# **GTL2107**

# 12-bit GTL-/GTL/GTL+ to LVTTL translator

Rev. 05 — 23 December 2009

Product data sheet

### 1. General description

The GTL2107 is a customized translator between dual Xeon processors, GTL-/GTL/GTL+ I/O and the Platform Health Management, South Bridge and Power Supply 3.3 V LVTTL and GTL signals.

### 2. Features

- Operates as a GTL to LVTTL sampling receiver or LVTTL to GTL driver
- Operates at GTL, GTL+ or GTL- levels
- EN1 and EN2 enable control
- 3.0 V to 3.6 V operation
- LVTTL I/O not 5 V tolerant
- lacksquare Series termination on the LVTTL outputs of 30  $\Omega$
- ESD protection exceeds 2000 V HBM per JESD22-A114, 150 V MM per JESD22-A115, and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 Class II, Level A which exceeds 500 mA
- Package offered: TSSOP28

### 3. Quick reference data

Table 1. Quick reference data

 $T_{amb} = 25$  °C.

| Symbol                       | Parameter                    | Conditions                                           | Min | Тур | Max | Unit |
|------------------------------|------------------------------|------------------------------------------------------|-----|-----|-----|------|
| $V_{ref} = 0.73$             | 3 V; V <sub>TT</sub> = 1.1 V |                                                      |     |     |     |      |
| t <sub>PLH</sub>             | LOW to HIGH                  | nA to nBI; see Figure 4                              | 1   | 4   | 8   | ns   |
|                              | propagation delay            | nBI to nA or nAO (open-drain outputs); see Figure 13 | 2   | 13  | 18  | ns   |
| TILL THEFT                   | HIGH to LOW                  | nA to nBI; see Figure 4                              | 2   | 5.5 | 10  | ns   |
|                              | propagation delay            | nBI to nA or nAO (open-drain outputs); see Figure 13 | 2   | 4   | 10  | ns   |
| $V_{ref} = 0.70$             | 6 V; V <sub>TT</sub> = 1.2 V |                                                      |     |     |     |      |
| t <sub>PLH</sub> LOW to HIGH |                              | nA to nBI; see Figure 4                              | 1   | 4   | 8   | ns   |
|                              | propagation delay            | nBI to nA or nAO (open-drain outputs); see Figure 13 | 2   | 13  | 18  | ns   |
| t <sub>PHL</sub>             | HIGH to LOW                  | nA to nBI; see Figure 4                              | 2   | 5.5 | 10  | ns   |
|                              | propagation delay            | nBI to nA or nAO (open-drain outputs); see Figure 13 | 2   | 4   | 10  | ns   |



### 12-bit GTL-/GTL/GTL+ to LVTTL translator

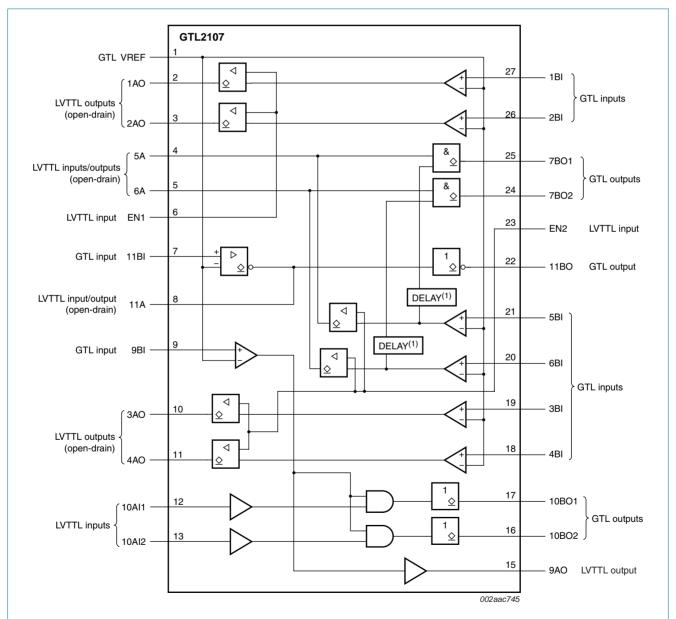

### 4. Ordering information

Table 2. Ordering information

 $T_{amb} = -40 \, ^{\circ}\text{C}$  to +85  $^{\circ}\text{C}$ .

| number merk |         | Package |                                                                        |          |
|-------------|---------|---------|------------------------------------------------------------------------|----------|
|             |         | Name    | Description                                                            | Version  |
| GTL2107PW   | GTL2107 | TSSOP28 | plastic thin shrink small outline package; 28 leads; body width 4.4 mm | SOT361-1 |

### 5. Functional diagram



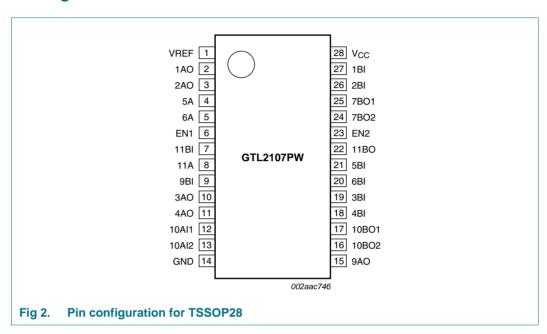

(1) The enable on 7BO1/7BO2 include a delay that prevents the transient condition (where 5BI/6BI go from LOW to HIGH, and the LOW to HIGH on 5A/6A lags up to 100 ns) from causing a LOW glitch on the 7BO1/7BO2 outputs.

Fig 1. Logic diagram of GTL2107

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

## 6. Pinning information

### 6.1 Pinning



### 6.2 Pin description

Table 3. Pin description

| Symbol | Pin | Description                           |
|--------|-----|---------------------------------------|
| VREF   | 1   | GTL reference voltage                 |
| 1AO    | 2   | data output (LVTTL), open-drain       |
| 2AO    | 3   | data output (LVTTL), open-drain       |
| 5A     | 4   | data input/output (LVTTL), open-drain |
| 6A     | 5   | data input/output (LVTTL), open-drain |
| EN1    | 6   | enable input (LVTTL)                  |
| 11BI   | 7   | data input (GTL)                      |
| 11A    | 8   | data input/output (LVTTL), open-drain |
| 9BI    | 9   | data input (GTL)                      |
| ЗАО    | 10  | data output (LVTTL), open-drain       |
| 4AO    | 11  | data output (LVTTL), open-drain       |
| 10AI1  | 12  | data input (LVTTL)                    |
| 10AI2  | 13  | data input (LVTTL)                    |
| GND    | 14  | ground (0 V)                          |
| 9AO    | 15  | data output (LVTTL), push-pull        |
| 10BO2  | 16  | data output (GTL)                     |
| 10BO1  | 17  | data output (GTL)                     |
| 4BI    | 18  | data input (GTL)                      |
| 3BI    | 19  | data input (GTL)                      |

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

| T. I. I. O. | The state of the s |           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Table 3.    | Pin description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | continued |

| Symbol          | Pin | Description             |
|-----------------|-----|-------------------------|
| 6BI             | 20  | data input (GTL)        |
| 5BI             | 21  | data input (GTL)        |
| 11BO            | 22  | data output (GTL)       |
| EN2             | 23  | enable input (LVTTL)    |
| 7BO2            | 24  | data output (GTL)       |
| 7BO1            | 25  | data output (GTL)       |
| 2BI             | 26  | data input (GTL)        |
| 1BI             | 27  | data input (GTL)        |
| V <sub>CC</sub> | 28  | positive supply voltage |

## 7. Functional description

Refer to Figure 1 "Logic diagram of GTL2107".

### 7.1 Function tables

Table 4. Power supervisor power good control

H = HIGH voltage level; L = LOW voltage level; X = Don't care.

| Inputs |         | Output               |
|--------|---------|----------------------|
| EN1    | 1BI/2BI | 1AO/2AO (open-drain) |
| Н      | L       | L                    |
| Н      | Н       | Н                    |
| L      | Χ       | Н                    |

Table 5. Power supervisor power good control

H = HIGH voltage level; L = LOW voltage level; X = Don't care.

| Inputs |         | Output               |
|--------|---------|----------------------|
| EN2    | 3BI/4BI | 3AO/4AO (open-drain) |
| Н      | L       | L                    |
| Н      | Н       | Н                    |
| L      | Χ       | Н                    |

Table 6. Southbridge SMI\_L control

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$ 

| Input | Output          |
|-------|-----------------|
| 9BI   | 9AO (push-pull) |
| L     | L               |
| Н     | Н               |

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

5 of 19

CPU SMI\_L control Table 7.

H = HIGH voltage level; L = LOW voltage level.

| Inputs      |     | Output      |
|-------------|-----|-------------|
| 10AI1/10AI2 | 9BI | 10BO1/10BO2 |
| L           | L   | L           |
| L           | Н   | L           |
| Н           | L   | L           |
| Н           | Н   | Н           |

#### Table 8. **PROCHOT L control**

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$ 

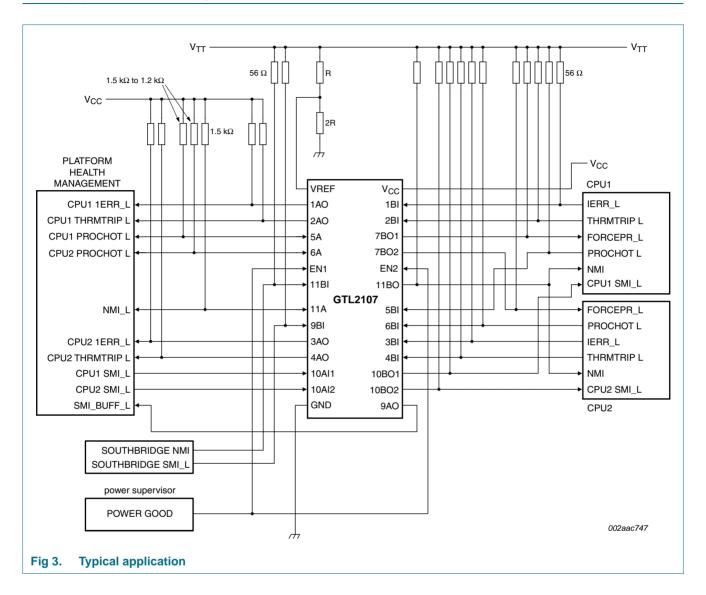
| Inputs |         | Input/output       | Output    |
|--------|---------|--------------------|-----------|
| EN2    | 5BI/6BI | 5A/6A (open-drain) | 7BO1/7BO2 |
| Н      | L       | L                  | H[1]      |
| Н      | Н       | <u>[2]</u>         | L         |
| Н      | Н       | Н                  | Н         |
| L      | Н       | <u>[2]</u>         | L         |
| L      | Н       | Н                  | Н         |
| L      | L       | Н                  | Н         |
| L      | L       | <u>[2]</u>         | Н         |

<sup>[1]</sup> The enable on 7BO1/7BO2 includes a delay that prevents the transient condition (where 5BI/6BI goes from LOW to HIGH, and the LOW to HIGH on 5A/6A lags up to 100 ns) from causing a low glitch on the 7BO1/7BO2 outputs.

**Southbridge NMI control** Table 9.

**Product data sheet** 

H = HIGH voltage level; L = LOW voltage level.


| Input | Input/output     | Output |
|-------|------------------|--------|
| 11BI  | 11A (open-drain) | 11BO   |
| L     | Н                | L      |
| L     | <u>[11]</u>      | Н      |
| Н     | L                | Н      |

<sup>[1]</sup> Open-drain input/output terminal is driven to logic LOW state by an external driver.

<sup>[2]</sup> Open-drain input/output terminal is driven to logic LOW state by an external driver.

12-bit GTL-/GTL/GTL+ to LVTTL translator

## 8. Application design-in information



### 12-bit GTL-/GTL/GTL+ to LVTTL translator

### 9. Limiting values

#### Table 10. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol              | Parameter                    | Conditions                          | Min                   | Max  | Unit |
|---------------------|------------------------------|-------------------------------------|-----------------------|------|------|
| $V_{CC}$            | supply voltage               |                                     | -0.5                  | +4.6 | V    |
| I <sub>IK</sub>     | input clamping current       | V <sub>I</sub> < 0 V                | -                     | -50  | mA   |
| VI                  | input voltage                | A port (LVTTL)                      | -0.5 <mark>[1]</mark> | +4.6 | V    |
|                     |                              | B port (GTL)                        | -0.5 <mark>[1]</mark> | +4.6 | V    |
| l <sub>OK</sub>     | output clamping current      | V <sub>O</sub> < 0 V                | -                     | -50  | mA   |
| Vo                  | output voltage               | output in OFF or HIGH state; A port | -0.5 <mark>[1]</mark> | +4.6 | V    |
|                     |                              | output in OFF or HIGH state; B port | -0.5 <mark>[1]</mark> | +4.6 | V    |
| l <sub>OL</sub>     | LOW-level output current[2]  | A port                              | -                     | 32   | mA   |
|                     |                              | B port                              | -                     | 30   | mA   |
| I <sub>OH</sub>     | HIGH-level output current[3] | A port                              | -                     | -32  | mA   |
| T <sub>stg</sub>    | storage temperature          |                                     | -60                   | +150 | °C   |
| T <sub>j(max)</sub> | maximum junction temperature |                                     | <u>[4]</u> _          | +125 | °C   |

<sup>[1]</sup> The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

### 10. Recommended operating conditions

Table 11. Operating conditions

| Symbol          | Parameter                 | Conditions     | Min                      | Тур               | Max                    | Unit |
|-----------------|---------------------------|----------------|--------------------------|-------------------|------------------------|------|
| $V_{CC}$        | supply voltage            |                | 3.0                      | 3.3               | 3.6                    | V    |
| $V_{TT}$        | termination voltage       | GTL-           | 0.85                     | 0.9               | 0.95                   | V    |
|                 |                           | GTL            | 1.14                     | 1.2               | 1.26                   | V    |
|                 |                           | GTL+           | 1.35                     | 1.5               | 1.65                   | V    |
| $V_{ref}$       | reference voltage         | overall        | 0.5                      | $^{2}/_{3}V_{TT}$ | 1.8                    | V    |
|                 |                           | GTL-           | 0.5                      | 0.6               | 0.63                   | V    |
|                 |                           | GTL            | 0.76                     | 0.8               | 0.84                   | V    |
|                 |                           | GTL+           | 0.87                     | 1                 | 1.1                    | V    |
| $V_{I}$         | input voltage             | A port         | 0                        | 3.3               | 3.6                    | V    |
|                 |                           | B port         | 0                        | $V_{TT}$          | 3.6                    | V    |
| $V_{IH}$        | HIGH-level input voltage  | A port and ENn | 2                        | -                 | -                      | V    |
|                 |                           | B port         | V <sub>ref</sub> + 0.050 | -                 | -                      | V    |
| V <sub>IL</sub> | LOW-level input voltage   | A port and ENn | -                        | -                 | 0.8                    | V    |
|                 |                           | B port         | -                        | -                 | $V_{\text{ref}}-0.050$ | V    |
| I <sub>OH</sub> | HIGH-level output current | A port         | -                        | -                 | -16                    | mA   |

<sup>[2]</sup> Current into any output in the LOW state.

<sup>[3]</sup> Current into any output in the HIGH state.

<sup>[4]</sup> The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

Table 11. Operating conditions ... continued

| Symbol           | Parameter                | Conditions            | Min | Тур | Max | Unit |
|------------------|--------------------------|-----------------------|-----|-----|-----|------|
| $I_{OL}$         | LOW-level output current | A port                | -   | -   | 16  | mA   |
|                  |                          | B port                | -   | -   | 15  | mA   |
| T <sub>amb</sub> | ambient temperature      | operating in free-air | -40 | -   | +85 | °C   |

### 11. Static characteristics

#### Table 12. Static characteristics

Recommended operating conditions; voltages are referenced to GND (ground = 0 V).  $T_{amb} = -40 \, ^{\circ}\text{C}$  to +85  $^{\circ}\text{C}$ .

| Symbol               | Parameter                 | Conditions                                                                                     |     | Min          | Typ[1] | Max  | Unit |
|----------------------|---------------------------|------------------------------------------------------------------------------------------------|-----|--------------|--------|------|------|
| $V_{OH}$             | HIGH-level output         | 9AO; $V_{CC}$ = 3.0 V to 3.6 V; $I_{OH}$ = $-100~\mu A$                                        | [2] | $V_{CC}-0.2$ | 3.0    | -    | V    |
|                      | voltage                   | 9AO; $V_{CC} = 3.0 \text{ V}$ ; $I_{OH} = -16 \text{ mA}$                                      | [2] | 2.1          | 2.3    | -    | V    |
| $V_{OL}$             | LOW-level output          | A port; $V_{CC} = 3.0 \text{ V}$ ; $I_{OL} = 4 \text{ mA}$                                     | [2] | -            | 0.15   | 0.4  | V    |
|                      | voltage                   | A port; $V_{CC} = 3.0 \text{ V}$ ; $I_{OL} = 8 \text{ mA}$                                     | [2] | -            | 0.3    | 0.55 | V    |
|                      |                           | A port; $V_{CC} = 3.0 \text{ V}$ ; $I_{OL} = 16 \text{ mA}$                                    | [2] | -            | 0.6    | 0.8  | V    |
|                      |                           | B port; $V_{CC} = 3.0 \text{ V}$ ; $I_{OL} = 15 \text{ mA}$                                    | [2] | -            | 0.13   | 0.4  | V    |
| I <sub>OH</sub>      | HIGH-level output current | open-drain outputs; A port other than 9AO; $V_O = V_{CC}$ ; $V_{CC} = 3.6 \text{ V}$           |     | -            | -      | ±1   | μА   |
| II                   | input current             | A port; $V_{CC} = 3.6 \text{ V}$ ; $V_I = V_{CC}$                                              |     | -            | -      | ±1   | μΑ   |
|                      |                           | A port; $V_{CC} = 3.6 \text{ V}$ ; $V_{I} = 0 \text{ V}$                                       |     | -            | -      | ±1   | μΑ   |
|                      |                           | B port; $V_{CC} = 3.6 \text{ V}$ ; $V_I = V_{TT} \text{ or GND}$                               |     | -            | -      | ±1   | μΑ   |
| I <sub>CC</sub>      | supply current            | A or B port; $V_{CC}$ = 3.6 V; $V_{I}$ = $V_{CC}$ or GND; $I_{O}$ = 0 mA                       |     | -            | 8      | 12   | mA   |
| Δl <sub>CC</sub> [3] | additional supply current | per input; A port or control inputs; $V_{CC} = 3.6 \text{ V}$ ; $V_I = V_{CC} - 0.6 \text{ V}$ |     | -            | -      | 500  | μΑ   |
| C <sub>io</sub>      | input/output              | A port; $V_0 = 3.0 \text{ V}$ or $0 \text{ V}$                                                 |     | -            | 5.0    | -    | pF   |
|                      | capacitance               | B port; $V_O = V_{TT}$ or 0 V                                                                  |     | -            | 4.0    | -    | pF   |

<sup>[1]</sup> All typical values are measured at  $V_{CC}$  = 3.3 V and  $T_{amb}$  = 25 °C.

<sup>[2]</sup> The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>[3]</sup> This is the increase in supply current for each input that is at the specified LVTTL voltage level rather than V<sub>CC</sub> or GND.

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

9 of 19

## 12. Dynamic characteristics

Table 13. Dynamic characteristics

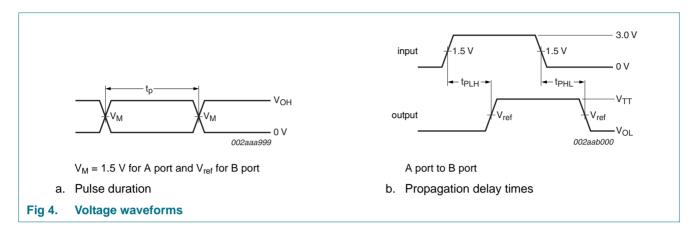
 $V_{\rm CC} = 3.3 \ V \pm 0.3 \ V$ .

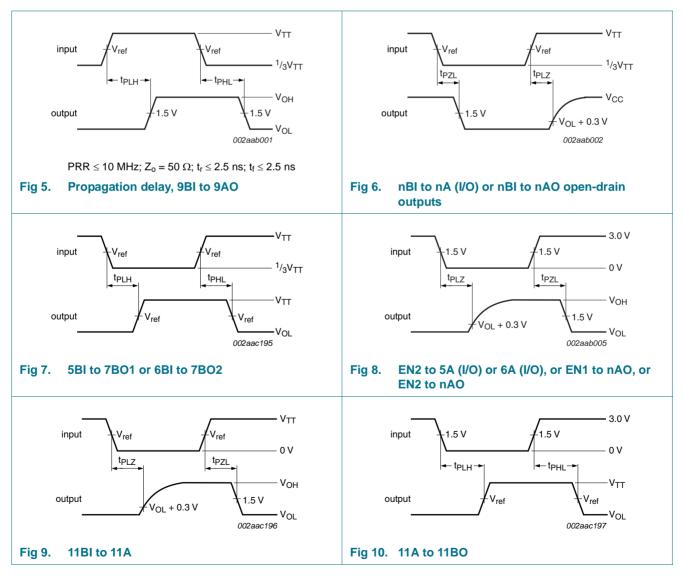
**Product data sheet** 

| Symbol           | Parameter                          | Conditions                                           | Min   | Typ[1] | Max | Unit |
|------------------|------------------------------------|------------------------------------------------------|-------|--------|-----|------|
| $V_{ref} = 0.7$  | 73 V; V <sub>TT</sub> = 1.1 V      |                                                      |       |        |     |      |
| t <sub>PLH</sub> | LOW to HIGH propagation delay      | nA to nBI; see Figure 4                              | 1     | 4      | 8   | ns   |
|                  |                                    | 9BI to 9AO; see Figure 5                             | 2     | 5.5    | 10  | ns   |
|                  |                                    | nBI to nA or nAO (open-drain outputs); see Figure 13 | 2     | 13     | 18  | ns   |
|                  |                                    | 9BI to 10BOn                                         | 2     | 6      | 11  | ns   |
|                  |                                    | 11A to 11BO; see Figure 10                           | 1     | 4      | 8   | ns   |
|                  |                                    | 11BI to 11A; see Figure 9                            | 2     | 7.5    | 11  | ns   |
|                  |                                    | 11BI to 11BO                                         | 2     | 8      | 13  | ns   |
|                  |                                    | 5BI to 7BO1 or 6BI to 7BO2; see Figure 7             | 4     | 7      | 11  | ns   |
| t <sub>PHL</sub> | HIGH to LOW propagation delay      | nA to nBI; see Figure 4                              | 2     | 5.5    | 10  | ns   |
|                  |                                    | 9BI to 9AO; see Figure 5                             | 2     | 5.5    | 10  | ns   |
|                  |                                    | nBI to nA or nAO (open-drain outputs); see Figure 13 | 2     | 4      | 10  | ns   |
|                  |                                    | 9BI to 10BOn                                         | 2     | 6      | 11  | ns   |
|                  |                                    | 11A to 11BO; see Figure 10                           | 1     | 5.5    | 10  | ns   |
|                  |                                    | 11BI to 11A; see Figure 9                            | 2     | 8.5    | 13  | ns   |
|                  |                                    | 11BI to 11BO                                         | [2] 2 | 14     | 21  | ns   |
|                  |                                    | 5BI to 7BO1 or 6BI to 7BO2; see Figure 7             | 100   | 205    | 350 | ns   |
| t <sub>PLZ</sub> | LOW to OFF-state propagation delay | EN1 to nAO or EN2 to nAO;<br>see Figure 8            | 1     | 3      | 7   | ns   |
|                  |                                    | EN1 to 5A (I/O) or EN2 to 6A (I/O); see Figure 8     | 1     | 3      | 7   | ns   |
| t <sub>PZL</sub> | OFF-state to LOW propagation delay | EN1 to nAO or EN2 to nAO; see Figure 8               | 1     | 3      | 7   | ns   |
|                  |                                    | EN1 to 5A (I/O) or EN2 to 6A (I/O); see Figure 8     | 1     | 3      | 7   | ns   |

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

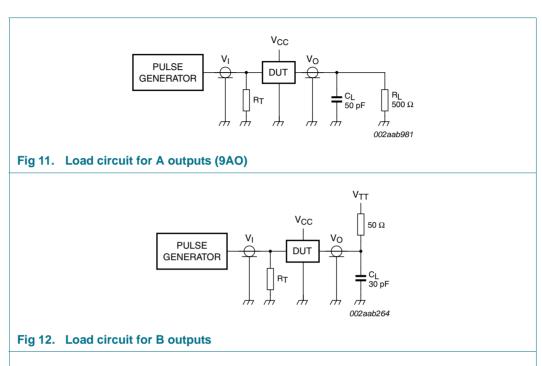
Table 13. Dynamic characteristics ... continued  $V_{CC} = 3.3 \text{ V} + 0.3 \text{ V}$ .


| Symbol                | Parameter                          | Conditions                                           | Min   | Typ[1] | Max | Unit |
|-----------------------|------------------------------------|------------------------------------------------------|-------|--------|-----|------|
| V <sub>ref</sub> = 0. | 76 V; V <sub>TT</sub> = 1.2 V      |                                                      |       |        |     |      |
| t <sub>PLH</sub>      | LOW to HIGH propagation delay      | nA to nBI; see Figure 4                              | 1     | 4      | 8   | ns   |
|                       |                                    | 9BI to 9AO; see Figure 5                             | 2     | 5.5    | 10  | ns   |
|                       |                                    | nBI to nA or nAO (open-drain outputs); see Figure 13 | 2     | 13     | 18  | ns   |
|                       |                                    | 9BI to 10BOn                                         | 2     | 6      | 11  | ns   |
|                       |                                    | 11A to 11BO; see Figure 10                           | 1     | 4      | 8   | ns   |
|                       |                                    | 11BI to 11A; see Figure 9                            | 2     | 7.5    | 11  | ns   |
|                       |                                    | 11BI to 11BO                                         | 2     | 8      | 13  | ns   |
|                       |                                    | 5BI to 7BO1 or 6BI to 7BO2;<br>see Figure 7          | 4     | 7      | 11  | ns   |
| t <sub>PHL</sub>      | HIGH to LOW propagation delay      | nA to nBI; see Figure 4                              | 2     | 5.5    | 10  | ns   |
|                       |                                    | 9BI to 9AO; see Figure 5                             | 2     | 5.5    | 10  | ns   |
|                       |                                    | nBI to nA or nAO (open-drain outputs); see Figure 13 | 2     | 4      | 10  | ns   |
|                       |                                    | 9BI to 10BOn                                         | 2     | 6      | 11  | ns   |
|                       |                                    | 11A to 11BO; see Figure 10                           | 1     | 5.5    | 10  | ns   |
|                       |                                    | 11BI to 11A; see Figure 9                            | 2     | 8.5    | 13  | ns   |
|                       |                                    | 11BI to 11BO                                         | [2] 2 | 14     | 21  | ns   |
|                       |                                    | 5BI to 7BO1 or 6BI to 7BO2; see Figure 7             | 100   | 205    | 350 | ns   |
| $t_{PLZ}$             | LOW to OFF-state propagation delay | EN1 to nAO or EN2 to nAO;<br>see Figure 8            | 1     | 3      | 7   | ns   |
|                       |                                    | EN1 to 5A (I/O) or EN2 to 6A (I/O); see Figure 8     | 1     | 3      | 7   | ns   |
| t <sub>PZL</sub>      | OFF-state to LOW propagation delay | EN1 to nAO or EN2 to nAO; see Figure 8               | 1     | 3      | 7   | ns   |
|                       |                                    | EN1 to 5A (I/O) or EN2 to 6A (I/O); see Figure 8     | 1     | 3      | 7   | ns   |


<sup>[1]</sup> All typical values are at  $V_{CC}$  = 3.3 V and  $T_{amb}$  = 25 °C.

<sup>[2]</sup> Includes ~7.6 ns RC rise time of test load pull-up on 11A, 1.5 k $\Omega$  pull-up and 21 pF load on 11A has about 23 ns RC rise time.

### 12.1 Waveforms


 $V_M = 1.5 \text{ V}$  at  $V_{CC} \ge 3.0 \text{ V}$  for A ports;  $V_M = V_{ref}$  for B ports.





### 12-bit GTL-/GTL/GTL+ to LVTTL translator

### 13. Test information



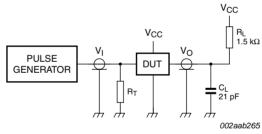
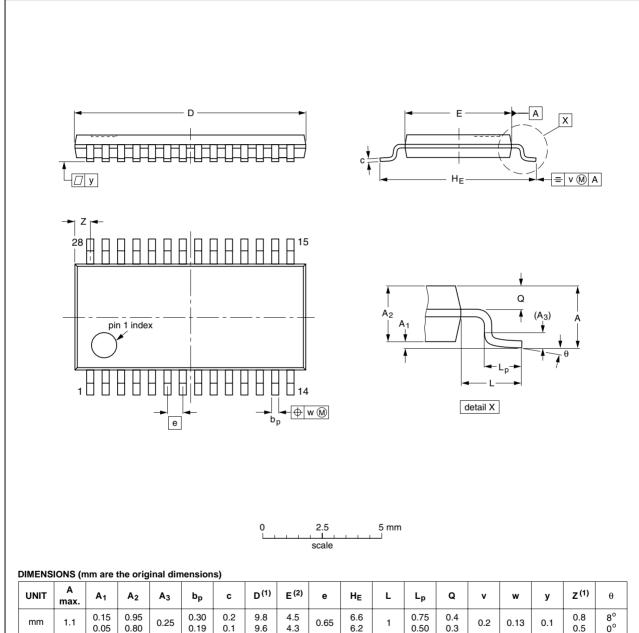



Fig 13. Load circuit for open-drain LVTTL I/O and open-drain outputs

R<sub>L</sub> — Load resistor

**C**<sub>L</sub> — Load capacitance; includes jig and probe capacitance


 $R_T$  — Termination resistance; should be equal to  $Z_0$  of pulse generators.

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

### 14. Package outline

### TSSOP28: plastic thin shrink small outline package; 28 leads; body width 4.4 mm

SOT361-1



| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | А3   | bp           | С          | D <sup>(1)</sup> | E <sup>(2)</sup> | е    | HE         | L | Lp           | ø          | v   | w    | у   | z <sup>(1)</sup> | θ        |
|------|-----------|----------------|----------------|------|--------------|------------|------------------|------------------|------|------------|---|--------------|------------|-----|------|-----|------------------|----------|
| mm   | 1.1       | 0.15<br>0.05   | 0.95<br>0.80   | 0.25 | 0.30<br>0.19 | 0.2<br>0.1 | 9.8<br>9.6       | 4.5<br>4.3       | 0.65 | 6.6<br>6.2 | 1 | 0.75<br>0.50 | 0.4<br>0.3 | 0.2 | 0.13 | 0.1 | 0.8<br>0.5       | 8°<br>0° |

#### Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |                                 |
|----------|-----|--------|----------|------------|------------|---------------------------------|
| VERSION  | IEC | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                      |
| SOT361-1 |     | MO-153 |          |            |            | <del>99-12-27</del><br>03-02-19 |
|          |     |        |          |            |            |                                 |

Fig 14. Package outline SOT361-1 (TSSOP28)

© NXP B.V. 2009. All rights reserved.

#### 12-bit GTL-/GTL/GTL+ to LVTTL translator

### 15. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

### 15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

### 15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

### 15.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

#### 12-bit GTL-/GTL/GTL+ to LVTTL translator

### 15.4 Reflow soldering

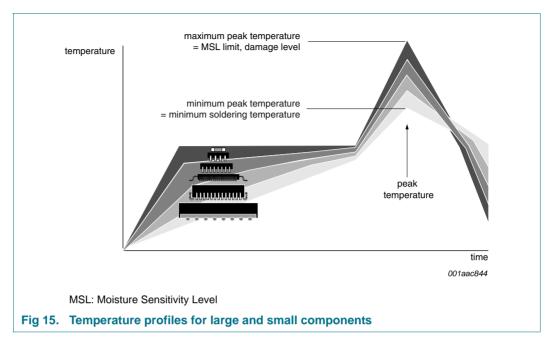
Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 15</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 14 and 15

Table 14. SnPb eutectic process (from J-STD-020C)

| Package thickness (mm) | Package reflow temperature (°C) |       |  |  |  |
|------------------------|---------------------------------|-------|--|--|--|
|                        | Volume (mm³)                    |       |  |  |  |
|                        | < 350                           | ≥ 350 |  |  |  |
| < 2.5                  | 235                             | 220   |  |  |  |
| ≥ 2.5                  | 220                             | 220   |  |  |  |

Table 15. Lead-free process (from J-STD-020C)


| Package thickness (mm) | Package reflow temperature (°C) |             |        |  |  |  |  |
|------------------------|---------------------------------|-------------|--------|--|--|--|--|
|                        | Volume (mm³)                    |             |        |  |  |  |  |
|                        | < 350                           | 350 to 2000 | > 2000 |  |  |  |  |
| < 1.6                  | 260                             | 260         | 260    |  |  |  |  |
| 1.6 to 2.5             | 260                             | 250         | 245    |  |  |  |  |
| > 2.5                  | 250                             | 245         | 245    |  |  |  |  |

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 15.

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

16 of 19



For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

### 16. Abbreviations

**Product data sheet** 

Table 16. Abbreviations

| Acronym | Description                             |
|---------|-----------------------------------------|
| CDM     | Charged Device Model                    |
| CPU     | Central Processing Unit                 |
| DUT     | Device Under Test                       |
| ESD     | ElectroStatic Discharge                 |
| GTL     | Gunning Transceiver Logic               |
| НВМ     | Human Body Model                        |
| LVTTL   | Low Voltage Transistor-Transistor Logic |
| MM      | Machine Model                           |
| PRR     | Pulse Rate Repetition                   |

### 12-bit GTL-/GTL/GTL+ to LVTTL translator

## 17. Revision history

### Table 17. Revision history

| Document ID       | Release date                                                                                                                                                                                                                                                                                                                                               | Data sheet status                                                           | Change notice                         | Supersedes                |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|---------------------------|--|--|--|
| GTL2107_5         | 20091223                                                                                                                                                                                                                                                                                                                                                   | Product data sheet                                                          |                                       | GTL2107_4                 |  |  |  |
| Modifications:    |                                                                                                                                                                                                                                                                                                                                                            | <mark>eatures"</mark> , 7 <sup>th</sup> bullet item: cha<br>er JESD22-A115" | anged from "200 V MM po               | er JESD22-A115" to        |  |  |  |
|                   | <ul> <li><u>Table 1 "Quick reference data"</u>: removed symbol/parameter "C<sub>io</sub>, input/output capacitance"</li> <li><u>Table 12 "Static characteristics"</u>:         <ul> <li>C<sub>io</sub> (A port) Typ value changed from "3.0 pF" to "5.0 pF"</li> <li>C<sub>io</sub> (A port) Max value changed from "4.0 pF" to "-"</li> </ul> </li> </ul> |                                                                             |                                       |                           |  |  |  |
|                   | <ul> <li>C<sub>io</sub> (B po</li> </ul>                                                                                                                                                                                                                                                                                                                   | rt) Typ value changed from                                                  | "2.0 pF" to "4.0 pF"                  |                           |  |  |  |
|                   | <ul> <li>C<sub>io</sub> (B po</li> </ul>                                                                                                                                                                                                                                                                                                                   | rt) Max value changed from                                                  | "3.0 pF" to "-"                       |                           |  |  |  |
|                   | • Table 13 "Dynamic characteristics":                                                                                                                                                                                                                                                                                                                      |                                                                             |                                       |                           |  |  |  |
|                   | <ul><li>– (sub-sect</li></ul>                                                                                                                                                                                                                                                                                                                              | ion $V_{ref} = 0.73 \text{ V}; V_{TT} = 1.1$                                | V) deleted t <sub>PHZ</sub> specifica | tion                      |  |  |  |
|                   | <ul><li>– (sub-sect</li></ul>                                                                                                                                                                                                                                                                                                                              | ion $V_{ref} = 0.73 \text{ V}; V_{TT} = 1.1$                                | V) deleted t <sub>PZH</sub> specifica | tion                      |  |  |  |
|                   | <ul><li>– (sub-sect</li></ul>                                                                                                                                                                                                                                                                                                                              | ion $V_{ref} = 0.76 \text{ V}; V_{TT} = 1.2$                                | V) deleted t <sub>PHZ</sub> specifica | tion                      |  |  |  |
|                   | <ul><li>– (sub-sect</li></ul>                                                                                                                                                                                                                                                                                                                              | ion $V_{ref} = 0.76 \text{ V}; V_{TT} = 1.2$                                | V) deleted t <sub>PZH</sub> specifica | tion                      |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                            | changed from "EN1 to 5A ( $(I/O)$ or 6A ( $I/O$ ), or EN1 to                |                                       | EN1 to nAO or EN2 to nAO" |  |  |  |
|                   | <ul> <li>Deleted (old)</li> </ul>                                                                                                                                                                                                                                                                                                                          | Figure 11 "EN2 to 9AO"                                                      |                                       |                           |  |  |  |
|                   | <ul> <li>Deleted (old)</li> </ul>                                                                                                                                                                                                                                                                                                                          | Figure 15 "Load circuit for                                                 | 9AO OFF-state to LOW                  | and LOW to OFF-state"     |  |  |  |
| GTL2107_4         | 20070706                                                                                                                                                                                                                                                                                                                                                   | Product data sheet                                                          | -                                     | GTL2107_3                 |  |  |  |
| GTL2107_3         | 20070129                                                                                                                                                                                                                                                                                                                                                   | Objective data sheet                                                        | -                                     | GTL2008_GTL2107_2         |  |  |  |
| GTL2008_GTL2107_2 | 20060926                                                                                                                                                                                                                                                                                                                                                   | Product data sheet                                                          | -                                     | GTL2008_1                 |  |  |  |
| GTL2008_1         | 20060502                                                                                                                                                                                                                                                                                                                                                   | Product data sheet                                                          | -                                     | -                         |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                       |                           |  |  |  |

#### 12-bit GTL-/GTL/GTL+ to LVTTL translator

### 18. Legal information

### 18.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

#### 18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

#### 18.3 Disclaimers

**General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

#### 18.4 Trademarks

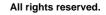
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: <a href="mailto:salesaddresses@nxp.com">salesaddresses@nxp.com</a>

**GTL2107 NXP Semiconductors** 


### 12-bit GTL-/GTL/GTL+ to LVTTL translator

### 20. Contents

| 1    | General description                 |
|------|-------------------------------------|
| 2    | Features                            |
| 3    | Quick reference data 1              |
| 4    | Ordering information                |
| 5    | Functional diagram 2                |
| 6    | Pinning information 3               |
| 6.1  | Pinning                             |
| 6.2  | Pin description                     |
| 7    | Functional description 4            |
| 7.1  | Function tables 4                   |
| 8    | Application design-in information 6 |
| 9    | Limiting values 7                   |
| 10   | Recommended operating conditions 7  |
| 11   | Static characteristics 8            |
| 12   | Dynamic characteristics 9           |
| 12.1 | Waveforms                           |
| 13   | Test information                    |
| 14   | Package outline                     |
| 15   | Soldering of SMD packages 14        |
| 15.1 | Introduction to soldering           |
| 15.2 | Wave and reflow soldering 14        |
| 15.3 | Wave soldering                      |
| 15.4 | Reflow soldering                    |
| 16   | Abbreviations                       |
| 17   | Revision history                    |
| 18   | Legal information 18                |
| 18.1 | Data sheet status                   |
| 18.2 | Definitions                         |
| 18.3 | Disclaimers                         |
| 18.4 | Trademarks                          |
| 19   | Contact information                 |
| 20   | Contents                            |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.





