

General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, KYOCERA AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, KYOCERA AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, KYOCERA AVX launched FLEXITERM®. FLEXITERM® is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM®, KYOCERA AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM® will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

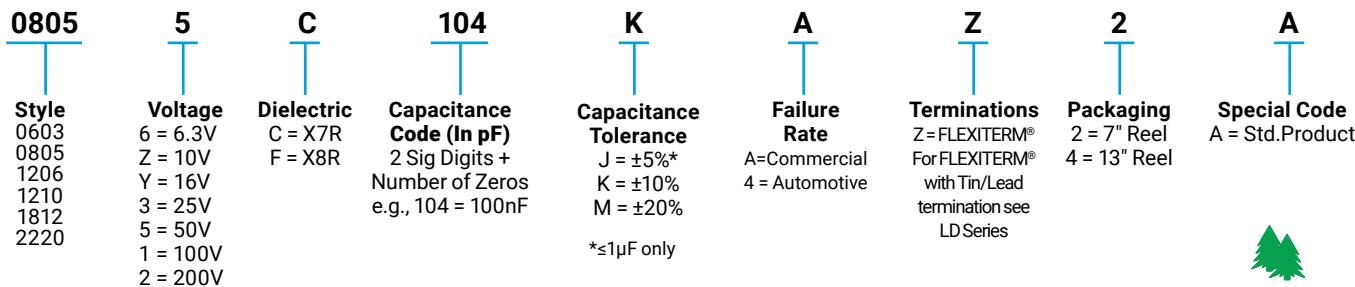
PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed
- Increased temperature cycling performance, 3000 cycles and beyond
- Flexible termination system
- Reduction in circuit board flex failures
- Base metal electrode system
- Automotive or commercial grade products available
- AECQ200 Qualified
- Approved to VW 80808 Specification

APPLICATIONS

High Flexure Stress Circuit Boards

- e.g. Depanelization: Components near edges of board.


Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

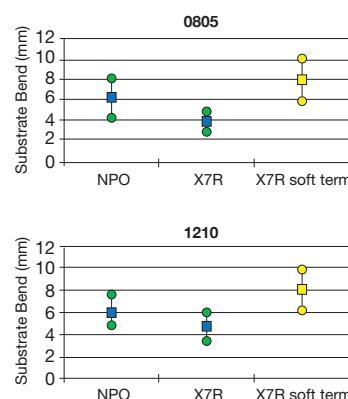
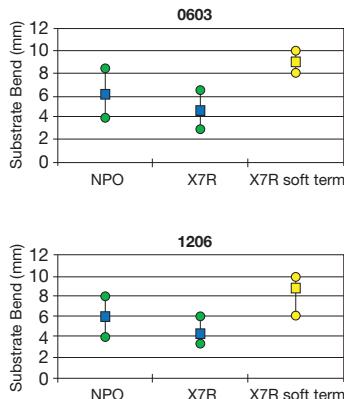
MLCC with FLEXITERM®

Specifications and Test Methods

PERFORMANCE TESTING

AEC-Q200 Qualification:

- Created by the Automotive Electronics Council
- Specification defining stress test qualification for passive components



Testing:

Key tests used to compare soft termination to AEC-Q200 qualification:

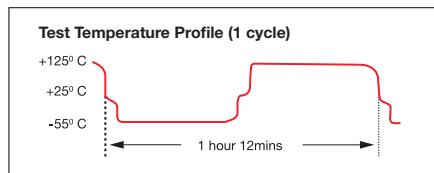
- Bend Test
- Temperature Cycle Test

BOARD BEND TEST RESULTS

AEC-Q200 Vrs FLEXITERM® Bend Test

TABLE SUMMARY

Typical bend test results are shown below:


Style	Conventional Termination	FLEXITERM®
0603	>2mm	>5mm
0805	>2mm	>5mm
1206	>2mm	>5mm

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance

BOARD BEND TEST PROCEDURE

According to AEC-Q200

Test Procedure as per AEC-Q200:
Sample size: 20 components
Span: 90mm Minimum deflection spec: 2 mm

- Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)

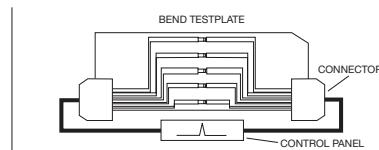


Fig 1 - PCB layout with electrical connections

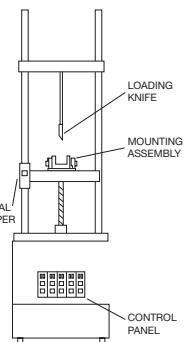
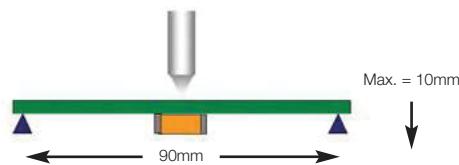
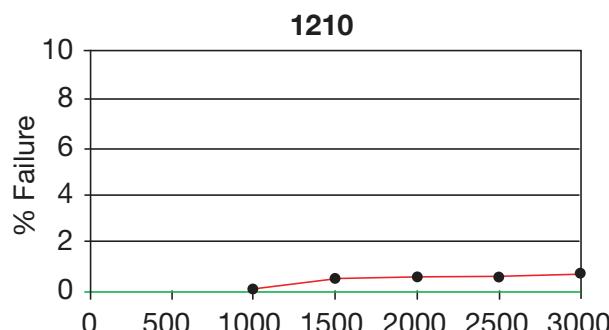
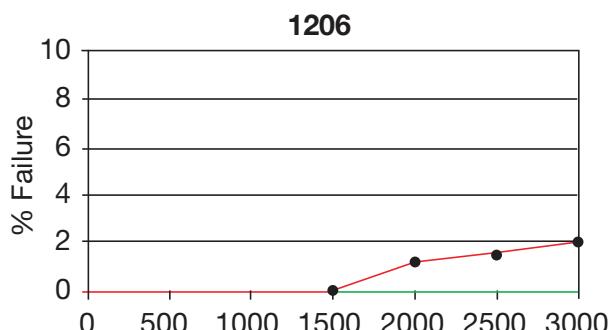
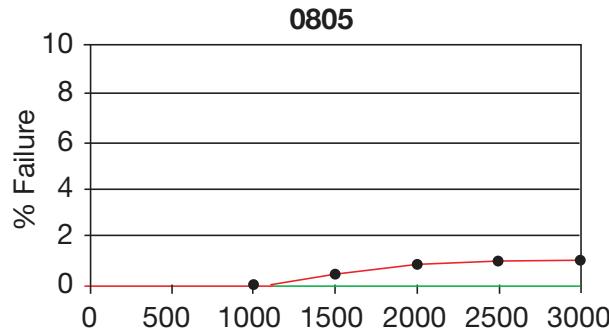
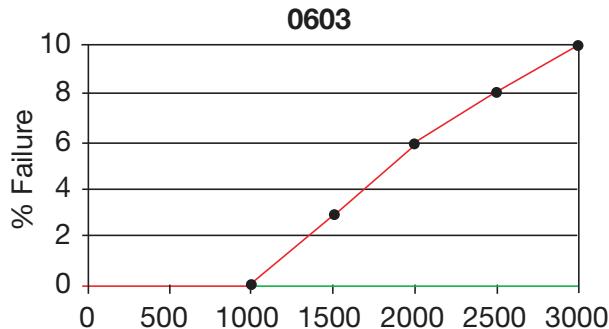



Fig 2 - Board Bend test equipment

ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

Bend Test

The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

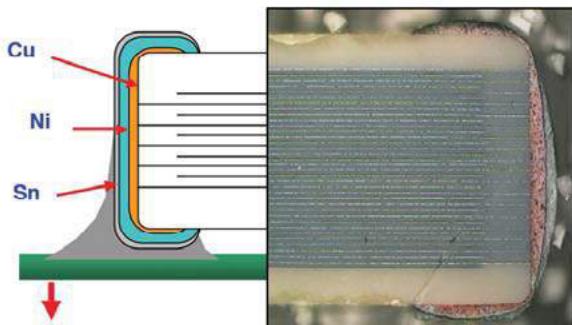
- The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife

- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm

BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

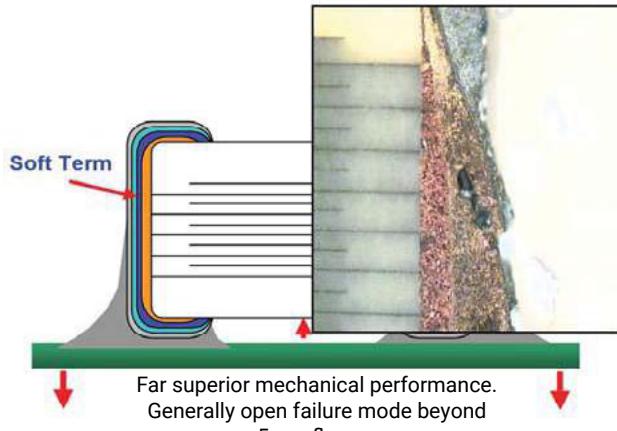
Green = Soft Term MLCC (Flexiterm)
Red = Standard MLCC

Soft Term - No Defects up to 3000 cycles


AEC-Q200 specification states 1000 cycles compared to 3000 temperature cycles.

FLEXITERM® TEST SUMMARY

- Qualified to AEC-Q200 test/specification with the exception of using 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- FLEXITERM® provides improved performance compared to standard termination systems.


- Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
 - 0% Failure up to 3000 cycles
 - No ESR change up to 3000 cycle

WITHOUT SOFT TERMINATION

Major fear is of latent board flex failures.

WITH SOFT TERMINATION

Far superior mechanical performance.
Generally open failure mode beyond 5mm flexure

SIZE	0603		0805		1206	
Soldering						
WVDC	25V	50V	25V	50V	25V	50V
271 Cap 270 (pF)	G	G	J	J		
331 330 (pF)	G	G	J	J		
471 470	G	G	J	J		
681 680	G	G	J	J		
102 1000	G	G	J	J	J	J
152 1500	G	G	J	J	J	J
182 1800	G	G	J	J	J	J
222 2200	G	G	J	J	J	J
272 2700	G	G	J	J	J	J
332 3300	G	G	J	J	J	J
392 3900	G	G	J	J	J	J
472 4700	G	G	J	J	J	J
562 5600	G	G	J	J	J	J
682 6800	G	G	J	J	J	J
822 8200	G	G	J	J	J	J
103 Cap 0.01 (μF)	G	G	J	J	J	J
123 0.012 (μF)	G	G	J	J	J	J
153 0.015	G	G	J	J	J	J
183 0.018	G	G	J	J	J	J
223 0.022	G	G	J	J	J	J
273 0.027	G	G	J	J	J	J
333 0.033	G	G	J	J	J	J
393 0.039	G	G	J	J	J	J
473 0.047	G	G	J	J	J	J
563 0.056	G		N	N	M	M
683 0.068	G		N	N	M	M
823 0.082			N	N	M	M
104 0.1			N	N	M	M
124 0.12			N	N	M	M
154 0.15			N	N	M	M
184 0.18			N		M	M
224 0.22			N		M	M
274 0.27					M	M
334 0.33					M	M
394 0.39					M	
474 0.47						
684 0.68						
824 0.82						
105 1						

SIZE	0603	0805	1206
------	------	------	------

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)

PAPER	EMBOSSED
-------	----------

TS 16949, ISO 9001 Certified

MLCC with FLEXITERM®

Capacitance Range X7R Dielectric

Size	0402			0603						0805						1206						1210			1812			2220								
Soldering	WVDC	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	25V	50V	100V					
221	Cap	220	C	C	C														C																	
271	(pF)	270	C	C	C																															
331		330	C	C	C																															
391		390	C	C	C																															
471		470	C	C	C																															
561		560	C	C	C																															
681		680	C	C	C																															
821		820	C	C	C																															
102		1000	C	C	C	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N						
182		1800	C	C	C	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N						
222		2200	C	C	C	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	N	N							
332		3300	C	C	C	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N						
472		4700	C	C	C	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N						
103	Cap	0.01	C			G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N						
123	(μ F)	0.012	C			G	G	G				J	J	J	N	N	N	J	J	J	J	J	J	J	K	K	K	K	N	N						
153		0.015	C			G	G	G				J	J	J	N	N	N	J	J	J	J	J	J	J	K	K	K	K	N	N						
183		0.018	C			G	G	G				J	J	J	N	N	N	J	J	J	J	J	J	J	K	K	K	K	N	N						
223		0.022	C			G	G	G				J	J	J	N	N	N	J	J	J	J	J	J	J	K	K	K	K	N	N						
273		0.027	C			G	G	G				J	J	J	N	N	N	J	J	J	J	J	J	J	K	K	K	K	N	N						
333		0.033	C			G	G	G				J	J	J	N	N	N	J	J	J	J	J	J	J	K	K	K	K	N	N						
473		0.047				G	G	G				J	J	J	N	N	N	J	J	J	M	J	J	J	K	K	K	K	N	N						
563		0.056				G	G	G				J	J	J	N	N	N	J	J	J	M	J	J	J	K	K	M	N	N							
683		0.068				G	G	G				J	J	J	N	N	N	J	J	J	M	J	J	J	K	K	K	M	N	N						
823		0.082				G	G	G				J	J	J	N	N	N	J	J	J	M	J	J	J	K	K	K	M	N	N						
104		0.1	C			G	G	G				J	J	J	N	N	N	J	J	J	M	J	J	J	K	K	K	M	N	N						
124		0.12										J	J	J	N	N	N	J	J	M	M				K	K	K	P	N	N						
154		0.15										M	N	N	N	N	N	J	J	M	M				K	K	K	P	N	N						
224		0.22				G	J	J	J	J	J	M	N	N	N	N	N	J	M	M	Q				M	M	M	P	N	N						
334		0.33										N	N	N	N	N	N	J	M	P	Q				P	P	P	Q	X	X						
474		0.47				J	J	J	J	J	J	N	N	N	N	N	N	M	M	P	Q				P	P	P	Q	X	X						
684		0.68										N	N	N	N	N	N	M	Q	Q	Q				P	P	P	Q	X	X						
105		1										N	N	N	N	N	N	M	Q	Q	Q				P	Q	Q	Z	Z	X	X					
155		1.5										N	N	N	N	N	N	Q	Q	Q	Q				P	Q	Z	Z	X	X						
225		2.2										N	N	N	N	N	N	Q	Q	Q	Q				X	Z	Z	Z	Z	Z						
335		3.3																Q	Q	Q	Q				X	Z	Z	Z	Z	Z						
475		4.7																Q	Q	Q	Q				X	Z	Z	Z	Z	Z						
106		10																														7				
226		22																																7	7	
	WVDC	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	25V	50V	100V					
	Size	0402			0603						0805						1206						1210			1812			2220							

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z	7
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)	3.30 (0.130)

EMBOSSED