

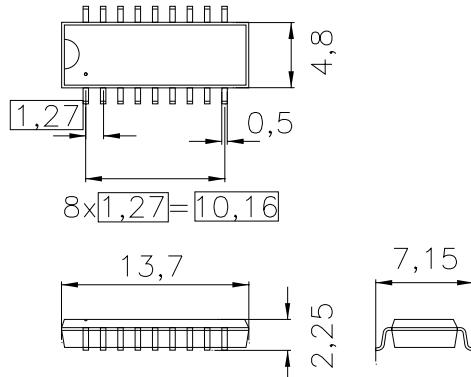


# SAW Components

Data Sheet B 8101

Data Sheet

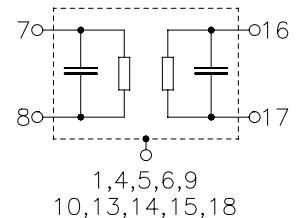



EPCOS

**Features**

- IF filter for cordless application
- Channel selection in DECT system
- Low group delay ripple
- **Surface Mounted Technology (SMT)**
- Standard IC small outline (SO) package
- Balanced and unbalanced operation possible

**Terminals**


- Tinned CuFe alloy



Dimensions in mm, approx. weight 0.4 g

**Pin configuration**

|              |                                  |
|--------------|----------------------------------|
| 7            | Input                            |
| 8            | Input ground or balanced input   |
| 17           | Output                           |
| 16           | Output ground or balanced output |
| 1,4,5,6,9,10 | Chip-carrier ground              |
| 13,14,15,18  |                                  |
| 2,3,11,12    | not connected                    |



| Type  | Ordering code     | Marking and Package according to | Packing according to |
|-------|-------------------|----------------------------------|----------------------|
| B8101 | B39112-B8101-L100 | C61157-A2-A4                     | F61074-V8058-Z000    |

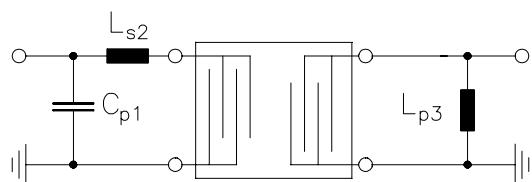
**Electrostatic Sensitive Device (ESD)**
**Maximum ratings**

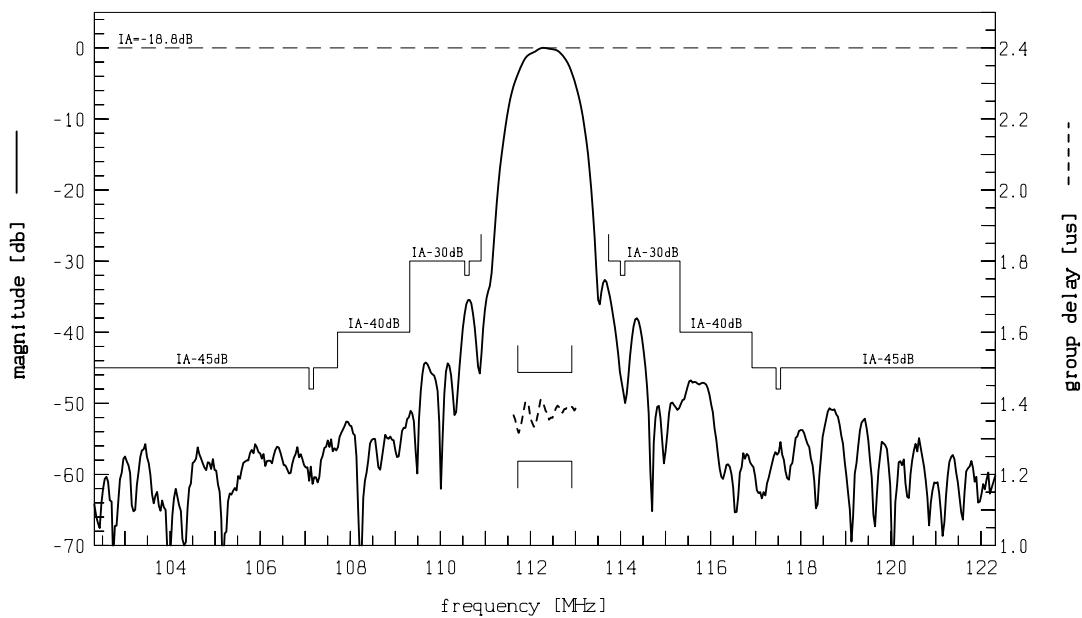
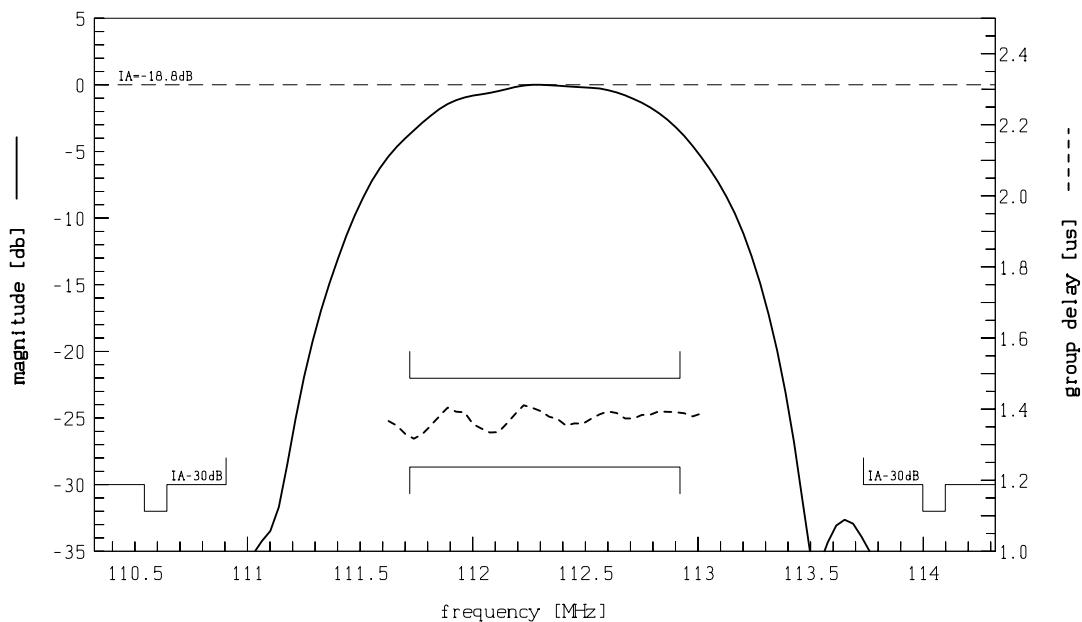
|                            |           |         |     |  |
|----------------------------|-----------|---------|-----|--|
| Operable temperature range | $T$       | -25/+65 | °C  |  |
| Storage temperature range  | $T_{stg}$ | -40/+85 | °C  |  |
| DC voltage                 | $V_{DC}$  | 5       | V   |  |
| Source power               | $P_s$     | 10      | dBm |  |

**SAW Components**
**B 8101**
**Bandpass Filter**
**112,32 MHz**
**Data Sheet**
**Characteristics**

Operating temperature range:

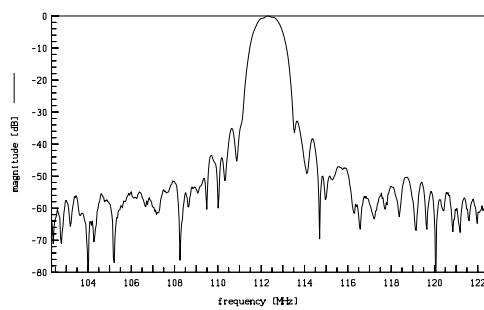
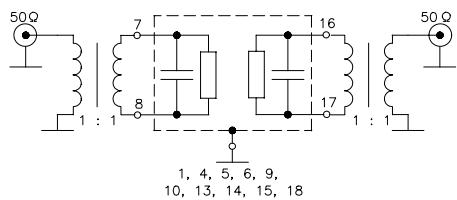
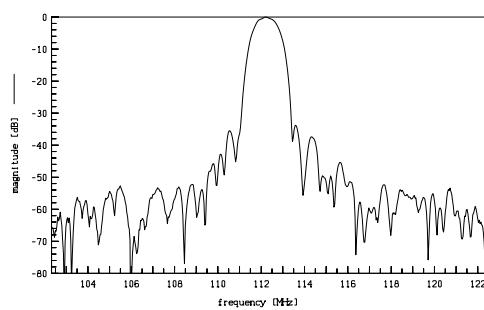
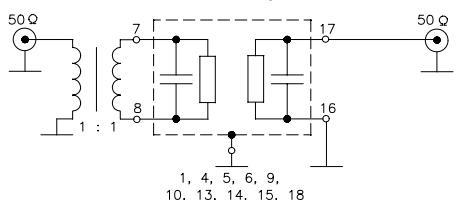
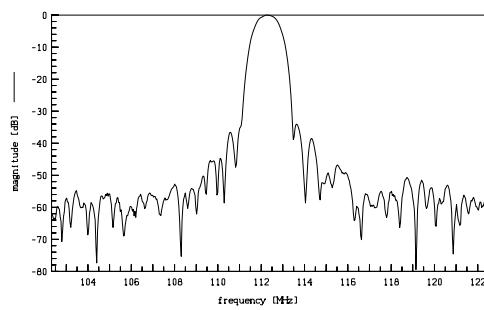
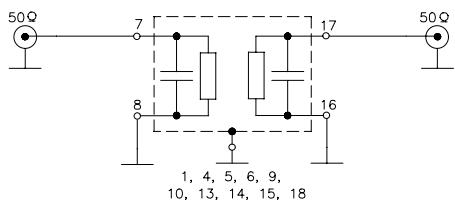
 $T = +25^\circ\text{C}$ 


Terminating source impedance:



 $Z_S = 50\Omega (300\Omega \parallel 130\text{ nH}^*)$ 

Terminating load impedance:

 $Z_L = 50\Omega (80\Omega \parallel 68\text{ nH}^*)$ 







|                                                                                            |                       | <b>min.</b> | <b>typ.</b>          | <b>max.</b>     |                              |
|--------------------------------------------------------------------------------------------|-----------------------|-------------|----------------------|-----------------|------------------------------|
| <b>Nominal frequency</b>                                                                   | $f_N$                 | —           | 112,32               | —               | MHz                          |
| <b>Insertion attenuation at <math>f_N</math></b><br>(including losses in matching network) | $\alpha_N$            | —           | 18,8<br>(13,0*)      | 20,3<br>(14,5*) | dB                           |
| <b>Passband width</b>                                                                      | $B_{3\text{dB}}$      | —           | 1,1                  | —               | MHz                          |
|                                                                                            | $B_{30\text{dB}}$     | —           | 2,3                  | —               | MHz                          |
| <b>Group delay ripple (p-p)</b>                                                            | $\Delta\tau$          |             |                      |                 |                              |
| $f_N - 600\text{ kHz}$ ... $f_N + 600\text{ kHz}$                                          |                       | —           | 100<br>(250*)        | 250<br>(350*)   | ns                           |
| <b>Relative attenuation (relative to <math>\alpha_N</math>)</b>                            | $\alpha_{\text{rel}}$ |             |                      |                 |                              |
| $f_N \pm 1,415\text{ MHz}$ ... $f_N \pm 3,0\text{ MHz}$                                    |                       | 30          | 38                   | —               | dB                           |
| $f_N \pm 3,0\text{ MHz}$ ... $f_N \pm 4,6\text{ MHz}$                                      |                       | 40          | 47                   | —               | dB                           |
| $f_N \pm 4,6\text{ MHz}$ ... $f_N \pm 20,0\text{ MHz}$                                     |                       | 45          | 52                   | —               | dB                           |
| $f_N \pm 1,728\text{ MHz}$                                                                 |                       | 32          | 38                   | —               | dB                           |
| $f_N \pm 2 \times 1,728\text{ MHz}$                                                        |                       | 40          | 47                   | —               | dB                           |
| $f_N \pm 3 \times 1,728\text{ MHz}$                                                        |                       | 48          | 53                   | —               | dB                           |
| <b>Impedance at <math>f_N</math></b>                                                       |                       |             |                      |                 |                              |
| Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$                             |                       | —           | 400 $\parallel$ 14,0 | —               | $\Omega \parallel \text{pF}$ |
| Output: $Z_{\text{OUT}} = R_{\text{OUT}} \parallel C_{\text{OUT}}$                         |                       | —           | 90 $\parallel$ 28,0  | —               | $\Omega \parallel \text{pF}$ |
| <b>Temperature coefficient of frequency</b>                                                | $TC_f$                | —           | -18                  | —               | ppm/K                        |

 \*) with matching network to  $50\Omega$  (element values depend on PCB layout):

 $C_{\text{p1}} = 27\text{ pF}$   
 $L_{\text{s2}} = 150\text{ nH}$   
 $L_{\text{p3}} = 68\text{ nH}$

**Data Sheet**
**Transfer function:**

**Transfer function (pass band):**


**Recommended Pin Configurations:**

For optimum performance use the following pin configurations.

**Balanced-balanced operation:**

**Balanced-unbalanced operation:**

**Unbalanced-unbalanced operation**




**SAW Components**

**B 8101**

**Bandpass Filter**

**112,32 MHz**

**Data Sheet**

**Published by EPCOS AG**

**Surface Acoustic Wave Components Division, SAW CE MM PD**

**P.O. Box 80 17 09, D-81617 München**

© EPCOS AG 2001. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.