

MiniLED

Description

The new MiniLED Series have been designed in a small white SMT package. The feature of the device is the very small package 2.3 mm x 1.3 mm x 1.4 mm. The MinLED is an obvious solution for small-scale, high-power products that are expected to work reliably in an arduous environment. This is often the case in automotive and industrial application of course.

16906

Features

- SMD LEDs with exceptional brightness
- Luminous intensity categorized
- Compatible with automatic placement equipment
- EIA and ICE standard package
- IR reflow soldering
- Available in 8 mm tape
- Low profile package
- Non-diffused lens: excellent for coupling to light pipes and backlighting
- Low power consumption
- Luminous intensity ratio in one packaging unit $I_{V_{max}}/I_{V_{min}} \leq 2.0$, optional ≤ 1.6

Applications

Automotive: Backlighting in dashboards and switches
 Telecommunication: Indicator and backlighting in telephone and fax
 Indicator and backlight for audio and video equipment
 Indicator and backlight in office equipment
 Flat backlight for LCDs, switches and symbols
 General use

Parts Table

Part	Color, Luminous Intensity	Angle of Half Intensity ($\pm\phi$)	Technology
TLMS2100	Super red, $I_V = 7.5$ mcd (typ.)	60	GaAsP on GaP
TLMO2100	Soft orange, $I_V = 7.5$ mcd (typ.)	60	GaAsP on GaP
TLMY2100	Yellow, $I_V = 7.5$ mcd (typ.)	60	GaAsP on GaP
TLMG2100	Green, $I_V = 10$ mcd (typ.)	60	GaP on GaP
TLMP2100	Pure green, $I_V = 2.2$ mcd (typ.)	60	GaP on GaP
TLMB2100	Blue, $I_V = 7$ mcd (typ.)	60	GaN

Absolute Maximum Ratings $T_{amb} = 25 \text{ }^{\circ}\text{C}$, unless otherwise specified

TLMS2100 ,TLMO2100 ,TLMY2100 ,TLMG2100 ,TLMP2100

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V_R	6	V
DC forward current	$T_{amb} \leq 60 \text{ }^{\circ}\text{C}$	I_F	30	mA
Surge forward current	$t_p \leq 10 \mu\text{s}$	I_{FSM}	0.5	A
Power dissipation	$T_{amb} \leq 60 \text{ }^{\circ}\text{C}$	P_V	95	mW
Junction temperature		T_j	100	$^{\circ}\text{C}$
Operating temperature range		T_{amb}	- 40 to + 100	$^{\circ}\text{C}$
Storage temperature range		T_{stg}	- 40 to + 100	$^{\circ}\text{C}$
Soldering temperature	according IPC 9501	T_{sd}	245	$^{\circ}\text{C}$
Thermal resistance junction/ambient	mounted on PC board (pad size > 5 mm ²)	R_{thJA}	480	K/W

TLMB2100

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V_R	5	V
DC forward current	$T_{amb} \leq 60 \text{ }^{\circ}\text{C}$	I_F	20	mA
Surge forward current	$t_p \leq 10 \mu\text{s}$	I_{FSM}	0.1	A
Power dissipation	$T_{amb} \leq 60 \text{ }^{\circ}\text{C}$	P_V	90	mW
Junction temperature		T_j	100	$^{\circ}\text{C}$
Operating temperature range		T_{amb}	- 40 to + 100	$^{\circ}\text{C}$
Storage temperature range		T_{stg}	- 40 to + 100	$^{\circ}\text{C}$
Soldering temperature	according IPC 9501	T_{sd}	245	$^{\circ}\text{C}$
Thermal resistance junction/ambient	mounted on PC board (pad size > 5 mm ²)	R_{thJA}	480	K/W

Optical and Electrical Characteristics $T_{amb} = 25 \text{ }^{\circ}\text{C}$, unless otherwise specified**Super red**

TLMS2100

Parameter	Test condition	Symbol	Min	Typ.	Max	Unit
Luminous intensity ²⁾	$I_F = 10 \text{ mA}$	I_V	2.5	7.5		mcd
Dominant wavelength	$I_F = 10 \text{ mA}$	λ_d	624	628	636	nm
Peak wavelength	$I_F = 10 \text{ mA}$	λ_p		640		nm
Angle of half intensity	$I_F = 10 \text{ mA}$	ϕ		± 60		deg
Forward voltage	$I_F = 20 \text{ mA}$	V_F		2.1	3.0	V
Reverse voltage	$I_R = 10 \mu\text{A}$	V_R	6	15		V
Junction capacitance	$V_R = 0, f = 1 \text{ MHz}$	C_j		15		pF

2) in one Packing Unit $I_{Vmax}/I_{Vmin} \leq 2.0$

Soft Orange

TLM02100

Parameter	Test condition	Symbol	Min	Typ.	Max	Unit
Luminous intensity ²⁾	$I_F = 10 \text{ mA}$	I_V	3.2	7.5		mcd
Dominant wavelength	$I_F = 10 \text{ mA}$	λ_d	598	605	611	nm
Peak wavelength	$I_F = 10 \text{ mA}$	λ_p		605		nm
Angle of half intensity	$I_F = 10 \text{ mA}$	φ		± 60		deg
Forward voltage	$I_F = 20 \text{ mA}$	V_F		2.1	3	V
Reverse voltage	$I_R = 10 \mu\text{A}$	V_R	6	15		V
Junction capacitance	$V_R = 0, f = 1 \text{ MHz}$	C_j		15		pF

²⁾ in one Packing Unit $I_{V_{\max}}/I_{V_{\min}} \leq 2.0$

Yellow

TLMY2100

Parameter	Test condition	Symbol	Min	Typ.	Max	Unit
Luminous intensity ²⁾	$I_F = 10 \text{ mA}$	I_V	3.2	7.5		mcd
Dominant wavelength	$I_F = 10 \text{ mA}$	λ_d	581	588	594	nm
Peak wavelength	$I_F = 10 \text{ mA}$	λ_p		585		nm
Angle of half intensity	$I_F = 10 \text{ mA}$	φ		± 60		deg
Forward voltage	$I_F = 20 \text{ mA}$	V_F		2.2	3	V
Reverse voltage	$I_R = 10 \mu\text{A}$	V_R	6	15		V
Junction capacitance	$V_R = 0, f = 1 \text{ MHz}$	C_j		15		pF

²⁾ in one Packing Unit $I_{V_{\max}}/I_{V_{\min}} \leq 2.0$

Green

TLMG2100

Parameter	Test condition	Symbol	Min	Typ.	Max	Unit
Luminous intensity ²⁾	$I_F = 10 \text{ mA}$	I_V	6.3	10		mcd
Dominant wavelength	$I_F = 10 \text{ mA}$	λ_d	562	568	575	nm
Peak wavelength	$I_F = 10 \text{ mA}$	λ_p		565		nm
Angle of half intensity	$I_F = 10 \text{ mA}$	φ		± 60		deg
Forward voltage	$I_F = 20 \text{ mA}$	V_F		2.2	3.0	V
Reverse voltage	$I_R = 10 \mu\text{A}$	V_R	6	15		V
Junction capacitance	$V_R = 0, f = 1 \text{ MHz}$	C_j		15		pF

²⁾ in one Packing Unit $I_{V_{\max}}/I_{V_{\min}} \leq 2.0$

Pure green**TLMP2100**

Parameter	Test condition	Symbol	Min	Typ.	Max	Unit
Luminous intensity ²⁾	$I_F = 10 \text{ mA}$	I_V	1.0	2.2		mcd
Dominant wavelength	$I_F = 10 \text{ mA}$	λ_d	555	560	565	nm
Peak wavelength	$I_F = 10 \text{ mA}$	λ_p		555		nm
Angle of half intensity	$I_F = 10 \text{ mA}$	φ		± 60		deg
Forward voltage	$I_F = 20 \text{ mA}$	V_F		2.4	3	V
Reverse voltage	$I_R = 10 \mu\text{A}$	V_R	6	15		V
Junction capacitance	$V_R = 0, f = 1 \text{ MHz}$	C_j		15		pF

²⁾ in one Packing Unit $I_V \text{max}/I_V \text{min} \leq 2.0$

Blue**TLMB2100**

Parameter	Test condition	Symbol	Min	Typ.	Max	Unit
Luminous intensity ¹⁾	$I_F = 10 \text{ mA}$	I_V	4.0	7.0		mcd
Dominant wavelength	$I_F = 10 \text{ mA}$	λ_d		465		nm
Peak wavelength	$I_F = 10 \text{ mA}$	λ_p		428		nm
Angle of half intensity	$I_F = 10 \text{ mA}$	φ		± 60		deg
Forward voltage	$I_F = 20 \text{ mA}$	V_F		3.9	4.5	V
Reverse voltage	$I_R = 10 \mu\text{A}$	V_R	5.0			V

¹⁾ in one Packing Unit $I_V \text{max}/I_V \text{min} \leq 1.6$

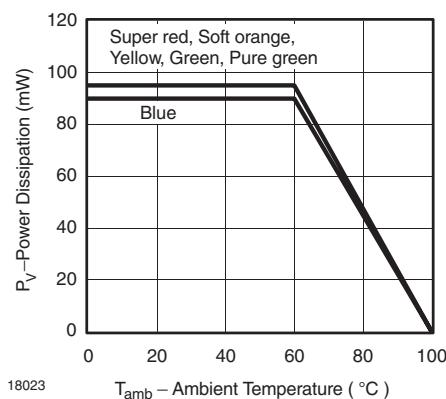
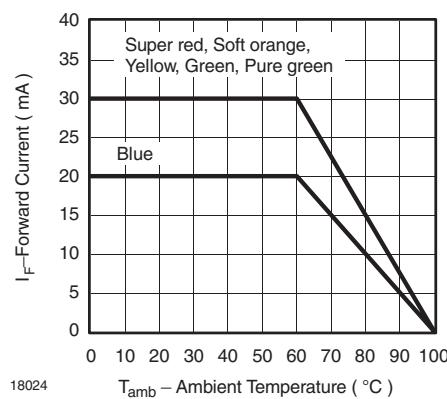
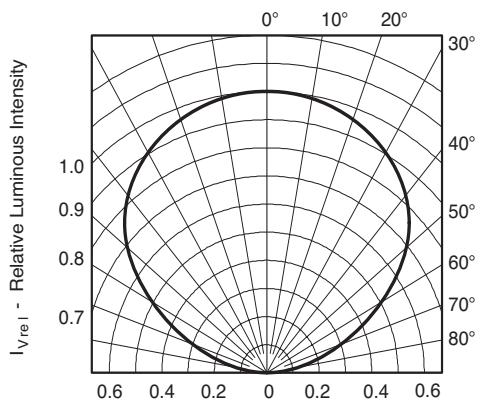
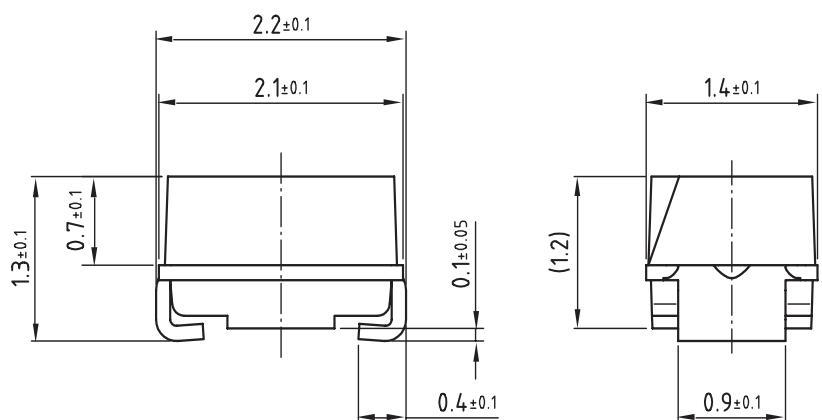

Typical Characteristics ($T_{\text{amb}} = 25 \text{ }^{\circ}\text{C}$ unless otherwise specified)

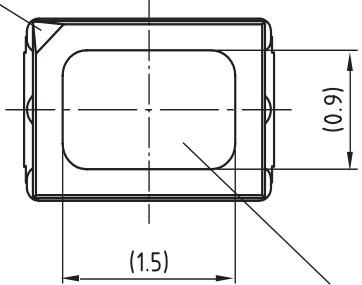
Figure 1. Power Dissipation vs. Ambient Temperature

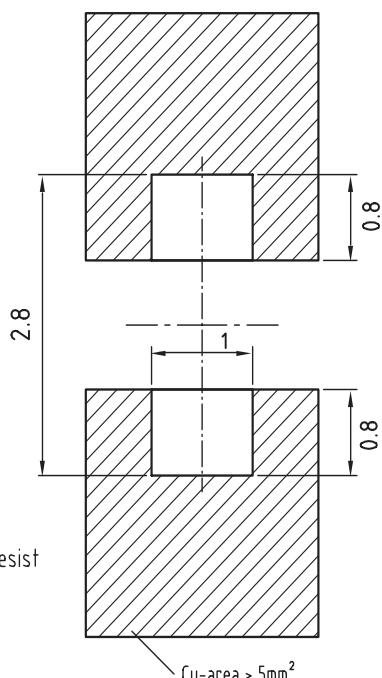

Figure 2. Forward Current vs. Ambient Temperature

95 10319

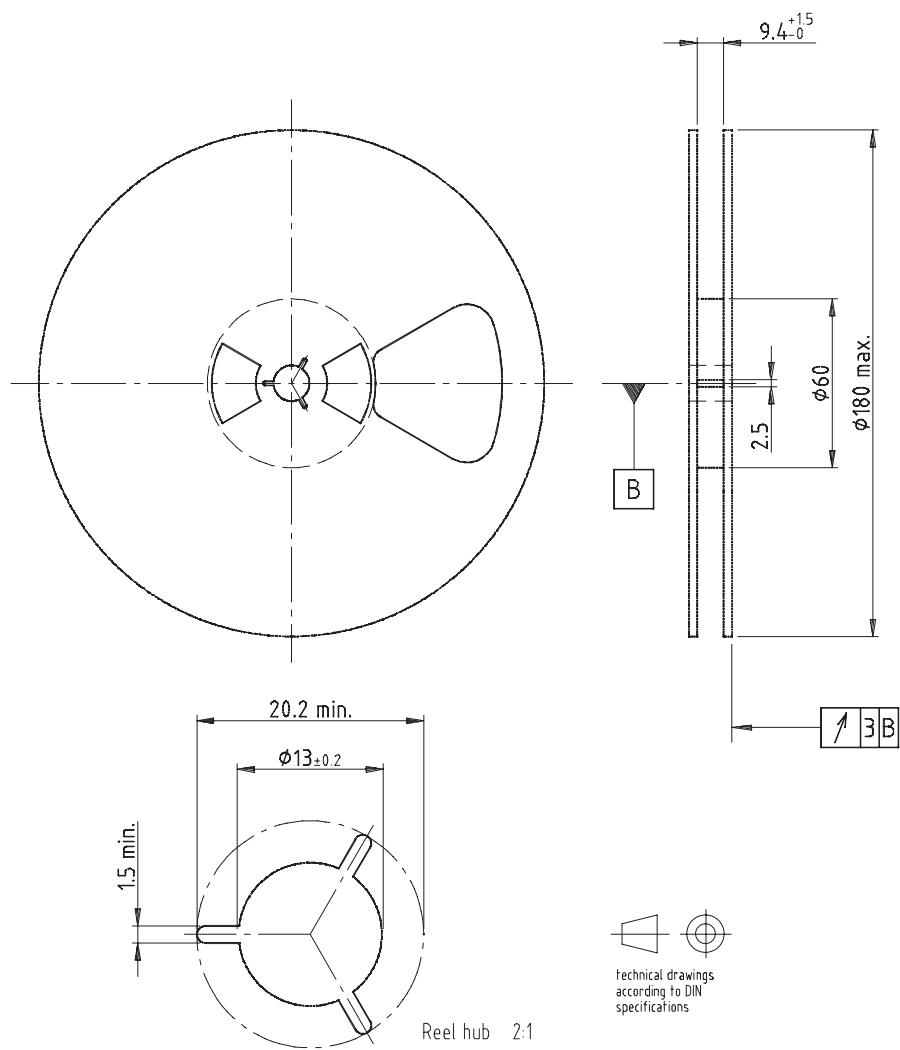
Figure 3. Rel. Luminous Intensity vs. Angular Displacement


Package Dimensions in mm

Cathode mark

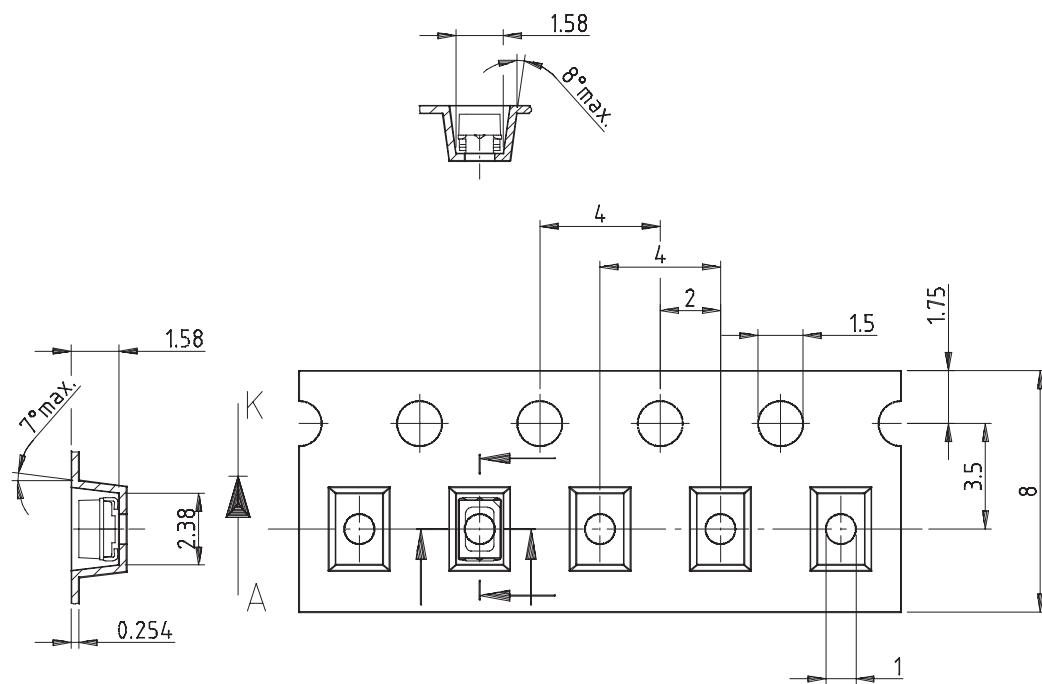

Not indicated tolerances ± 0.2

All dimensions in mm


Area not flat

Proposed pad layout
(for reference only)

16892

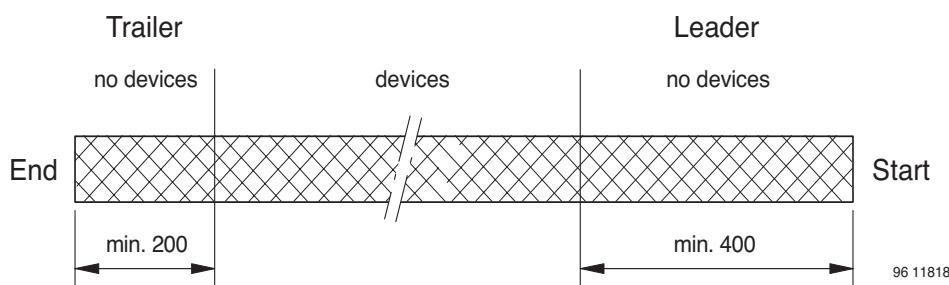

Drawing-No.: 6.541-5052.01-4
Issue: 3; 22.04.03

Reel Dimensions

Drawing-No.: 9.800-5051.V5-4
 Issue: 1; 25.07.02

16938

Tape Dimensions



Drawing-No.: 9.700-5266.01-4

Issue: 1; 05.06.02

16939

Leader and Trailer

GS08 = 3000 pcs

Cover Tape Peel Strength

According to DIN EN 60286-3

0.1 to 1.3N

300 ± 10 mm/min

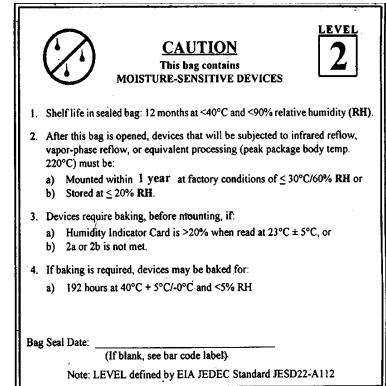
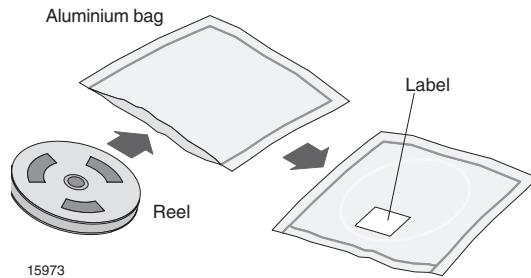
165 ° - 180 ° peel angle

Label
Standard bar code labels for finished goods

The standard bar code labels are product labels and used for identification of goods. The finished goods are packed in final packing area. The standard packing units are labeled with standard bar code labels before transported as finished goods to warehouses. The labels are on each packing unit and contain Vishay Semiconductor GmbH specific data.

Vishay Semiconductor GmbH standard bar code product label (finished goods)

Plain Writing	Abbreviation	Length
Item-Description	—	18
Item-Number	INO	8
Selection-Code	SEL	3
LOT-/ Serial-Number	BATCH	10
Data-Code	COD	3 (YWW)
Plant-Code	PTC	2
Quantity	QTY	8
Accepted by:	ACC	—
Packed by:	PCK	—
Mixed Code Indicator	MIXED CODE	—
Origin	xxxxxx ⁺	Company Logo



Long Bar Code Top	Type	Length
Item-Number	N	8
Plant-Code	N	2
Sequence-Number	X	3
Quantity	N	8
Total Length	—	21

Short Bar Code Bottom	Type	Length
Selection-Code	X	3
Data-Code	N	3
Batch-Number	X	10
Filter	—	1
Total Length	—	17

16942

Dry Packing

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

Final Packing

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

Recommended Method of Storage

Dry box storage is recommended as soon as the aluminium bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 1 year under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 hours at 40 °C +5 °C/ -0 °C and < 5 % RH (dry air/ nitrogen) or

96 hours at 60 °C +5 °C and < 5 % RH

for all device containers or

24 hours at 100 °C +5 °C

not suitable for reel or tubes.

An EIA JEDEC Standard JESD22-A112 Level 2 label is included on all dry bags.

Example of JESD22-A112 Level 2 label

ESD Precaution

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the Antistatic Shielding Bag. Electro-Static Sensitive Devices warning labels are on the packaging.

Vishay Semiconductors Standard Bar-Code Labels

The Vishay Semiconductors standard bar-code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Telefunken specific data.

Assembly Instructions

Reflow Soldering

- Reflow soldering must be done within 1 year stored under max. 30 °C, 60 % RH after opening envelop
- Recommended soldering paste (composition: SN 63 %, Pb 37 %) Melting temperature 178 °C to 192 °C
- Apply solder paste to the specified soldering pads, by using a dispenser or by screen printing.
- Recommended thickness of metal mask is 0.2 mm for screen printing.
- The recommended reflow furnace is a combination type with upper and lower heaters.
- Set the furnace temperatures for pre-heating and heating in accordance with the reflow temperature profile as shown below. Exercise extreme care to keep the maximum temperature below 230 °C. The

following temperature profile means the temperature at the device surface. Since temperature difference occurs between the work and the surface of the circuit board depending on the pes of circuit board or reflow furnace, the operating conditions should be verified prior to start of operation.

- Handling after reflow should be done only after the work surface has been cooled off.

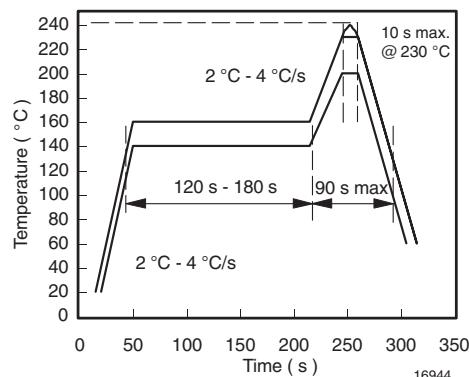
Manual Soldering

- Use the 6/4 solder or the solder containing silver.
- Use a soldering iron of 25 W or smaller. Adjust the temperature of the soldering iron below 300 °C.
- Finish soldering within three seconds.
- Handle products only after the temperature is cooled off.

Cleaning

- Perform cleaning after soldering strictly in conformance to the following conditions:

Cleaning agent:


2-propanol (isopropyl alcohol).

Commercially available grades (industrial use) should be used.

Demineralized or distilled water having a resistivity of not less than 500 mΩ corresponding to a conductivity of 2 mS/m.

- Temperature and time: 30 seconds under the temperature below 50 °C or 3 minutes below 30 °C.
- Ultrasonic cleaning: Below 20 W.

Reflow Solder Profile

Ozone Depleting Substances Policy Statement

It is the policy of **Vishay Semiconductor GmbH** to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

**We reserve the right to make changes to improve technical design
and may do so without further notice.**

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423