature		T _{opr}	-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C

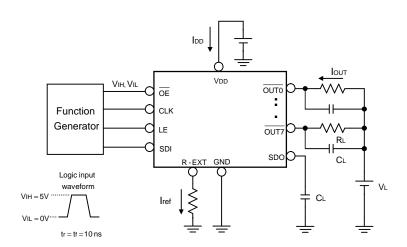

Recommended Operating Conditions

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{DD}	-	4.5	5.0	5.5	V
Output Voltage	V _{DS}	OUT0 ~ OUT7	-	-	17.0	V
	I _{OUT}	DC Test Circuit	5	-	120	mA
Output Current	I _{OH}	SDO	-	-	-1.0	mA
	I _{OL}	SDO	-	-	1.0	mA
Input Voltage	V _{IH}	CLK, OE, LE and SDI	0.8V _{DD}	-	V _{DD} +0.3	V
input voltage	V _{IL}	CLK, OE, LE and SDI	-0.3	-	0.3V _{DD}	V
LE Pulse Width	$t_{w(L)}$		40	-	-	ns
CLK Pulse Width	t _{w(CLK)}		20	-	-	ns
OE Pulse Width	$t_{w(OE)}$		400	-	-	ns
Setup Time for SDI	t _{su(D)}	V _{DD} =4.5~5.5V	5	-	-	ns
Hold Time for SDI	t _{h(D)}		10	-	-	ns
Setup Time for LE	t _{su(L)}		15	-	-	ns
Hold Time for LE	t _{h(L)}		15	-	-	ns
Clock Frequency	F _{CLK}	Cascade Operation	-	-	25.0	MHz
Power Dissipation			-	-	0.85	
	P_D	Ta=85°C	-	-	0.55	W
			-	-	0.46	

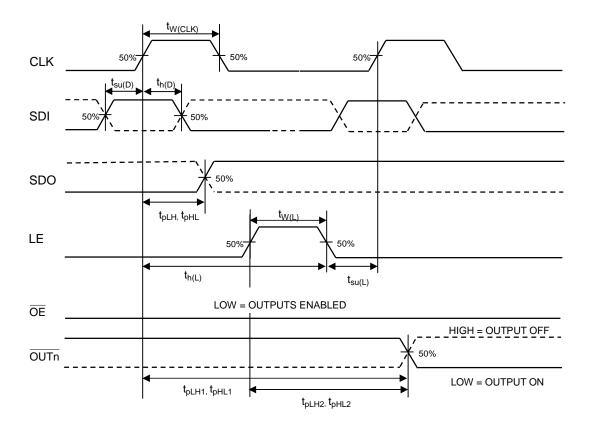
Electrical Characteristics

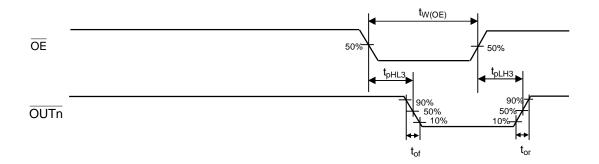
CHARACTERISTIC		SYMBOL	COND	ITION	MIN.	TYP.	MAX.	UNIT
Innut Valtage	"H" level	V _{IH}	Ta = -40~85°C (0.8V _{DD}	-	V_{DD}	V
Input Voltage	"L" level	V_{IL}	Ta = -4	0~85°C	GND	-	$0.3V_{DD}$	V
Output Leaka	age Current	I _{OH}	V _{OH} =	17.0V	-	-	0.5	μA
Output Voltage	SDO	V _{OL}	I _{OL} =+′	1.0mA	-	-	0.4	V
Output voitage	300	V _{OH}	I _{OH} =-1	I.0mA	4.6	-	-	V
Output C	urrent 1	I _{OUT1}	V _{DS} =0.6V	R _{ext} =744 Ω	-	25.0	-	mA
Current	Skew	dl _{OUT1}	I_{OUT} =25mA V_{DS} =0.6V	R _{ext} =744 Ω	-	±1	±4	%
Output C	urrent 2	I _{OUT2}	V _{DS} =0.6V	R _{ext} =372 Ω	-	50.0	-	mA
Current Skew		dl _{OUT2}	I _{OUT} =50mA V _{DS} =0.6V	R _{ext} =372 Ω	-	±1	±4	%
Output Current 3		I _{OUT3}	V _{DS} =0.8V	R _{ext} =186 Ω	-	100	-	mA
		I _{OUT} =100mA V _{DS} =0.8V	R _{ext} =186 Ω	-	±1	±6	%	
Output Current vs. Output Voltage Regulation		%/dV _{DS}	V _{DS} within 1.0V and 3.0V		-	±0.1	-	% / V
Output Current Supply Voltage		%/dV _{DD}	V _{DD} within 4.	5V and 5.5V	-	±1	-	% / V
Pull-up Resis	tor	R _{IN} (up)	ō	E	250	500	800	ΚΩ
Pull-down Resistor		R _{IN} (down)	LE		250	500	800	ΚΩ
	"OFF"	I _{DD} (off) 1	R _{ext} =Open, OUT0 ~ OUT7 =Off		- 9 - 10	9	-	
Supply Current		I _{DD} (off) 2	$R_{\text{ext}}=744 \ \Omega, \ \overline{\text{OUT0}} \sim \overline{\text{OUT7}} = \text{Off}$			10	-	
		I _{DD} (off) 3	$R_{\text{ext}}=372 \ \Omega, \ \overline{\text{OUT0}} \sim \overline{\text{OUT7}} = \text{Off}$		-	11	-	mA
	"ON!"	I _{DD} (on) 1	$R_{ext}=744 \Omega, \overline{OUT0} \sim \overline{OUT7} = On$		-	10	-	
	"ON"	I _{DD} (on) 2	$R_{ext}=372 \Omega$, $\overline{OUT0} \sim \overline{OUT7} = On$		-	11	-	

Test Circuit for Electrical Characteristics



Switching Characteristics

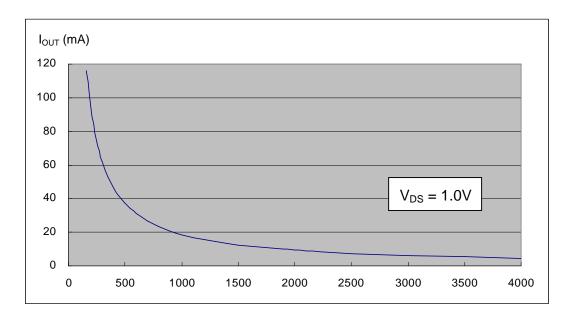

CHARACTERISTIC		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	CLK - OUTn	t _{pLH1}		-	50	100	ns
Propagation Delay Time	LE - OUTn	t _{pLH2}		-	50	100	ns
("L" to "H")	OE - OUTn	t _{pLH3}		-	20	100	ns
	CLK - SDO	t _{pLH}		15	20	-	ns
	CLK - OUTn	t _{pHL1}	V_{DD} =5.0 V V_{DS} =0.8 V	-	100	150	ns
Propagation Delay Time	LE - OUTn	t _{pHL2}	$V_{IH}=V_{DD}$ $V_{IL}=GND$ $R_{ext}=366 \Omega$ $V_{L}=4.0 V$ $R_{L}=52 \Omega$ $C_{L}=10 pF$	-	100	150	ns
("H" to "L")	OE - OUTn	t _{pHL3}		-	50	150	ns
	CLK - SDO	t _{pHL}		15	20	-	ns
	CLK	t _{w(CLK)}		20	-	-	ns
Pulse Width	LE	t _{w(L)}		20	-	-	ns
	ŌĒ	t _{w(OE)}		400	-	-	ns
Hold Time for	LE	t _{h(L)}		5	-	-	ns
Setup Time for LE		t _{su(L)}		5	-	-	ns
Maximum CLK Rise Time		t _r **		-	-	500	ns
Maximum CLK Fall Time		t _f **		-	-	500	ns
Output Rise Time of lout		t _{or}		-	70	200	ns
Output Fall Time	of lout	t _{of}		-	40	120	ns


^{**}If the devices are connected in cascade and t_r or t_f is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

Test Circuit for Switching Characteristics

Timing Waveform

Application Information


Constant Current

To design LED displays, MBI5168 provides nearly no variations in current from channel to channel and from IC to IC. This can be achieved by:

- 1) While I_{OUT} is \leq 60mA, the maximum current variation between channels is less than $\pm 4\%$, and that between ICs is less than $\pm 6\%$.
- 2) In addition, the current characteristic of output stage is flat and users can refer to the figure as shown below. The output current can be kept constant regardless of the variations of LED forward voltages (Vf). This performs as a perfection of load regulation.

Adjusting Output Current

The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{out} and R_{ext} is shown in the following figure.

Resistance of the external resistor, R_{ext} , in Ω

Also, the output current in milliamps can be calculated from the equation:

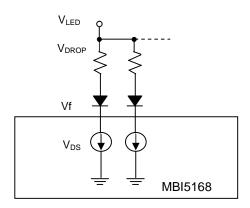
I_{OUT} is (620 / R_{ext}) x 30, approximately,

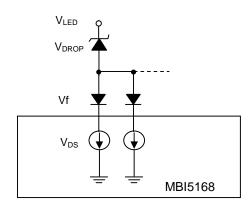
where R_{ext} , in Ω , is the resistance of the external resistor connected to R-EXT terminal.

The magnitude of current (as a function of R_{ext}) is around 50mA at 372 Ω and 25mA at 744 Ω .

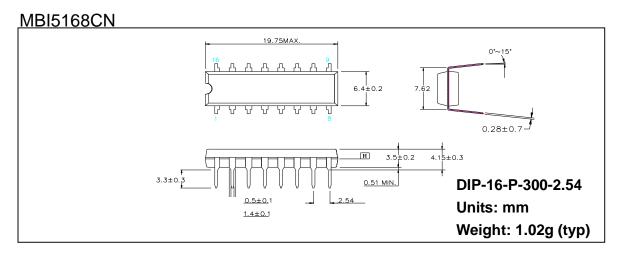
Package Power Dissipation (P_D)

The maximum allowable package power dissipation is determined as $P_D(max) = (Tj - Ta) / R_{th(j-a)}$. When 16 output channels are turned on simultaneously, the actual package power dissipation is $P_D(act) = (I_{DD} \ x \ V_{DD}) + (I_{OUT} \ x \ Duty \ x \ V_{DS} \ x \ 8)$. Therefore, to keep $P_D(act) \le P_D(max)$, the allowable maximum output current as a function of duty cycle is:

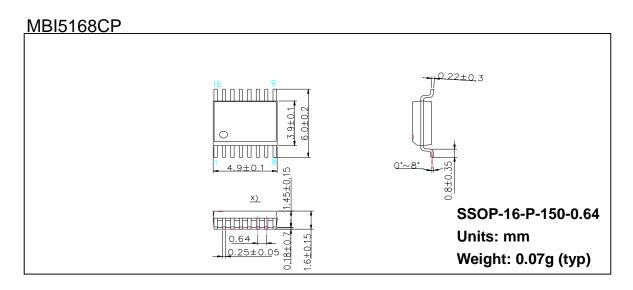

$$I_{OUT} = \{ \ [\ (Tj-Ta) \ / \ R_{th(j-a)} \] - (I_{DD} \ x \ V_{DD}) \ \} \ / \ V_{DS} \ / \ Duty \ / \ 8,$$
 where $Tj=150^{\circ}C.$


Load Supply Voltage (V_{LFD})

MBI5168 are designed to operate with V_{DS} ranging from 0.4V to 1.0V considering the package power dissipating limits. V_{DS} may be higher enough to make $P_{D(act)} > P_{D(max)}$ when $V_{LED} = 5V$ and $V_{DS} = V_{LED} - Vf$, in which V_{LED} is the load supply voltage. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, V_{DROP} .


A voltage reducer lets $V_{DS} = (V_{LED} - Vf) - V_{DROP}$.

Resistors or Zener diode can be used in the applications as shown in the following figures.



Outline Drawings

