

Features

- ◆ High-speed access
 - Military: 25/35/55/100ns (max.)
 - Commercial: 20/25/35/55/100ns (max.)
- ◆ Low-power operation
 - IDT7132/42SA
 - Active: 325mW (typ.)
 - Standby: 5mW (typ.)
 - IDT7132/42LA
 - Active: 325mW (typ.)
 - Standby: 1mW (typ.)

- ◆ MASTER IDT7132 easily expands data bus width to 16-or-more bits using SLAVE IDT7142
- ◆ On-chip port arbitration logic (IDT7132 only)
- ◆ BUSY output flag on IDT7132; BUSY input on IDT7142
- ◆ Battery backup operation —2V data retention (LA only)
- ◆ TTL-compatible, single 5V ±10% power supply
- ◆ Available in 48-pin DIP, LCC and Flatpack, and 52-pin PLCC packages
- ◆ Military product compliant to MIL-PRF-38535 QML
- ◆ Industrial temperature range (-40°C to +85°C) is available for selected speeds

Functional Block Diagram

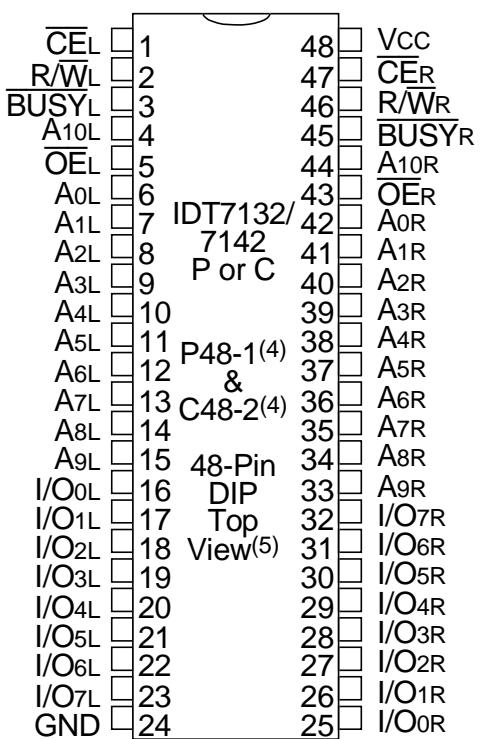
2692 drw 01

NOTES:

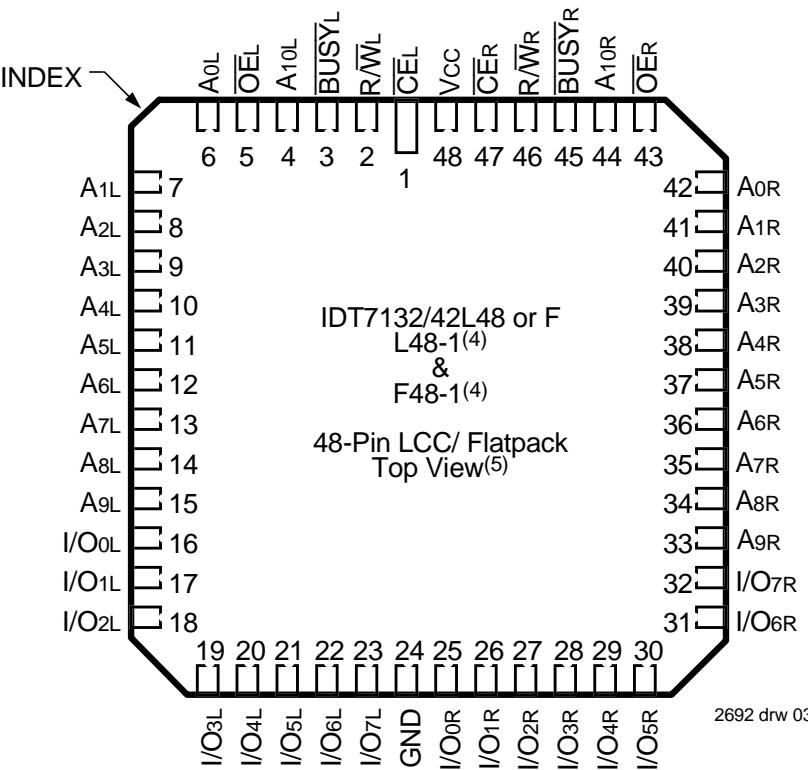
1. IDT7132 (MASTER): BUSY is open drain output and requires pullup resistor of 270Ω.
IDT7142 (SLAVE): BUSY is input.
2. Open drain output: requires pullup resistor of 270Ω.

Description

The IDT7132/IDT7142 are high-speed 2Kx8 Dual-Port Static RAMs. The IDT7132 is designed to be used as a stand-alone 8-bit Dual-Port RAM or as a "MASTER" Dual-Port RAM together with the IDT7142 "SLAVE" Dual-Port in 16-bit-or-more word width systems. Using the IDT MASTER/SLAVE Dual-Port RAM approach in 16-or-more-bit memory system applications results in full-speed, error-free operation without the need for additional discrete logic.


Both devices provide two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature, controlled by CE permits the on-chip circuitry of each port to enter

a very low standby power mode.


Fabricated using IDT's CMOS high-performance technology, these devices typically operate on only 325mW of power. Low-power (LA) versions offer battery backup data retention capability, with each Dual-Port typically consuming 200 μ W from a 2V battery.

The IDT7132/7142 devices are packaged in a 48-pin sidebraze or plastic DIPs, 48-pin LCCs, 52-pin PLCCs, and 48-lead flatpacks. Military grade product is manufactured in compliance with the latest revision of MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations^(1,2,3)

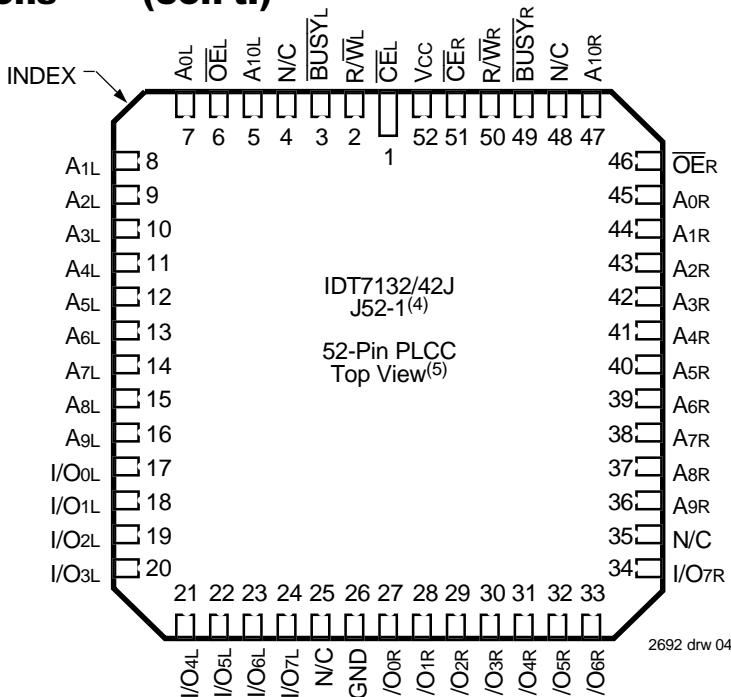
2692 drw 02

2692 drw 03

NOTES:

1. All Vcc pins must be connected to the power supply.
2. All GND pins must be connected to the ground supply.
3. P48-1 package body is approximately .55 in x 2.43 in x .18 in.
C48-2 package body is approximately .62 in x 2.43 in x .15 in.
L48-1 package body is approximately .57 in x .57 in x .68 in.
F48-1 package body is approximately .75 in x .75 in x .11 in.
4. This package code is used to reference the package diagram.
5. This text does not indicate orientation of the actual part-marking.

Capacitance⁽¹⁾ (TA = +25°C, f = 1.0MHz)


Symbol	Parameter	Conditions ^{②)}	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 3dV	11	pF
C _{OUT}	Output Capacitance	V _{OUT} = 3dV	11	pF

NOTES:

NOTES:

1. This parameter is determined by device characterization but is not production tested.
2. 3dV represents the interpolated capacitance when the input and output signals switch from 3V to 0V.

Pin Configurations^(1,2,3) (con't.)

NOTES:

1. All Vcc pins must be connected to the power supply.
2. All GND pins must be connected to the ground supply.
3. Package body is approximately .75 in x .75 in x .17 in.
4. This package code is used to reference the package diagram.
5. This text does not indicate orientation of the actual part-marking.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
TSTG	Storage Temperature	-65 to +150	-65 to +150	°C
IOUT	DC Output Current	50	50	mA

2692tbl 01

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to $\leq 20\text{mA}$ for the period of $VTERM \geq Vcc + 10\%$.

Recommended Operating Temperature and Supply Voltage^(1,2)

Grade	Ambient Temperature	GND	Vcc
Military	-55°C to +125°C	0V	5.0V $\pm 10\%$
Commercial	0°C to +70°C	0V	5.0V $\pm 10\%$
Industrial	-40°C to +85°C	0V	5.0V $\pm 10\%$

2692tbl 02

NOTES:

1. This is the parameter T_A . This is the "instant on" case temperature.
2. Industrial temperature: for specific speeds, packages and powers contact your sales office.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
VIH	Input High Voltage	2.2	—	6.0 ⁽²⁾	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	—	0.8	V

2692tbl 03

NOTES:

1. VIL (min.) = -1.5V for pulse width less than 10ns.
2. $VTERM$ must not exceed $Vcc + 10\%$.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(1,5,8) (V_{CC} = 5.0V ± 10%)

Symbol	Parameter	Test Condition	Version	7132X20 ⁽²⁾ 7142X20 ⁽²⁾ Com'l Only		7132X25 ⁽⁷⁾ 7142X25 ⁽⁷⁾ Com'l & Military		7132X35 7142X35 Com'l & Military		Unit
				Typ.	Max.	Typ.	Max.	Typ.	Max.	
I _{CC}	Dynamic Operating Current (Both Ports Active)	$\bar{C}E_L = \bar{C}E_R = V_L$, Outputs Disabled $f = f_{MAX}^{(3)}$	COM'L	SA LA 110 110	250 200	110 110	220 170	80 80	165 120	mA
			MIL & IND	SA LA — —	— —	110 110	280 220	80 80	230 170	
I _{SB1}	Standby Current (Both Ports - TTL Level Inputs)	$\bar{C}E_L = \bar{C}E_R = V_H$, $f = f_{MAX}^{(3)}$	COM'L	SA LA 30 30	65 45	30 30	65 45	25 25	65 45	mA
			MIL & IND	SA LA — —	— —	30 30	80 60	25 25	80 60	
I _{SB2}	Standby Current (One Port - TTL Level Inputs)	$\bar{C}E_A^* = V_L$ and $\bar{C}E_B^* = V_H^{(6)}$ Active Port Outputs Disabled $f = f_{MAX}^{(3)}$	COM'L	SA LA 65 65	165 125	65 65	150 115	50 50	125 90	mA
			MIL & IND	SA LA — —	— —	65 65	160 125	50 50	150 115	
I _{SB3}	Full Standby Current (Both Ports - All CMOS Level Inputs)	$\bar{C}E_L$ and $\bar{C}E_R \geq V_{CC} - 0.2V$ $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq 0.2V$, $f = 0^{(4)}$	COM'L	SA LA 1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 4	mA
			MIL & IND	SA LA — —	— —	1.0 0.2	30 10	1.0 0.2	30 10	
I _{SB4}	Full Standby Current (One Port - All CMOS Level Inputs)	$\bar{C}E_A^* \leq 0.2V$ and $\bar{C}E_B^* \geq V_{CC} - 0.2V^{(6)}$ $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq 0.2V$ Active Port Outputs Disabled $f = f_{MAX}^{(3)}$	COM'L	SA LA 60 60	155 115	60 60	145 105	45 45	110 85	mA
			MIL & IND	SA LA — —	— —	60 60	155 115	45 45	145 105	

2692 b1 04a

Symbol	Parameter	Test Condition	Version	7132X55 7142X55 Com'l & Military		7132X100 7142X100 Com'l & Military		Unit
				Typ.	Max.	Typ.	Max.	
I _{CC}	Dynamic Operating Current (Both Ports Active)	$\bar{C}E_L = \bar{C}E_R = V_L$, Outputs Disabled $f = f_{MAX}^{(3)}$	COM'L	SA LA 65 65	155 110	65 65	155 110	mA
			MIL & IND	SA LA 65 65	190 140	65 65	190 140	
I _{SB1}	Standby Current (Both Ports - TTL Level Inputs)	$\bar{C}E_L = \bar{C}E_R = V_H$, $f = f_{MAX}^{(3)}$	COM'L	SA LA 20 20	65 35	20 20	55 35	mA
			MIL & IND	SA LA 20 20	65 45	20 20	65 45	
I _{SB2}	Standby Current (One Port - TTL Level Inputs)	$\bar{C}E_A^* = V_L$ and $\bar{C}E_B^* = V_H^{(6)}$ Active Port Outputs Disabled $f = f_{MAX}^{(3)}$	COM'L	SA LA 40 40	110 75	40 40	110 75	mA
			MIL & IND	SA LA 40 40	125 90	40 40	125 90	
I _{SB3}	Full Standby Current (Both Ports - All CMOS Level Inputs)	$\bar{C}E_L$ and $\bar{C}E_R \geq V_{CC} - 0.2V$ $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq 0.2V$, $f = 0^{(4)}$	COM'L	SA LA 1.0 0.2	15 4	1.0 0.2	15 4	mA
			MIL & IND	SA LA 1.0 0.2	30 10	1.0 0.2	30 10	
I _{SB4}	Full Standby Current (One Port - All CMOS Level Inputs)	$\bar{C}E_A^* \leq 0.2V$ and $\bar{C}E_B^* \geq V_{CC} - 0.2V^{(6)}$ $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq 0.2V$ Active Port Outputs Disabled $f = f_{MAX}^{(3)}$	COM'L	SA LA 40 40	100 70	40 40	95 70	mA
			MIL & IND	SA LA 40 40	110 85	40 40	110 80	

2692 b1 04b

NOTES:

1. 'X' in part numbers indicates power rating (SA or LA).
2. PLCC Package only
3. At $f = f_{MAX}$, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of $1/t_{RC}$, and using "AC TEST CONDITIONS" of input levels of GND to $3V$.
4. $f = 0$ means no address or control lines change. Applies only to inputs at CMOS level standby.
5. $V_{CC} = 5V$, $T_A = +25^\circ C$ for Typ and is not production tested. $V_{CC DC} = 100mA$ (Typ)
6. Port "A" may be either left or right port. Port "B" is opposite from port "A".
7. Not available in DIP packages.
8. Industrial temperature: for specific speeds, packages and powers contact your sales office.

DC Electrical Characteristics Over the Operating Temperature Supply Voltage Range (V_{CC} = 5.0V ± 10%)

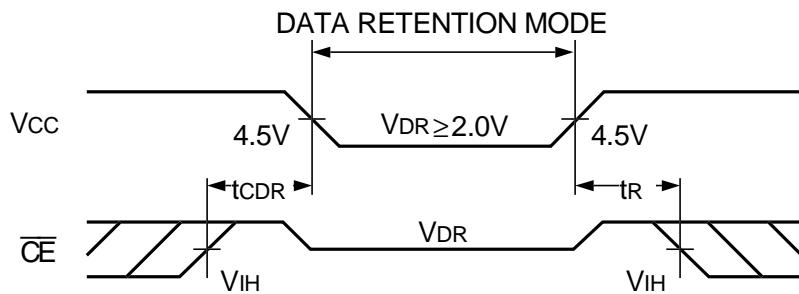
Symbol	Parameter	Test Conditions	7132SA 7142SA		7132LA 7142LA		Unit
			Min.	Max.	Min.	Max.	
I _U	Input Leakage Current ⁽¹⁾	V _{CC} = 5.5V, V _{IN} = 0V to V _{CC}	—	10	—	5	µA
I _O	Output Leakage Current	V _{CC} = 5.5V, CE = V _{IH} , V _{OUT} = 0V to V _{CC}	—	10	—	5	µA
V _{OL}	Output Low Voltage	I _{OL} = 4mA	—	0.4	—	0.4	V
V _{OL}	Open Drain Output Low Voltage (BUSY, INT)	I _{OL} = 16mA	—	0.5	—	0.5	V
V _{OH}	Output High Voltage	I _{OH} = -4mA	2.4	—	2.4	—	V

2692 tbl 05

NOTE:

- At V_{CC} ≤ 2.0V leakages are undefined.

Data Retention Characteristics (LA Version Only)


Symbol	Parameter	Test Condition	Min.	Typ. ⁽¹⁾	Max.	Unit
V _{DR}	V _{CC} for Data Retention	V _{CC} = 2.0V	2.0	—	—	V
I _{CDR}	Data Retention Current	CE ≥ V _{CC} - 0.2V V _{IN} ≥ V _{CC} - 0.2V or V _{IN} ≤ 0.2V	—	100	4000	µA
			—	100	1500	µA
t _{CDR} ⁽³⁾	Chip Deselect to Data Retention Time		0	—	—	ns
t _R ⁽³⁾	Operation Recovery Time			t _{RC} ⁽²⁾	—	ns

2692 tbl 06

NOTES:

- V_{CC} = 2V, TA = +25°C, and is not production tested.
- t_{RC} = Read Cycle Time
- This parameter is guaranteed but not production tested.

Data Retention Waveform

2692 drw 05

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1, 2, and 3

2692 lbl 07

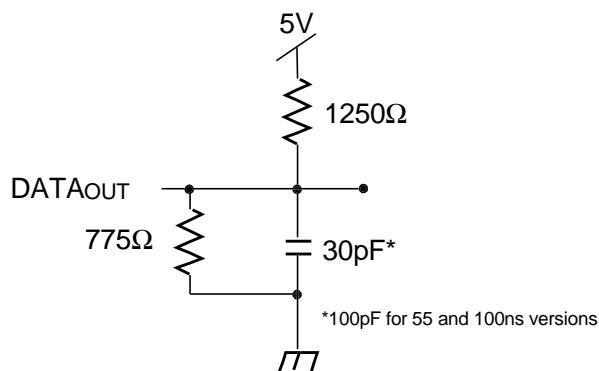


Figure 1. AC Output Test Load

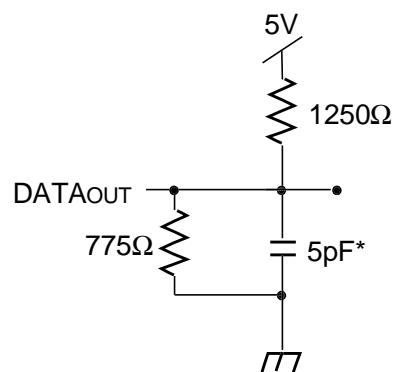
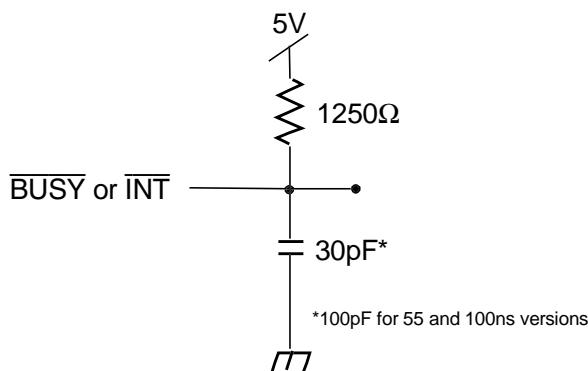



Figure 2. Output Test Load
(for t_{hz} , t_{lz} , t_{zw} , and t_{ow})

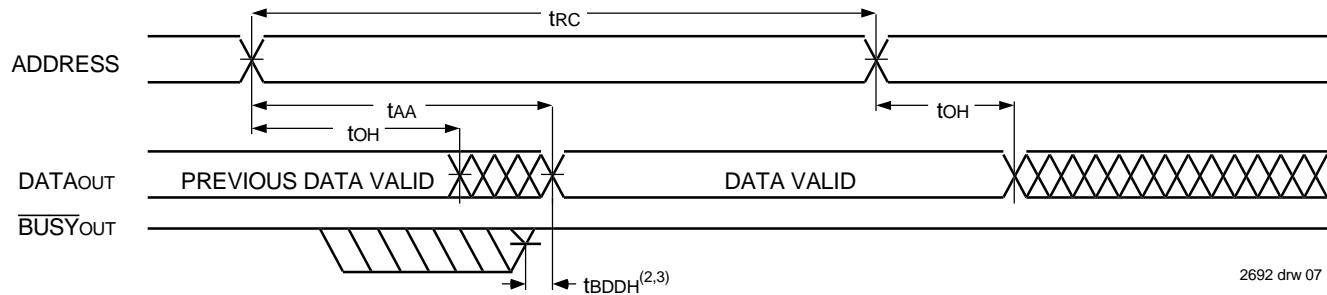
2692 drw 06

Figure 3. BUSY and INT
AC Output Test Load

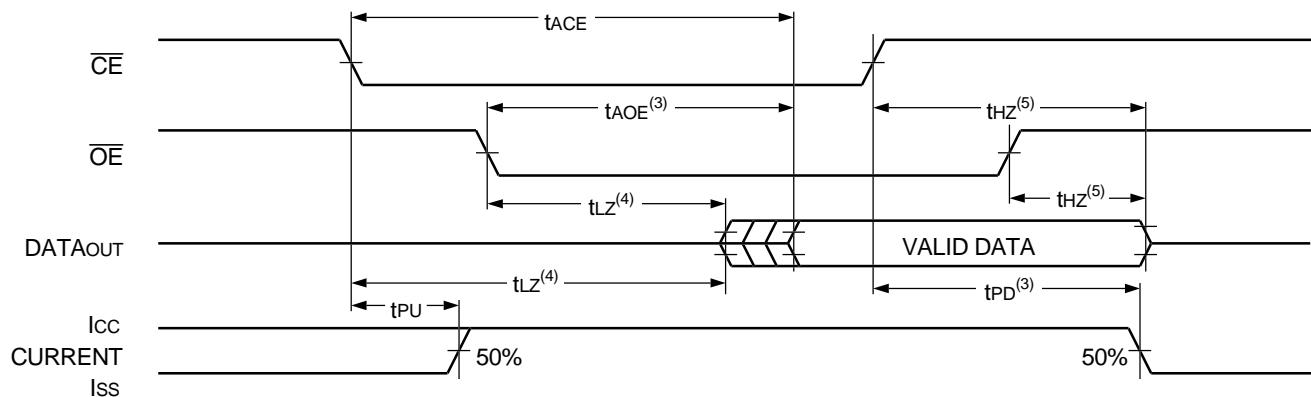
**AC Electrical Characteristics Over the
Operating Temperature and Supply Voltage Range^(3,5)**

Symbol	Parameter	7132X20 ⁽²⁾ 7142X20 ⁽²⁾ Com'l Only		7132X25 ⁽²⁾ 7142X25 ⁽²⁾ Com'l & Military		7132X35 7142X35 Com'l & Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t _{RC}	Read Cycle Time	20	—	25	—	35	—	ns
t _{AA}	Address Access Time	—	20	—	25	—	35	ns
t _{ACE}	Chip Enable Access Time	—	20	—	25	—	35	ns
t _{AOE}	Output Enable Access Time	—	11	—	12	—	20	ns
t _{OH}	Output Hold from Address Change	3	—	3	—	3	—	ns
t _{LZ}	Output Low-Z Time ^(1,4)	0	—	0	—	0	—	ns
t _{HZ}	Output High-Z Time ^(1,4)	—	10	—	10	—	15	ns
t _{PU}	Chip Enable to Power Up Time ⁽⁴⁾	0	—	0	—	0	—	ns
t _{PD}	Chip Disable to Power Down Time ⁽⁴⁾	—	20	—	25	—	35	ns

2692 tbl 08a


Symbol	Parameter	7132X55 7142X55 Com'l & Military		7132X100 7142X100 Com'l & Military		Unit
		Min.	Max.	Min.	Max.	
READ CYCLE						
t _{RC}	Read Cycle Time	55	—	100	—	ns
t _{AA}	Address Access Time	—	55	—	100	ns
t _{ACE}	Chip Enable Access Time	—	55	—	100	ns
t _{AOE}	Output Enable Access Time	—	25	—	40	ns
t _{OH}	Output Hold from Address Change	3	—	10	—	ns
t _{LZ}	Output Low-Z Time ^(1,4)	5	—	5	—	ns
t _{HZ}	Output High-Z Time ^(1,4)	—	25	—	40	ns
t _{PU}	Chip Enable to Power Up Time ⁽⁴⁾	0	—	0	—	ns
t _{PD}	Chip Disable to Power Down Time ⁽⁴⁾	—	50	—	50	ns

2692 tbl 08b


NOTES:

1. Transition is measured 0mV from Low or High-Impedance Voltage Output Test Load (Figure 2).
2. PLCC package only.
3. 'X' in part numbers indicates power rating (SA or LA).
4. This parameter is guaranteed by device characterization, but is not production tested.
5. Industrial temperature: for specific speeds, packages and powers contact your sales office.

Timing Waveform of Read Cycle No. 1, Either Side⁽¹⁾

Timing Waveform of Read Cycle No. 2, Either Side⁽¹⁾

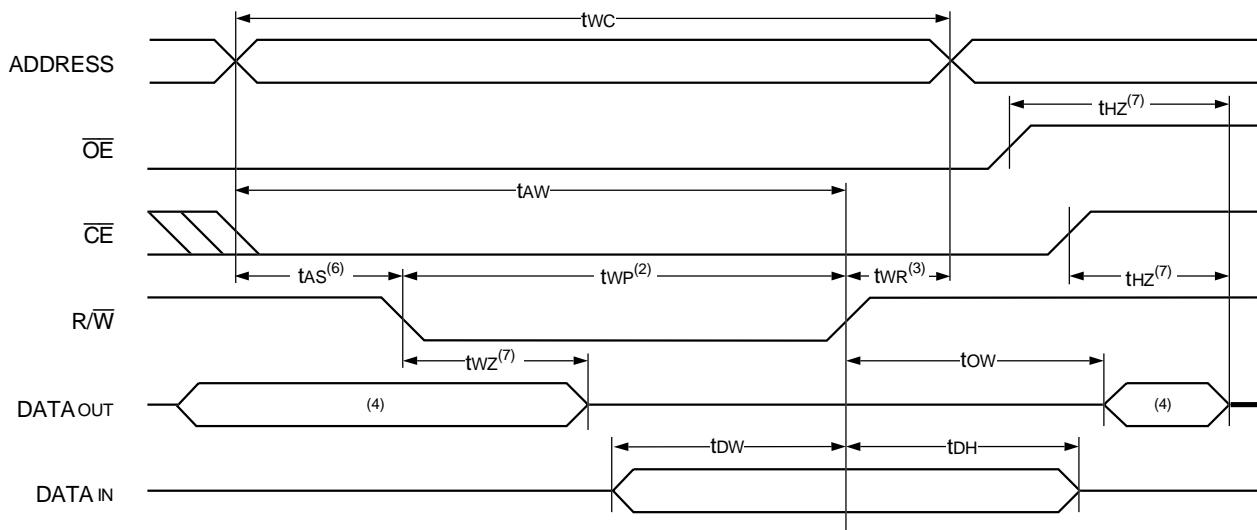
NOTES:

1. R/W = V_{IH} , $\overline{CE} = V_{IL}$, and $\overline{OE} = V_{IL}$. Address is valid prior to the coincidental with \overline{CE} transition LOW.
2. tDDH delay is required only in the case where the opposite port is completing a write operation to the same address location. For simultaneous read operations, \overline{BUSY} has no relationship to valid output data.
3. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA, and tBDD.
4. Timing depends on which signal is asserted last, \overline{OE} or \overline{CE} .
5. Timing depends on which signal is de-asserted first, \overline{OE} or \overline{CE} .

**AC Electrical Characteristics Over the
Operating Temperature Supply Voltage Range^(5,6)**

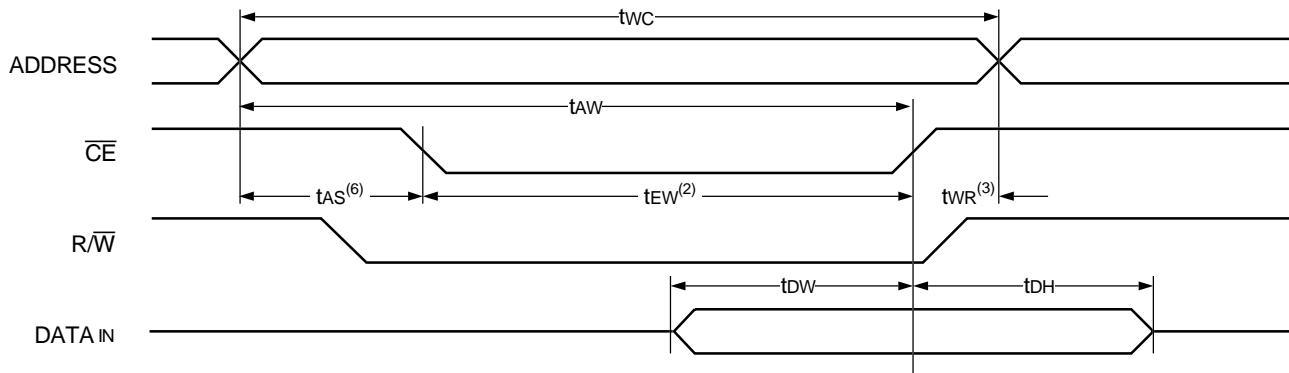
Symbol	Parameter	7132X20 ⁽²⁾ 7142X20 ⁽²⁾ Com'l Only		7132X25 ⁽²⁾ 7142X25 ⁽²⁾ Com'l & Military		7132X35 7142X35 Com'l & Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
WRITE CYCLE								
t _{WC}	Write Cycle Time ⁽³⁾	20	—	25	—	35	—	ns
t _{EW}	Chip Enable to End-of-Write	15	—	20	—	30	—	ns
t _{AW}	Address Valid to End-of-Write	15	—	20	—	30	—	ns
t _{AS}	Address Set-up Time	0	—	0	—	0	—	ns
t _{WP}	Write Pulse Width ⁽⁴⁾	15	—	15	—	25	—	ns
t _{WR}	Write Recovery Time	0	—	0	—	0	—	ns
t _{DW}	Data Valid to End-of-Write	10	—	12	—	15	—	ns
t _{HZ}	Output High-Z Time ⁽¹⁾	—	10	—	10	—	15	ns
t _{DH}	Data Hold Time	0	—	0	—	0	—	ns
t _{WZ}	Write Enable to Output in High-Z ⁽¹⁾	—	10	—	10	—	15	ns
t _{OW}	Output Active from End-of-Write ⁽¹⁾	0	—	0	—	0	—	ns

2692 tbl 09


Symbol	Parameter	7132X55 7142X55 Com'l & Military		7132X100 7142X100 Com'l & Military		Unit
		Min.	Max.	Min.	Max.	
WRITE CYCLE						
t _{WC}	Write Cycle Time ⁽³⁾	55	—	100	—	ns
t _{EW}	Chip Enable to End-of-Write	40	—	90	—	ns
t _{AW}	Address Valid to End-of-Write	40	—	90	—	ns
t _{AS}	Address Set-up Time	0	—	0	—	ns
t _{WP}	Write Pulse Width ⁽⁴⁾	30	—	55	—	ns
t _{WR}	Write Recovery Time	0	—	0	—	ns
t _{DW}	Data Valid to End-of-Write	20	—	40	—	ns
t _{HZ}	Output High-Z Time ⁽¹⁾	—	25	—	40	ns
t _{DH}	Data Hold Time	0	—	0	—	ns
t _{WZ}	Write Enable to Output in High-Z ⁽¹⁾	—	30	—	40	ns
t _{OW}	Output Active from End-of-Write ⁽¹⁾	0	—	0	—	ns

2692 tbl 10

NOTES:


1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2). This parameter is guaranteed by device characterization but is not production tested.
2. PLCC package only.
3. For Master/Slave combination, t_{WC} = t_{BAA} + t_{WP}, since R/W = V_{IL} must occur after t_{BAA}.
4. If \overline{OE} is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t_{WP} or (t_{WZ} + t_{DW}) to allow the I/O drivers to turn off data to be placed on the bus for the required t_{OW}. If \overline{OE} is High during a R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified t_{WP}.
5. 'X' in part numbers indicates power rating (SA or LA).
6. Industrial temperature: for specific speeds, packages and powers contact your sales office.

Timing Waveform of Write Cycle No. 1, (R/W Controlled Timing)^(1,5,8)

2692 drw 09

Timing Waveform of Write Cycle No. 2, (CE Controlled Timing)^(1,5)

2692 drw 10

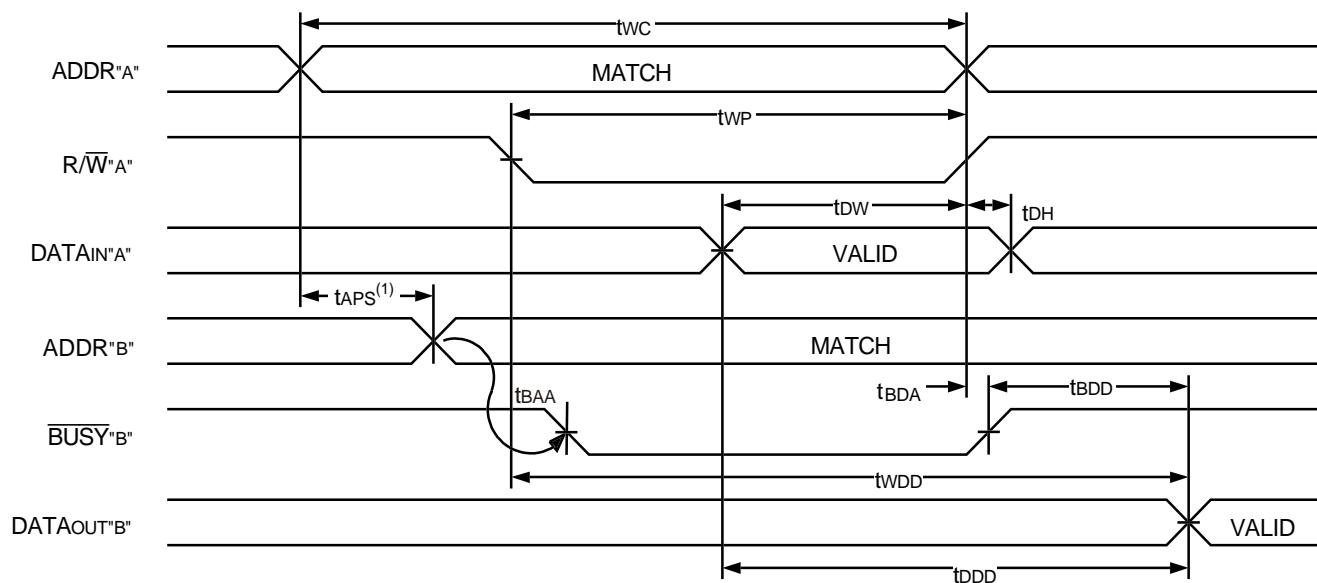
NOTES:

1. R/W or CE must be HIGH during all address transitions.
2. A write occurs during the overlap (tew or twp) of CE = V_{IL} and R/W = V_{IL}.
3. twr is measured from the earlier of CE or R/W going HIGH to the end of the write cycle.
4. During this period, the I/O pins are in the output state and input signals must not be applied.
5. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.
6. Timing depends on which enable signal (CE or R/W) is asserted last.
7. This parameter is determined by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2).
8. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tew) to allow the I/O drivers to turn off data to be placed on the bus for the required tew. If OE is HIGH during a R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(7,8)

Symbol	Parameter	7132X20 ⁽¹⁾ 7142X20 ⁽¹⁾ Com'l Only		7132X25 ⁽²⁾ 7142X25 ⁽²⁾ Com'l & Military		7132X35 7142X35 Com'l & Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
BUSY Timing (For Master IDT7132 Only)								
t _{BAA}	BUSY Access Time from Address	---	20	---	20	---	20	ns
t _{BDA}	BUSY Disable Time from Address	---	20	---	20	---	20	ns
t _{BAC}	BUSY Access Time from Chip Enable	---	20	---	20	---	20	ns
t _{BDC}	BUSY Disable Time from Chip Enable	---	20	---	20	---	20	ns
t _{WDD}	Write Pulse to Data Delay ⁽²⁾	---	50	---	50	---	60	ns
t _{WH}	Write Hold After BUSY ⁽⁶⁾	12	---	15	---	20	---	ns
t _{DDD}	Write Data Valid to Read Data Delay ⁽²⁾	---	35	---	35	---	35	ns
t _{APS}	Arbitration Priority Set-up Time ⁽³⁾	5	---	5	---	5	---	ns
t _{BDD}	BUSY Disable to Valid Data ⁽⁴⁾	---	25	---	35	---	35	ns
BUSY Timing (For Slave IDT7142 Only)								
t _{WB}	Write to BUSY Input ⁽⁵⁾	0	---	0	---	0	---	ns
t _{WH}	Write Hold After BUSY ⁽⁶⁾	12	---	15	---	20	---	ns
t _{WDD}	Write Pulse to Data Delay ⁽²⁾	---	40	---	50	---	60	ns
t _{DDD}	Write Data Valid to Read Data Delay ⁽²⁾	---	30	---	35	---	35	ns

2692tbl11a

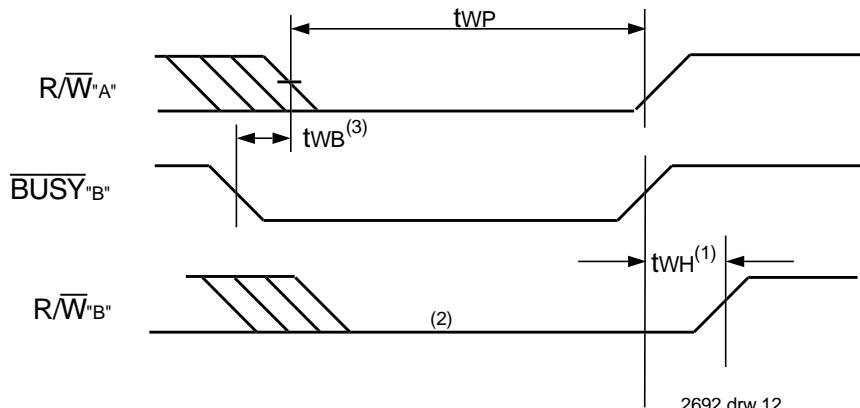

Symbol	Parameter	7132X55 7142X55 Com'l & Military		7132X100 7142X100 Com'l & Military		Unit
		Min.	Max.	Min.	Max.	
BUSY Timing (For Master IDT7132 Only)						
t _{BAA}	BUSY Access Time from Address	---	30	---	50	ns
t _{BDA}	BUSY Disable Time from Address	---	30	---	50	ns
t _{BAC}	BUSY Access Time from Chip Enable	---	30	---	50	ns
t _{BDC}	BUSY Disable Time from Chip Enable	---	30	---	50	ns
t _{WDD}	Write Pulse to Data Delay ⁽²⁾	---	80	---	120	ns
t _{WH}	Write Hold After BUSY ⁽⁶⁾	20	---	20	---	ns
t _{DDD}	Write Data Valid to Read Data Delay ⁽²⁾	---	55	---	100	ns
t _{APS}	Arbitration Priority Set-up Time ⁽³⁾	5	---	5	---	ns
t _{BDD}	BUSY Disable to Valid Data ⁽⁴⁾	---	50	---	65	ns
BUSY Timing (For Slave IDT7142 Only)						
t _{WB}	Write to BUSY Input ⁽⁵⁾	0	---	0	---	ns
t _{WH}	Write Hold After BUSY ⁽⁶⁾	20	---	20	---	ns
t _{WDD}	Write Pulse to Data Delay ⁽²⁾	---	80	---	120	ns
t _{DDD}	Write Data Valid to Read Data Delay ⁽²⁾	---	55	---	100	ns

2692tbl11b

NOTES:

- PLCC package only.
- Port-to-port delay through RAM cells from the writing port to the reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY."
- To ensure that the earlier of the two ports wins.
- t_{BDD} is a calculated parameter and is the greater of 0, t_{WDD} - t_{WP} (actual) or t_{DDD} - t_{DW} (actual).
- To ensure that a write cycle is inhibited on port "B" during contention on port "A".
- To ensure that a write cycle is completed on port "B" after contention on port "A".
- 'X' in part numbers indicates power rating (SA or LA).
- Industrial temperature: for specific speeds, packages and powers contact your sales office.

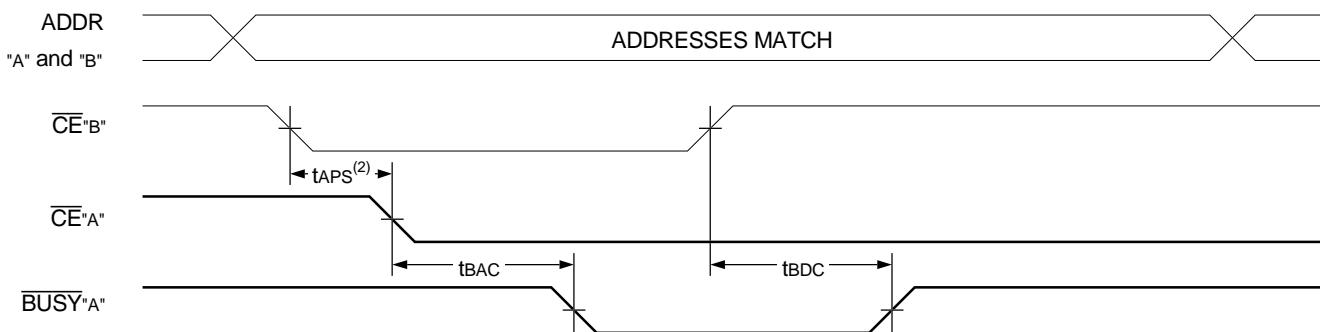
Timing Waveform of Write with Port-to-Port Read and **BUSY**^(2,3,4)



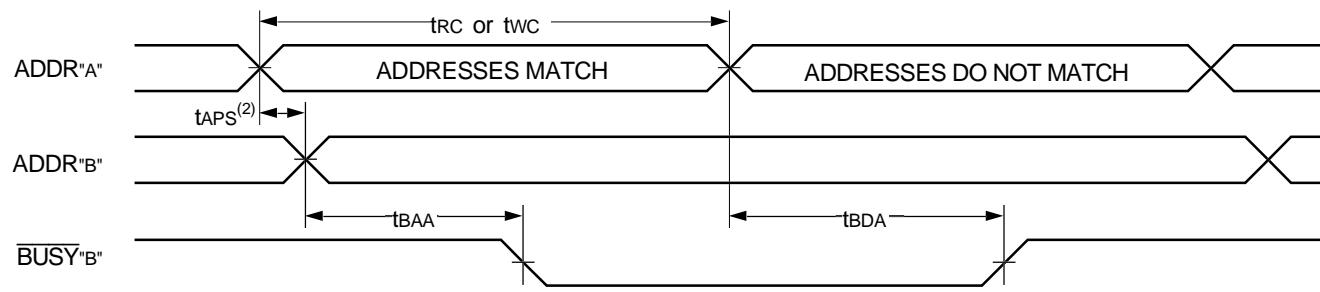
NOTES:

2692 drw 11

1. To ensure that the earlier of the two ports wins, tAPs is ignored for Slave (IDT7142).
2. $\overline{CE}_L = \overline{CE}_R = V_{IL}$
3. $\overline{OE} = V_{IL}$ for the reading port.
4. All timing is the same for the left and right ports. Port "A" may be either the left or right port. Port "B" is opposite from port "A".


Timing Waveform of Write with **BUSY**⁽⁴⁾

NOTES:


1. t_{WH} must be met for both **BUSY** Input (IDT7142, slave) or Output (IDT7132, master).
2. **BUSY** is asserted on port "B" blocking R/W^B , until $BUSY^B$ goes HIGH.
3. tWB applies only to the slave version (IDT7142).
4. All timing is the same for the left and right ports. Port 'A' may be either the left or right port. Port "B" is opposite from port "A".

Timing Waveform of **BUSY** Arbitration Controlled by **CE** Timing⁽¹⁾

2692 drw 13

Timing Waveform of **BUSY** Arbitration Controlled by Address Match Timing⁽¹⁾

2692 drw 14

NOTES:

1. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
2. If tAPS is not satisfied, the **BUSY** will be asserted on one side or the other, but there is no guarantee on which side **BUSY** will be asserted (7132 only).

Truth Tables

Table I. Non-Contention Read/Write Control⁽⁴⁾

Left or Right Port ⁽¹⁾				Function
R/W	CE	OE	D0-7	
X	H	X	Z	Port Disabled and in Power-Down Mode, lSB2 or lSB4
X	H	X	Z	$\bar{CE}_R = \bar{CE}_L = V_{IH}$, Power-Down Mode, lSB1 or lSB3
L	L	X	DATAIN	Data on Port Written into Memory ⁽²⁾
H	L	L	DATAOUT	Data in Memory Output on Port ⁽³⁾
X	L	H	Z	High Impedance Outputs

2692 tbl 12

NOTES:

1. $A_{0L} - A_{10L} \neq A_{0R} - A_{10R}$
2. If **BUSY** = L, data is not written.
3. If **BUSY** = L, data may not be valid, see tWDD and tDD timing.
4. 'H' = V_{IH} , 'L' = V_{IL} , 'X' = DON'T CARE, 'Z' = HIGH IMPEDANCE

Table II — Address BUSY Arbitration

Inputs		Outputs		Function	
$\overline{CE_L}$	$\overline{CE_R}$	$AOL-A10L$ $AOR-A10R$	$\overline{BUSY_L}^{(1)}$	$\overline{BUSY_R}^{(1)}$	
X	X	NO MATCH	H	H	Normal
H	X	MATCH	H	H	Normal
X	H	MATCH	H	H	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

2692 tbl 13

NOTES:

1. Pins $\overline{\text{BUSY}}_L$ and $\overline{\text{BUSY}}_R$ are both outputs for IDT7132 (master). Both are inputs for IDT7142 (slave). $\overline{\text{BUSY}}_x$ outputs on the IDT7132 are open drain, not push-pull outputs. On slaves the $\overline{\text{BUSY}}_x$ input internally inhibits writes.
2. 'L' if the inputs to the opposite port were stable prior to the address and enable inputs of this port. 'H' if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either $\overline{\text{BUSY}}_L$ or $\overline{\text{BUSY}}_R$ = LOW will result. $\overline{\text{BUSY}}_L$ and $\overline{\text{BUSY}}_R$ outputs can not be LOW simultaneously.
3. Writes to the left port are internally ignored when $\overline{\text{BUSY}}_L$ outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when $\overline{\text{BUSY}}_R$ outputs are driving LOW regardless of actual logic level on the pin.

Functional Description

The IDT7132/IDT7142 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7132/IDT7142 has an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into a standby mode when not selected ($\overline{CE} = VIH$). When a port is enabled, access to the entire memory array is permitted.

Busy Logic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The **BUSY** pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a busy indication, the write signal is gated internally to prevent the write from proceeding.

The use of BUSY Logic is not required or desirable for all applications. In some cases it may be useful to logically OR the BUSY outputs together and use any BUSY indication as an interrupt source to flag the event of an illegal or illogical operation.

The **BUSY** outputs on the IDT7132 RAM master are totem-pole type outputs and do not require pull-up resistors to operate. If these RAMs are being expanded in depth, then the **BUSY** indication for the resulting array does not require the use of an external AND gate.

Width Expansion with Busy Logic Master/Slave Arrays

When expanding an SRAM array in width while using BUSY logic, one master part is used to decide which side of the SRAM array will receive a BUSY indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the BUSY signal as a write inhibit signal. Thus on the IDT7132/IDT7142 SRAMs the BUSY pin is an output if the part is Master (IDT7132), and the BUSY pin is an input if the part is a Slave (IDT7142) as shown in Figure 3.

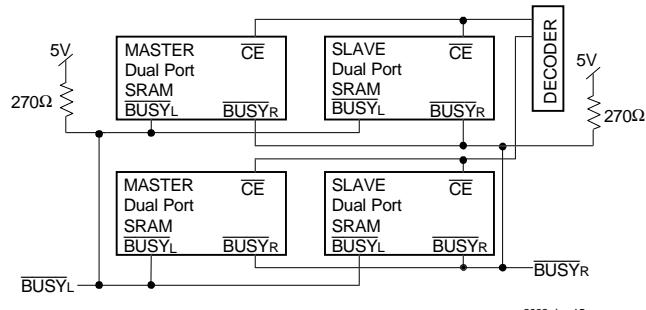


Figure 4. Busy and chip enable routing for both width and depth expansion with IDT7132 (Master) and (Slave) IDT7142 SRAMs.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating BUSY on one side of the array and another master indicating BUSY on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The **BUSY** arbitration, on a Master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a **BUSY** flag to be output from the master before the actual write pulse can be initiated with either the R/W signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Ordering Information

IDT	XXXX	A	999	A	A	Process/ Temperature Range	
Device Type		Power	Speed	Package			
						BLANK	Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Military (-55°C to +125°C) Compliant to MIL-PRF-38535 QML
						B	
						P	48-pin Plastic DIP (P48-1)
						C	48-pin Sidebrazed DIP (C48-2)
						J	52-pin PLCC (J52-1)
						L48	48-pin LCC (L48-1)
						F	48-pin Ceramic Flatpack (F48-1)
					20		Commercial PLCC Only
					25		Commercial & Military
					35		Commercial & Military
					55		Commercial & Military
					100		Commercial & Military
							Speed in nanoseconds
						LA	Low Power
						SA	Standard Power
					7132		16K (2K x 8-Bit) MASTER Dual-Port RAM
					7142		16K (2K x 8-Bit) SLAVE Dual-Port RAM

NOTE:

1. Industrial temperature range is available.
For specific speeds, packages and powers contact your sales office.

2692 drw 16

Datasheet Document History

3/24/99: Initiated datasheet document history
 Converted to new format
 Cosmetic and typographical corrections
 Pages 2 and 3 Added additional notes to pin configurations

6/8/99: Changed drawing format

8/26/99: Page 14 Changed Busy Logic and Width Expansion copy

11/10/99: Replaced IDT logo

1/12/00: Pages 1 and 2 Moved full "Description" to page 2 and adjusted page layouts
 Page 1 Added "(LAonly)" to paragraph
 Page 2 Fixed P48-1 body package description
 Page 3 Increased storage temperature parameters
 Clarified TA parameter
 Page 4 DC Electrical parameters—changed wording from "open" to "disabled"
 Page 6 Added asterisks to Figures 1 and 3 in drw 06
 Page 14 Corrected part numbers
 Changed ±500mV to 0mV in notes

CORPORATE HEADQUARTERS

2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-5166
fax: 408-492-8674
www.idt.com

for Tech Support:

831-754-4613
DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.