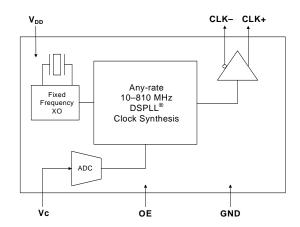
REVISION D

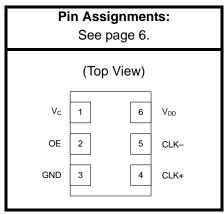
VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 to 810 MHz

Features

- Available with any-rate output frequencies from 10 to 810 MHz
- 3rd generation DSPLL® with superior jitter performance
- Internal fixed fundamental mode crystal frequency ensures high reliability and low aging
- Available CMOS, LVPECL, LVDS, and CML outputs
- 3.3, 2.5, and 1.8 V supply options
- Industry-standard 5 x 7 mm package and pinout
- Pb-free/RoHS-compliant
- -40 to +85 °C operating range


Applications

- SONET/SDH (OC-3/12/48) FTTx
- Networking
- SD/HD SDI/3G SDI video
- Clock recovery and jitter cleanup PLLs
- FPGA/ASIC clock generation



The Si595 VCXO utilizes Silicon Laboratories' advanced DSPLL® circuitry to provide a low-jitter clock at high frequencies. The Si595 is available with any-rate output frequency from 10 to 810 MHz. Unlike traditional VCXOs, where a different crystal is required for each output frequency, the Si595 uses one fixed crystal to provide a wide range of output frequencies. This ICbased approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides supply noise rejection, simplifying the task of generating low-jitter clocks in noisy environments. The Si595 IC-based VCXO is factoryconfigurable for a wide variety of user specifications including frequency, supply voltage, output format, tuning slope, and absolute pull range (APR). Specific configurations are factory programmed at time of shipment, thereby eliminating the long lead times associated with custom oscillators.

Functional Block Diagram

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Voltage ¹	V_{DD}	3.3 V option	2.97	3.3	3.63	
		2.5 V option	2.25	2.5	2.75	V
		1.8 V option	1.71	1.8	1.89	Ī
Supply Current	I _{DD}	Output enabled				
		LVPECL		120	135	
		CML	_	110	120	
		LVDS	_	100	110	mA
		CMOS	_	90	100	
		Tristate mode	_	60	75	†
Output Enable (OE) ²		V _{IH}	0.75 x V _{DD}	_	_	V
		V _{IL}	_	_	0.5]
Operating Temperature Range	T _A		-40	_	85	°C

Notes:

- 1. Selectable parameter specified by part number. See 3. "Ordering Information" on page 7 for further details.
- 2. OE pin includes an internal 17 $k\Omega$ pullup resistor to V_{DD} for output enable active high or a 17 $k\Omega$ pull-down resistor to GND for output enable active low. See 3. "Ordering Information" on page 7.

Table 2. V_C Control Voltage Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Control Voltage Tuning Slope ^{1,2,3}	K _V	10 to 90% of V _{DD}	_	45	_	ppm/V
				95		
				125		
				185		
				380		
Control Voltage Linearity ⁴	L _{VC}	BSL	- 5	±1	+5	%
		Incremental	-10	±5	+10	76
Modulation Bandwidth	BW		9.3	10.0	10.7	kHz
V _C Input Impedance	Z _{VC}		500	_	_	kΩ
V _C Input Capacitance	C _{VC}		_	50	_	pF
Nominal Control Voltage	V _{CNOM}	@ f _O	_	V _{DD} /2	_	V
Control Voltage Tuning Range	V _C		0		V_{DD}	V

Notes:

- 1. Positive slope; selectable option by part number. See 3. "Ordering Information" on page 7.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.
- **3.** K_V variation is $\pm 10\%$ of typical values.
- 4. BSL determined from deviation from best straight line fit with V_C ranging from 10 to 90% of V_{DD}. Incremental slope determined with V_C ranging from 10 to 90% of V_{DD}.

Table 3. CLK± Output Frequency Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Nominal Frequency ^{1,2,3}	f _O	LVDS/CML/LVPECL	10	_	810	MHz
		CMOS	10	_	160	1011 12
Temperature Stability ^{1,4}		$T_A = -40 \text{ to } +85 ^{\circ}\text{C}$	-20	_	+20	nnm
			-50	_	+50	ppm
Absolute Pull Range ^{1,4}	APR		±10	_	±370	ppm
Power up Time ⁵	tosc		_	_	10	ms

Notes:

- 1. See Section 3. "Ordering Information" on page 7 for further details.
- 2. Specified at time of order by part number.
- 3. Nominal output frequency set by $V_{CNOM} = V_{DD}/2$.
- **4.** Selectable parameter specified by part number.
- 5. Time from power up or tristate mode to f_O.

Table 4. CLK± Output Levels and Symmetry

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
LVPECL Output Option ¹	Vo	mid-level	V _{DD} – 1.42	_	V _{DD} – 1.25	V
	V _{OD}	swing (diff)	1.1	_	1.9	V_{PP}
	V _{SE}	swing (single-ended)	0.55	_	0.95	V_{PP}
LVDS Output Option ²	V _O	mid-level	1.125	1.20	1.275	V
	V _{OD}	swing (diff)	0.5	0.7	0.9	V _{PP}
	V.	2.5/3.3 V option mid-level	_	V _{DD} – 1.30	_	V
CNAL Output Ontion2	Vo	1.8 V option mid-level	_	V _{DD} – 0.36	_	v
CML Output Option ²	V	2.5/3.3 V option swing (diff)	1.10	1.50	1.90	V _{PP}
	V _{OD}	1.8 V option swing (diff)	0.35	0.425	0.50	⋄ ₽₽
CMOS Output Option ³	V _{OH}		0.8 x V _{DD}	_	V_{DD}	V
	V _{OL}		_	_	0.4	V
Rise/Fall time (20/80%)	$t_{R,} t_{F}$	LVPECL/LVDS/CML	_	_	350	ps
		CMOS with C _L = 15 pF	_	2	_	ns
Symmetry (duty cycle)	SYM		45	_	55	%

Notes:

- 1. 50Ω to $V_{DD} 2.0 V$. 2. $R_{term} = 100 \Omega$ (differential).
- 3. $C_L = 15$ pF. Sinking or sourcing 12 mA for $V_{DD} = 3.3$ V, 6 mA for $V_{DD} = 2.5$ V, 3 mA for $V_{DD} = 1.8$ V.

Table 5. CLK± Output Phase Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Phase Jitter (RMS) ^{1,2} for F _{OUT} of 50 MHz ≤ F _{OUT}	фл	Kv = 45 ppm/V 12 kHz to 20 MHz	_	0.5	_	ps
810 MHz		Kv = 95 ppm/V 12 kHz to 20 MHz	_	0.5	_	
		Kv = 125 ppm/V 12 kHz to 20 MHz		0.5	_	
		Kv = 185 ppm/V 12 kHz to 20 MHz		0.5		
		Kv = 380 ppm/V 12 kHz to 20 MHz	1	0.7		

Notes:

- **1.** Refer to AN256 for further information.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.

Table 6. CLK± Output Period Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Period Jitter*	J _{PER}	RMS	_	3	_	ps
		Peak-to-Peak	_	35	_	
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information.						

Table 7. CLK± Output Phase Noise (Typical)

Offset Frequency	74.25 MHz 185 ppm/V LVPECL	148.5 MHz 185 ppm/V LVPECL	155.52 MHz 95 ppm/V LVPECL	Units
100 Hz	–77	-68	–77	
1 kHz	-101	- 95	– 101	
10 kHz	-121	-116	–119	
100 kHz	-134	-128	– 127	dBc/Hz
1 MHz	-149	-144	-144	
10 MHz	–151	-147	-147	
20 MHz	–150	-148	-148	

CHICAN LARG

Table 8. Environmental Compliance and Package Information

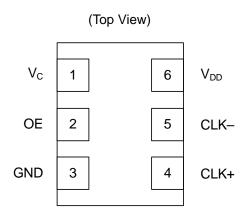
Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883, Method 2002
Mechanical Vibration	MIL-STD-883, Method 2007
Solderability	MIL-STD-883, Method 2003
Gross and Fine Leak	MIL-STD-883, Method 1014
Resistance to Solder Heat	MIL-STD-883, Method 2036
Moisture Sensitivity Level	J-STD-020, MSL1
Contact Pads	Gold over Nickel

Table 9. Thermal Characteristics

(Typical values TA = 25 °C, V_{DD} = 3.3 V)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance Junction to Ambient	$\theta_{\sf JA}$	Still Air	_	84.6	_	°C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$	Still Air	_	38.8	_	°C/W
Ambient Temperature	T _A		-40	_	85	°C
Junction Temperature	TJ		_	_	125	°C

Table 10. Absolute Maximum Ratings¹


Parameter	Symbol	Rating	Units
Maximum Operating Temperature	T _{AMAX}	85	°C
Supply Voltage	V_{DD}	-0.5 to +3.8	V
Input Voltage	V _I	-0.5 to V _{DD} + 0.3	
Storage Temperature	T _S	-55 to +125	°C
ESD Sensitivity (HBM, per JESD22-A114)	ESD	2500	V
Soldering Temperature (Pb-free profile) ²	T _{PEAK}	260	°C
Soldering Temperature Time @ T _{PEAK} (Pb-free profile) ²	t _P	20–40	seconds

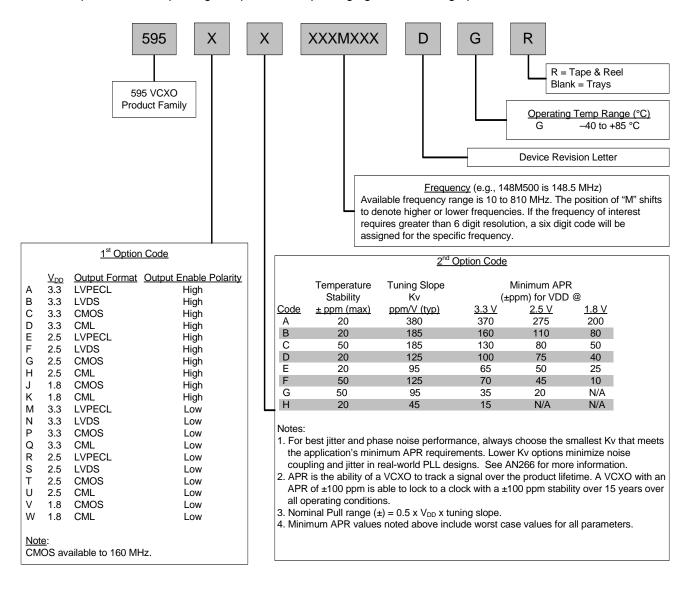
Notes:

- Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional
 operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for
 extended periods may affect device reliability.
- 2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download from www.silabs.com/VCXO for further information, including soldering profiles.

2. Pin Descriptions

Table 11. Si595 Pin Descriptions

Pin	Name	Туре	Function
1	V _C	Analog Input	Control Voltage
2	OE*	Input	Output Enable
3	GND	Ground	Electrical and Case Ground
4	CLK+	Output	Oscillator Output
5	CLK- (N/C for CMOS)	Output	Complementary Output (N/C for CMOS, do not make external connection)
6	V _{DD}	Power	Power Supply Voltage


Rev. 1.2

*Note: OE pin includes a 17 k Ω resistor to V_{DD} for OE active high option or 17 k Ω to GND for OE active low option. See 3. "Ordering Information" on page 7.

6

3. Ordering Information

The Si595 supports a variety of options including frequency, temperature stability, tuning slope, output format, and V_{DD}. Specific device configurations are programmed into the Si595 at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Silicon Labs provides a web browser-based part number configuration utility to simplify this process. Refer to www.silabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si595 VCXO series is supplied in an industry-standard, RoHS compliant, lead-free, 6-pad, 5 x 7 mm package. Tape and reel packaging is an ordering option.

Example Part Number: 595AE148M500DGR is a 5 x 7 mm VCXO in a 6 pad package. The nominal frequency is 148.5 MHz, with a 3.3 V supply, LVPECL output, and Output Enable active high polarity. Temperature stability is specified as ±20 ppm and the tuning slope is 95 ppm/V. The part is specified for a –40 to +85 C° ambient temperature range operation and is shipped in tape and reel format.

Figure 1. Part Number Convention

8

4. Outline Diagram and Suggested Pad Layout

Figure 2 illustrates the package details for the Si595. Table 12 lists the values for the dimensions shown in the illustration.



Figure 2. Si595 Outline Diagram

Table 12. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Max		
A	1.50	1.65	1.80		
b	1.30	1.40	1.50		
С	0.50	0.60	0.70		
D		5.00 BSC			
D1	4.30	4.40	4.50		
е		2.54 BSC.			
Е		7.00 BSC.			
E1	6.10	6.20	6.30		
Н	0.55	0.65	0.75		
L	1.17	1.27	1.37		
р	1.80	_	2.60		
R		0.70 REF			
aaa		0.15			
bbb	0.15				
ccc	0.10				
ddd	0.10				
eee		0.50			

5. Si5xx Mark Specification

Figure 3 illustrates the mark specification for the Si595. Table 13 lists the line information.

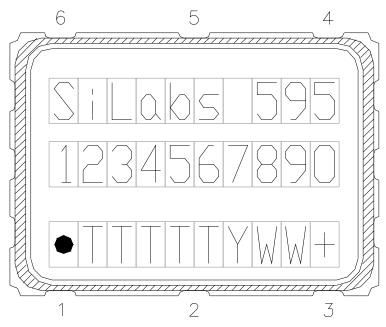


Figure 3. Mark Specification

Table 13. Si595 Top Mark Description

Line	Position	Description	
1	1–10	"SiLabs"+ Part Family Number, 595 (First 3 characters in part number)	
2	1–10	Si595: Option1+Option2+Freq(7)+Temp Si595 w/ 8-digit resolution: Option1+Option2+ConfigNum(6)+Temp	
3	Trace Code		
	Position 1	Pin 1 orientation mark (dot)	
	Position 2	Product Revision (D)	
Position 3–6		Tiny Trace Code (4 alphanumeric characters per assembly release instructions)	
	Position 7	Year (least significant year digit), to be assigned by assembly site (ex: 2009 = 9)	
	Position 8–9	Calendar Work Week number (1–53), to be assigned by assembly site	
	Position 10	"+" to indicate Pb-Free and RoHS-compliant	

6. 6-Pin PCB Land Pattern

Figure 4 illustrates the 6-pin PCB land pattern for the Si595. Table 14 lists the values for the dimensions shown in the illustration.

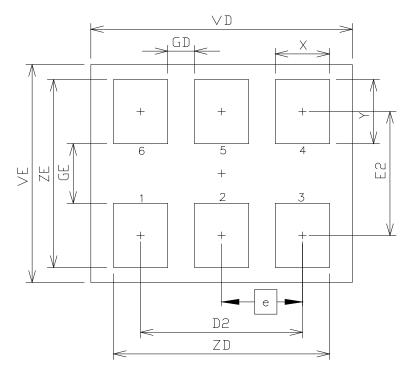


Figure 4. Si595 PCB Land Pattern

Table 14. PCB Land Pattern Dimensions (mm)

Min	Max	
5.08 REF		
2.54 BSC		
4.15 REF		
0.84	_	
2.00	_	
8.20 REF		
VE 7.30 REF		
1.70 TYP		
2.15 REF		
_	6.78	
_	6.30	
	5.08 2.54 4.15 0.84 2.00 8.20 7.30 1.70	

Notes:

- 1. Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification.
- 2. Land pattern design based on IPC-7351 guidelines.
- 3. All dimensions shown are at maximum material condition (MMC).
- 4. Controlling dimension is in millimeters (mm).

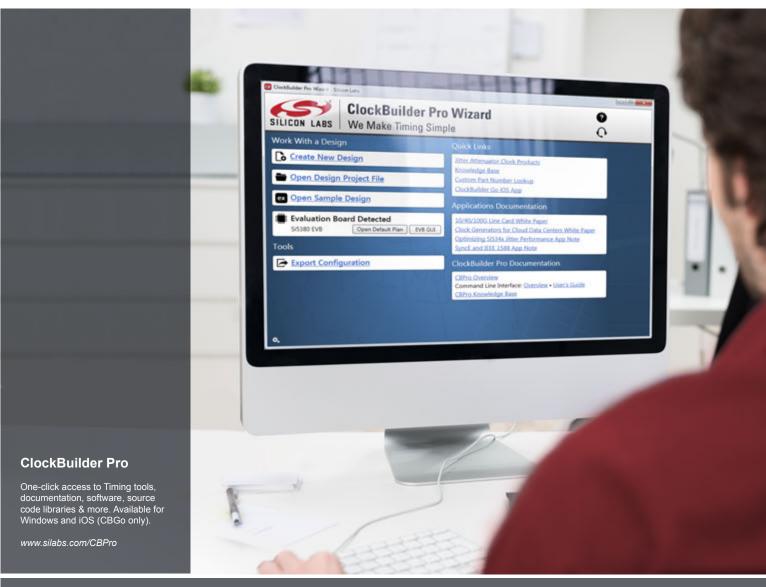
DOCUMENT CHANGE LIST:

Revision 0.1 to Revision 0.2

- Updated Table 5, "CLK± Output Phase Jitter," on page 4.
 - Updated typical phase jitter from 0.6 to 0.7 ps for kV = 380 ppm/V.

Revision 0.2 to Revision 1.0

- Updated 2.5 V/3.3 V and 1.8 V CML output level specifications in Table 4 on page 3.
- Updated Si595 device to support frequencies up to 810 MHz for LVPECL, LVDS, and CML outputs.
- Separated 1.8 V, 2.5 V/3.3 V supply voltage. specifications for CML output in Table 3 on page 5.
- Updated Note 1 of Table 5 on page 4 to refer to AN256.
- Updated Table 8 on page 5 to include the "Moisture Sensitivity Level" and "Contact Pads" rows.
- Updated Figure 3 and Table 13 on page 9 to reflect specific marking information.


Revision 1.0 to Revision 1.1

■ Swapped D and E values in Table 12 on page 8.

Revision 1.1 to Revision 1.2

 Added Table 9, "Thermal Characteristics," on page 5.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, Silabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA