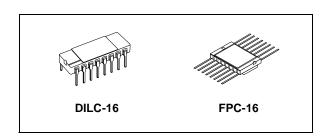


M54HC4538


RAD HARD DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR

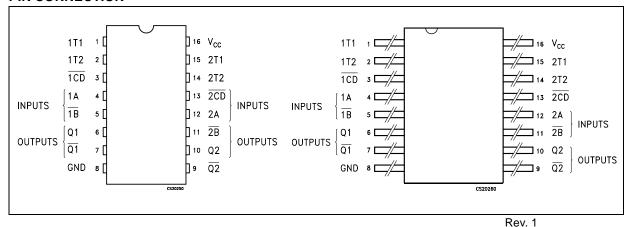
- HIGH SPEED:
- t_{PD} = 25 ns (TYP.) at V_{CC} = 6V ■ LOW POWER DISSIPATION:
- STAND BY STATE: I_{CC}=4μA (MAX.) at T_A=25°C ACTIVE STATE:
 - I_{CC} =200 μ A (TYP.) at V_{CC} = 6V HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: tpl H ≅ tpHi
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- WIDE OUTPUT PULSE WIDTH RANGE: t_{WOUT} = 120 ns ~ 60 s OVER AT V_{CC} = 4.5 V
- PIN AND FUNCTION COMPATIBLE WITH 54 SERIES 4538
- DEVICE FULLY COMPLIANT WITH SCC-9207-008

DESCRIPTION

The M54HC4538 is an high speed CMOS MONOSTABLE MULTIVIBRATOR fabricated with silicon gate C^2MOS technology.

Each multivibrator features both a negative A, and a positive B, edge triggered input, either of which can be used as an inhibit input. Also included is a

ORDER CODES


PACKAGE	FM	ЕМ
DILC	M54HC4538D	M54HC4538D1
FPC	M54HC4538K	M54HC4538K1

clear input that when taken low resets the one shot. The monostable multivibrator are retriggerable. That is, they may be triggered repeatedly while their outputs are generating a pulse and the pulse will be extended. Pulse width stability over a wide range of temperature and supply is achieved using linear CMOS techniques. The output pulse equation is simply:

PW = 0.7 (R)(C) where PW is in seconds, R in Ohms and C is in Farads.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION

June 2004 1/13

Figure 1: IEC Logic Symbols

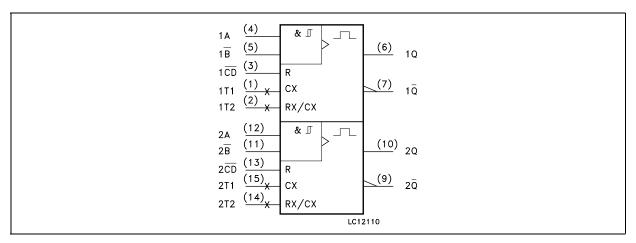
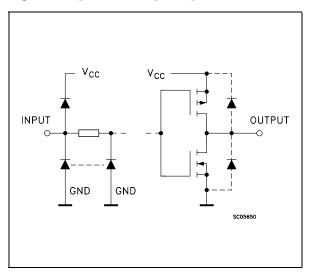
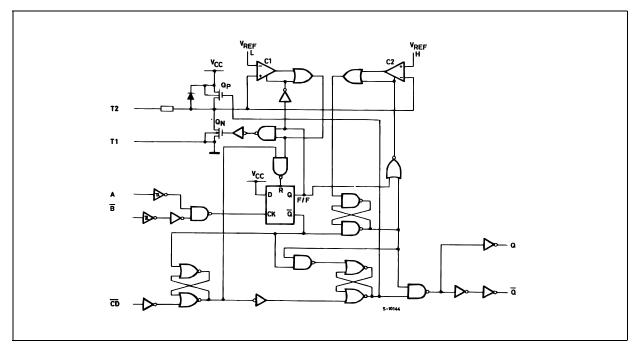



Figure 2: Input And Output Equivalent Circuit

Table 1: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
1, 15	1T1, 2T1	External Capacitor Connections
2, 14	1T2, 2T2	External Resistor/ Capacitor Connections
3, 13	1CD, 2CD	Direct Reset Inputs (Active Low)
4, 12	1A, 2A	Trigger Inputs (LOW to HIGH, Edge-Triggered)
5, 11	1B, 2B	Trigger Inputs (HIGH to LOW, Edge Triggered)
6, 10	Q1, Q2	Pulse Outputs
7, 9	Q1, Q2	Complementary Pulse Outputs
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage


Table 2: TRUTH TABLE

	INPUTS		ОИТІ	PUTS	NOTE
Α	B	CD	Q	Q	NOTE
J	Н	Н			OUTPUT ENABLE
Х	L	Н	L	Н	INHIBIT
Н	Х	Н	L	Н	INHIBIT
L	Ĺ	Н			OUTPUT ENABLE
Х	Х	L	L	Н	INHIBIT

X : Don't Care

2/13

Figure 3: System Diagram

This logic diagram has not be used to estimate propagation delays

Figure 4: Timing Chart

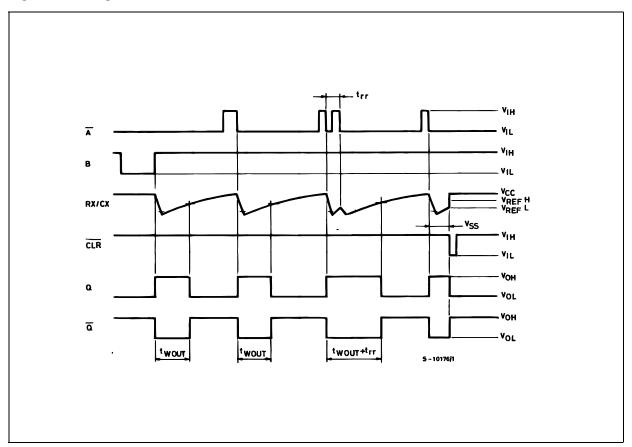
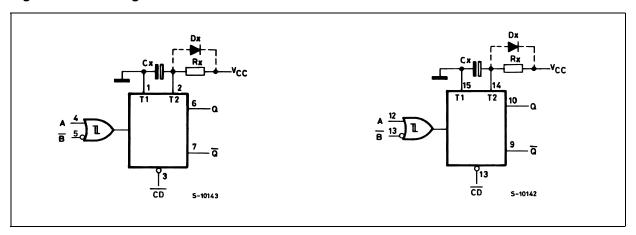



Figure 5: Block Diagram

(1) Cx, Rx, Dx are external components.

(2) Dx is a clamping diode.

The external capacitor is charged to V_{CC} in the stand-by-state, i.e. no trigger. When the supply voltage is turned off Cx is discharged mainly trough an internal parasitic diode (see figures). If Cx is sufficiently large and V_{CC} decreases rapidly, there will be some possibility of damaging the I.C. with a surge current or latch-up. If the voltage supply filter capacitor is large enough and V_{CC} decrease slowly, the surge current is automatically limited and damage to the I.C. is avoided. The maximum forward current of the parasitic diode is approximately 20 mA. In cases where Cx is large the time taken for the supply voltage to fall to 0.4 V_{CC} can be calculated as follows: $V_{CC} = 0.7$ x Cx/20mA

In cases where tris too short an external clamping diode is required to protect the I.C. from the surge current.

FUNCTIONAL DESCRIPTION

STAND-BY STATE

The external capacitor, Cx, is fully charged to V_{CC} in the stand-by state. Hence, before triggering, transistor Qp and Qn (connected to the Rx/Cx node) are both turned-off. The two comparators that control the timing and the two reference voltage sources stop operating. The total supply current is therefore only leakage current.

TRIGGER OPERATION

Triggering occurs when:

1 st) A is "LOW" and B has a falling edge;

2 nd) B is "HIGH" and A has a rising edge;

After the multivibrator has been retriggered comparator C1 and C2 start operating and Qn is turned on. Cx then discharges through Qn. The voltage at the node Rx/Cx external falls.

When it reaches V_{REFL} the output of comparator C1 becomes low. This in turn reset the flip-flop and Qn is turned off.

At this point C1 stops functioning but C2 continues to operate.

The voltage at R/C external begins to rise with a time constant set by the external components Rx, Cx.

Triggering the multivibrator causes Q to go high after internal delay due to the flip-flop and the gate. Q remains high until the voltage at R/C external rises again to V_{REFH} . At this point C2 output goes low and G goes low. C2 stop

operating. That means that after triggering when the voltage R/C external returns to V_{REFH} the multivibrator has returned to its MONOSTABLE STATE. In the case where Rx \cdot Cx are large enough and the discharge time of the capacitor and the delay time in the I.C. can be ignored, the width of the output pulse t_W (out) is as follows:

$$t_{W(OUT)} = 0.72 \text{ Cx} \cdot \text{Rx}$$

RE-TRIGGERED OPERATION

When a second trigger pulse follows the first its effect will depend on the state of the multivibrator. If the capacitor Cx is being charged the voltage level of Rx/Cx external falls to V_{REFL} again and Q remains High i.e. the retrigger pulse arrives in a time shorter than the period Rx \cdot Cx seconds, the capacitor charging time constant. If the second trigger pulse is very close to the initial trigger pulse it is ineffective; i.e. the second trigger must arrive in the capacitor discharge cycle to be ineffective; Hence the minimum time for a second trigger to be effective, t_{rr} (MIN.) depends on V_{CC} and Cx

RESET OPERATION

CD is normally high. If CD is low, the trigger is not effective because Q output goes low and trigger control flip-flop is reset.

Also transistor Op is turned on $\underline{\text{and}}$ Cx is charged quickly to V_{CC} . This means if CD input goes low the IC becomes waiting state both in operating and non operating state.

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P _D	Power Dissipation	300	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	265	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 4: Recommended Operating Conditions

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time (CD only)	V _{CC} = 2.0V	0 to 1000	ns
t_r , t_f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns
Сх	External Capacitor		NO LIMITATION	pF
Rx	External Resistor	V _{CC} < 3V	5K to 1M	Ω
ΚX		$V_{CC} \ge 3V$	1K to 1M	

The Maximum allowable values of Cx and Rx are a function of leakage of capacitor Cx, the leakage of device and leakage due to the board layout and surface resistance. Susceptibility to externally induced noise may occur for $Rx > 1M\Omega$

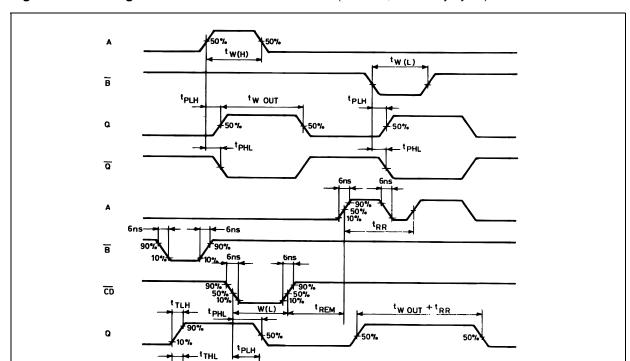
Table 5: DC Specifications

		1	Test Condition				Value				
Symbol	Parameter	V _{CC}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V_{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
II	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND Rext/Cext			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ
I _{CC}	Quiescent Supply	2.0	$V_I = V_{CC}$ or GND		40	120		160		200	μΑ
	Current	4.5	Pin 2 or 14		0.2	0.3		0.4		0.6	mΑ
		6.0	$V_{IN} = V_{CC}/2$		0.3	0.6		0.8		1.0	mΑ

Table 6: AC Electrical Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

			Test Co	ndition				Value				
Symbol	Parameter	V _{CC}			Т	A = 25°	C	-40 to	85°C	-55 to	125°C	Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0				30	75		95		110	
	Time	4.5	<u> </u>			8	15		19		22	ns
		6.0				7	13		16		19	
$t_{\text{PLH}}t_{\text{PHL}}$		2.0				120	250		315		375	
	Tim <u>e</u> (A, B - Q, Q)	4.5				30	50		63		75	ns
	(A, B - Q, Q)	6.0				25	43		54		64	
t _{PLH} t _{PHL}	Propagation Delay	2.0				100	195		245		295	
	Time	4.5	Ī			25	39		49		59	ns
	$(\overline{CD} - Q, \overline{Q})$	6.0	Ī			20	33		42		50	
t _{WOUT}	Output Pulse Width	2.0		$Rx = 5K\Omega$		540	1200		1500		1800	
		4.5	Cx=0	$Rx = 1K\Omega$		180	250		320		375	ns
		6.0	Ī	Rx= 1KΩ		150	200		260		320	
		2.0	_		70	83	96	70	96	70	96	
		4.5		$Cx = 0.01 \mu F$		77	85	69	85	69	85	μs
		6.0	$Rx = 10K\Omega$		69	77	85	69	85	69	85	
		2.0	_		0.67	0.75	0.83	0.67	0.83	0.67	0.9	
		4.5		$Cx = 0.1 \mu F$		0.73	0.77	0.67	0.77	0.67	0.8	ms
		6.0	KX	$x = 10K\Omega$	0.67	0.73	0.77	0.67	0.77	0.67	0.8	
Δt_{WOUT}	Output Pulse Width Error Between Circuits in Same Package					±1						%
t _{W(H)}	Minimum Pulse	2.0				30	75		95		110	
$t_{W(L)}$	Wi <u>dt</u> h	4.5	1			8	15		19		22	ns
	(A,B)	6.0	Ī			7	13		16		19	
t _{W(L)}	Minimum Pulse	2.0				30	75		95		110	
()	Width	4.5	Ī			8	15		19		22	ns
	(CD)	6.0	1			7	13		16		19	
t _{REM}	Minimum Clear	2.0				0	15		15		20	
	Removal Time	4.5	1			0	5		5		7	ns
		6.0	†			0	5		5			
t _{rr}	Minimum Retrigger	2.0	_	Cx = 0.1 μF Rx = 1KΩ		380						
	Time	4.5				92						ns
		6.0	"			72						
		2.0	_			6						
		4.5		= 0.01μF x = 1KΩ		1.4						μs
		6.0	"	x = 1V77		1.2					1	

Table 7: Capacitive Characteristics


		7	Test Condition		Value							
Symbol	Parameter	V _{CC} (V)		T,	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF	
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			70						pF	

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$ Duty/100 + $I_{C/2}$ (per monostable) (I_{cc} : Active Supply current) (Duty:%)

Figure 6: Test Circuit

 $C_L=50pF$ or equivalent (includes jig and probe capacitance) $R_T=Z_{OUT}$ of pulse generator (typically $50\Omega)$

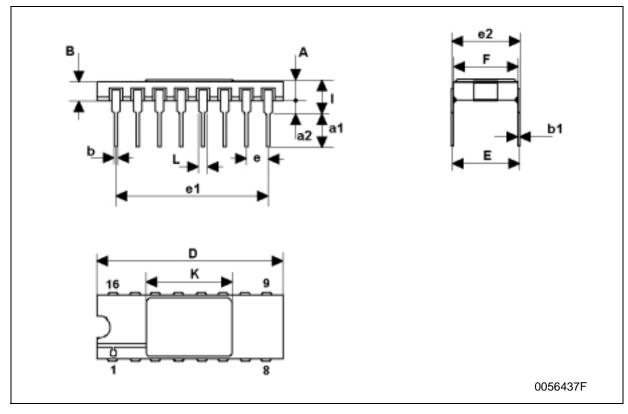
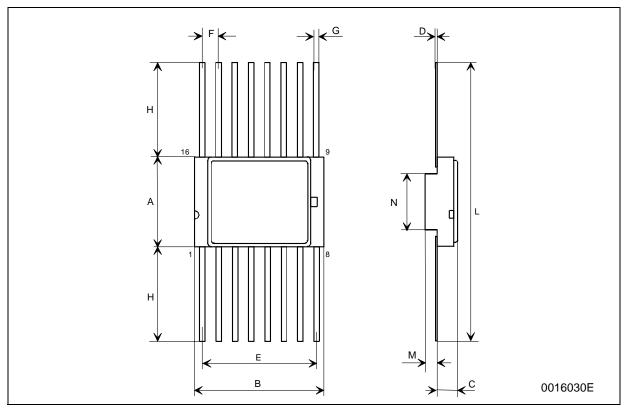

S-10147/1

Figure 7: Switching Characteristics Test Waveform (f=1MHz; 50% duty cycle)

Q


DILC-16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	2.1		2.71	0.083		0.107
a1	3.00		3.70	0.118		0.146
a2	0.63	0.88	1.14	0.025	0.035	0.045
В	1.82		2.39	0.072		0.094
b	0.40	0.45	0.50	0.016	0.018	0.020
b1	0.20	0.254	0.30	0.008	0.010	0.012
D	20.06	20.32	20.58	0.790	0.800	0.810
Е	7.36	7.62	7.87	0.290	0.300	0.310
е		2.54			0.100	
e1	17.65	17.78	17.90	0.695	0.700	0.705
e2	7.62	7.87	8.12	0.300	0.310	0.320
F	7.29	7.49	7.70	0.287	0.295	0.303
ı			3.83			0.151
K	10.90		12.1	0.429		0.476
L	1.14		1.5	0.045		0.059

FPC-16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	6.75	6.91	7.06	0.266	0.272	0.278
В	9.76	9.94	10.14	0.384	0.392	0.399
С	1.49		1.95	0.059		0.077
D	0.102	0.127	0.152	0.004	0.005	0.006
E	8.76	8.89	9.01	0.345	0.350	0.355
F		1.27			0.050	
G	0.38	0.43	0.48	0.015	0.017	0.019
Н	6.0			0.237		
L	18.75		22.0	0.738		0.867
М	0.33	0.38	0.43	0.013	0.015	0.017
N		4.31			0.170	

Table 8: Revision History

Date	Revision	Description of Changes
16-Jun-2004	1	First Release

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

